Page 13 - 《华中农业大学学报(自然科学版)》2022年第5期
P. 13
第 5 期 王新超 等:中国茶树遗传育种发展、创新之回顾与展望 7
map construction and QTL mapping for flavonoid-related traits 系[J]. 食品科学,2017,38(16):104-109.DAI W D,XIE D C,
in a tea plant(Camellia sinensis)using 2b-RAD sequencing[J/ LÜ M L,et al.Relationship of flavonol glycoside and processing
OL].BMC genomics,2018,19:955[2022-02-11].https://doi. suitability of tea varieties[J].Food Sci,2017,38(16):104-109
org/10.1186/s12864-018-5291-8. (in Chinese).
[13] MA J Q,JIN J Q,YAO M Z,et al.Quantitative trait loci map⁃ [26] MU B,ZHU Y,LV H P,et al.The enantiomeric distributions of
ping for theobromine and caffeine contents in tea plant(Camellia volatile constituents in different tea cultivars[J]. Food Chem,
sinensis)[J].J Agr Food Chem,2018,66(50):13321-13327. 2018,265:329-336.
[14] HUANG R,WANG J Y,YAO M Z,et al.Quantitative trait loci [27] 郭吉春,叶乃兴,何孝延 .茶树杂交一代展叶期的遗传变异[J].
mapping for free amino acid content using an albino population 茶叶科学,2004,24(4):255-259.GUO J C,YE N X,HE X Y.
and SNP markers provides insight into the genetic improvement Genetic variation in the leaf-expansion period of the first hybrid
of tea plants [J/OL]. Hortic Res-England,2022,9:uhab029 generation tea plants.[J].J Tea Sci,2004,24(4):255-259(in
[2022-02-11].https://doi.org/10.1093/hr/uhab029. Chinese).
[15] JIN J Q,YAO M Z,MA C L,et al.Association mapping of caf⁃ [28] ZHENG Y,WANG P,CHEN X,et al.Transcriptome and me⁃
feine content with TCS1 in tea plant and its related species[J]. tabolite profiling reveal novel insights into volatile heterosis in
Plant Physiol Bioch,2016,105:251-259. the tea plant(Camellia Sinensis)[J/OL].Molecules,2019,24:
[16] JIN J Q,LIU Y F,MA C L,et al.A novel F3'5'H allele with 14 3380 [2022-02-11]. https://doi. org/10.3390/mole⁃
bp deletion is associated with high catechin index trait of wild tea cules24183380.
plants and has potential use in enhancing tea quality[J]. J Agr [29] XIA E H,ZHANG H B,SHENG J,et al.The tea tree genome
Food Chem,2018,66(40):10470-10478. provides insights into tea flavor and independent evolution of caf⁃
[17] WEI K,WANG X,HAO X,et al. Development of a genome- feine biosynthesis[J].Mol Plant,2017,10(6):866-877.
wide 200 K SNP array and its application for high-density genetic
[30] WEI C,YANG H,WANG S,et al. Draft genome sequence of
mapping and origin analysis of Camellia sinensis[J].Plant Bio⁃
Camellia sinensis var.sinensis provides insights into the evolution
technol J,2022,20:414-416. of the tea genome and tea quality[J]. PNAS,2018,115(18):
[18] JIN J Q,MA J Q,YAO M Z,et al.Functional natural allelic vari⁃
E4151-E4158.
ants of flavonoid 3',5'-hydroxylase gene governing catechin traits
[31] XIA E,TONG W,HOU Y,et al.The reference genome of tea
in tea plant and its relatives[J].Planta,2017,245(3):523-538.
plant and resequencing of 81 diverse accessions provide insights
[19] WANG R J,GAO X F,YANG J,et al.Genome-wide associa⁃
into its genome evolution and adaptation[J].Mol Plant,2020,13
tion study to identify favorable SNP allelic variations and candi⁃
(7):1013-1026.
date genes that control the timing of spring bud flush of tea(Ca⁃
[32] ZHANG Q J,LI W,LI K,et al.The chromosome-level reference
mellia sinensis)using SLAF-seq[J].J Agr Food Chem,2019,67
genome of tea tree unveils recent bursts of non-autonomous LTR
(37):10380-10391.
retrotransposons in driving genome size evolution[J].Mol Plant,
[20] FANG K,XIA Z,LI H,et al.Genome-wide association analysis
2020,13(7):935-938.
identified molecular markers associated with important tea flavor-
[33] ZHANG W,ZHANG Y,QIU H,et al.Genome assembly of wild
related metabolites [J/OL]. Hortic Res-England,2021,8:42
tea tree DASZ reveals pedigree and selection history of tea variet⁃
[2022-02-11].https://doi.org/10.1038/s41438-021-00477-3.
ies[J/OL].Nat Commun,2020,11:3719[2022-02-11].https://
[21] LÜ Q,CHEN C,XU Y,et al.Optimization of agrobacterium tu⁃
mefaciens -mediated transformation systems in tea plant(Camel⁃ doi.org/10.1038/s41467-020-17498-6.
[34] WANG X,FENG H,CHANG Y,et al.Population sequencing
lia sinensis)[J].Hortic Plant J,2017,3(3):105-109.
enhances understanding of tea plant evolution[J/OL].Nat Com⁃
[22] 唐雨薇,刘丽萍,王若娴,等 . 茶树咖啡碱合成酶 CRISPR/Cas9
mun,2020,11:4447 [2022-02-11]. https://doi. org/10.1038/
基因组编辑载体的构建[J]. 茶叶科学,2016,36(4):414-426.
s41467-020-18228-8.
TANG Y W,LI L P,WANG R X,et al. Development of a
[35] ZHANG X,CHEN S,SHI L,et al.Haplotype-resolved genome
CRISPR/Cas9 constructed for genome editing of caffeine syn⁃
assembly provides insights into evolutionary history of the tea
thase in Camellia sinensis[J]. Journal of tea science,2016,36
plant Camellia sinensis[J].Nat Genet,2021,53(8):1250-1259.
(4):414-426(in Chinese).
[23] 杨亚军 . 茶树育种品质早期化学鉴定Ⅱ. 鲜叶的主要生化组分 [36] ZHANG W,LUO C,SCOSSA F,et al.A phased genome based
与 绿 茶 品 质 的 关 系[J]. 茶 叶 科 学 ,1991,11(2):127-131. on single sperm sequencing reveals crossover pattern and com⁃
YANG Y J.Chemical evaluation on tea quality during early-stage plex relatedness in tea plants[J].Plant J,2021,105(1):197-208.
of breeding program Ⅱ . Relationship between the biochemical [37] WANG P,YU J,JIN S,et al.Genetic basis of high aroma and
component content in the shoots and the quality of green tea[J]. stress tolerance in the oolong tea cultivar genome[J/OL].Hortic
J Tea Sci,1991,11(2):127-131(in Chinese). Res-England,2021,8:107 [2022-02-11]. https://doi. org/
[24] 杨亚军 . 茶树育种品质早期化学鉴定Ⅰ. 鲜叶的主要生化组分 10.1038/s41438-021-00542-x.
与红茶品质的关系[J]. 茶叶科学,1990,10(2):59-64.YANG [38] XIA E H,TONG W,WU Q,et al.Tea plant genomics:achieve⁃
Y J. Chemical evaluation on tea quality during early-stage of ments,challenges and perspectives[J/OL].Hortic Res-England,
breeding program Ⅰ.Relationship between the biochemical com⁃ 2020,7:7[2022-02-11]. https://doi. org/10.1038/s41438-019-
ponent content in the shoots and the quality of black tea[J]. J 0225-4.
Tea Sci,1990,10(2):59-64(in Chinese). [39] WANG L,YAO L N,HAO X Y,et al.Transcriptional and phys⁃
[25] 戴伟东,解东超,吕美玲,等 . 黄酮醇糖苷与茶树品种适制性关 iological analyses reveal the association of ROS metabolism with

