网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

猪精液冻融技术及其影响因素研究进展  PDF

  • 范振港 1
  • 刘鑫 1
  • 苗义良 1,2
  • 张霞 1
1. 华中农业大学动物科学技术学院、动物医学院/农业动物遗传育种与繁殖教育部重点实验室,武汉 430070; 2. 动物育种与健康养殖教育部前沿科学中心,武汉430070

中图分类号: S828

最近更新:2024-11-22

DOI:10.13300/j.cnki.hnlkxb.2024.05.018

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

养猪业是我国畜牧产业的重要组成部分。国内生猪养殖主要采用自繁自养模式,配种所使用的精液多采用鲜精或常温稀释保存精液,而精液冻融技术可实现猪精液的长期保存,但与牛、小鼠等物种相比较,猪精液冻融技术还有待于进一步优化改善。为进一步改进猪精液冷冻技术并实现在生产上大规模应用,本文主要综述了猪精液冻融技术发展概况、主要技术流程,影响猪精液冻融后精子活力的关键因素,包括精液的采集、冷冻前降温平衡、冷冻保护剂添加和冷冻方法等,以及精子冻融过程中的理化性质变化,包括物理结构损伤、功能性损伤、精子抗冻机制等,最后总结、展望了能够提高猪精液冻融效果的新方法。

猪精液冷冻是指以液氮为冷冻介质将精液保存于超低温环境(-196 ℃)下,进而抑制精子的生理代谢活动,实现对精液长期保存的一种方法。精液冷冻流程主要包括精液采集、冻前处理、冻前降温平衡、添加冷冻保护剂、程序性冷冻,精液解冻流程主要包括加热解冻、添加解冻稀释液、解冻后精液质量评估等。虽然猪精液冻融技术存在解冻后精子活力低的问题,但若该技术能在生产上规模应用,不仅可提高优秀种公猪利用率,而且可降低生物安全风险,提高生猪的生产效率。因此,本文针对目前猪精液冻融技术进行综述,旨在为从事猪精液冻融技术研发的科研人员了解该方向研究的最新动态提供参考,进而为猪精液冻融技术的完善提高并实现在养猪生产上的规模应用提供科学依据。

1 猪冷冻精液发展概况及主要技术流程

人工授精技术变革了猪的繁殖方式并促进了生猪养殖业的发展,如今93%以上的生猪生产都采用人工授精技术。猪精液的冷冻研究始于20世纪50年代,国内外研究人员主要对冷冻稀释液、冷冻保护剂、平衡时间、冷冻剂型、冷冻方法等开展了大量研究。1970年,Polge等

1在英国首次成功使用冻融后的精液进行人工授精并获得健康仔猪。1973年,Salamon2采用颗粒冻精进行人工授精,成功使5头母猪妊娠,产仔数平均为7.6头。20世纪80年代后,猪冷冻精液的主流剂型和方法由颗粒形式、干冰制备逐渐改为细管形式、液氮熏蒸。我国广西地区在20世纪80年代使用冻融精液进行人工授精配种母猪头数达6万头以上, 受胎率接近76%,平均窝产仔数达9头以3。日本在1991年使用冻融精液进行人工授精,配种分娩率为72.3%,平均窝产仔数8.04。虽然猪精液冷冻技术经过长期的研究已经取得了很大进展,但仍存在冻融后的精子损伤大、活力低及受精能力弱等问题,导致该技术的使用率较5

猪精液冷冻的流程包括精液的采集、冻前处理、冻前降温平衡、添加冷冻保护剂和冷冻处理。冷冻处理的方式有缓慢冷冻和快速冷冻(玻璃化冷冻)。缓慢冷冻方法包括干冰冷冻、液氮熏蒸和程序冷冻仪冷冻。缓慢冷冻过程中,精子在含有冷冻保护剂的稀释液中,通过逐步降温的方法进行冷冻。快速冷冻是使用高浓度的冷冻保护剂,让精子和冷冻溶液在冷冻时呈现黏稠而不产生结晶的玻璃化状态。解冻过程主要分为低温慢速解冻和高温快速解冻。在解冻剂中可添加促精子复苏物质、抗损伤物质来提高解冻后精子的活力。目前解冻程序主要有低温解冻(0~5 ℃)、中温解冻(30~40 ℃)、高温解冻(50~70 ℃),解冻时间有20、16和8 s等。

在猪精液预处理降温过程中,不同猪个体的精子对“低温打击”敏感度存在明显差异,这反映了不同猪个体的精子耐冻性(freezability)存在差别。根据冻精解冻后质量评定的高低可将精液来源分为好(good freezers)和差(bad freezers)2种,简称为GFE(good freezability ejaculates)和PFE(poor freezability ejaculates

6,或GSF(good semen freezability)和PSF(poor semen freezability7。造成精液来源存在质量差异的机制尚不清楚,推测遗传差异可能是其耐冻性差异的基础。

2 影响猪精液冻融后精子活力的关键因素

2.1 猪精液冷冻稀释液和冷冻保护剂

常见的猪精液冷冻稀释液有2种,一种是乳糖-蛋黄体系(lactose egg yolk, LEY),一种是贝尔茨维尔体系(beltsville freezing extender 5, BF5

8,这2种稀释液均需添加新鲜蛋黄。精液在稀释时有一步稀释法和两步稀释法,一步稀释法是直接将精液与含有冷冻保护剂的稀释液按比例进行混合,两步稀释法是先将精液与不含冷冻保护剂的稀释Ⅰ液按比例混合,后经降温平衡再与含冷冻保护剂的稀释Ⅱ液进行混合,再经降温平衡后进行冷冻。

在两步稀释法中,稀释Ⅱ液通常添加冷冻保护剂(cryoprotectant agents, CPA),CPA分为渗透性冷冻保护剂和非渗透性冷冻保护剂。渗透性冷冻保护剂最常用的是甘油,此外还有二甲基亚砜、乙二醇、甲醇、丙二醇和二甲基乙酰胺等,该类物质通过与氢键相互作用高度溶于水并能透过质膜。甘油在高于5 ℃时会干扰细胞的代谢,因此在使用甘油时需在低温条件下将甘油与精液混合。研究表明甘油添加量为2%和4%时会破坏猪精子的核

9,高于4%时会影响质膜流动性,高于6%则会影响猪精子的运动性和顶体完整10,因此,目前精液冷冻过程中甘油添加量一般以3%为宜。

非渗透性冷冻保护剂最常用的是新鲜蛋黄,此外还有牛奶、羟乙基等聚合物,如右旋糖酐、聚乙二醇和聚乙烯吡咯烷酮等。相较于甘油,蛋黄物质起到的冷冻保护效果更佳,但蛋黄物质对蛋黄的新鲜程度有很高要求,且其生物安全性很难得到保障。目前可使用从蛋黄中提取的低密度脂蛋白(low density lipoprotein, LDL)代替蛋黄作为冷冻保护剂,研究表明,添加0.09 g/mL LDL可具有很好的精液冷冻保护效

11。大豆卵磷脂同样富含LDL,有研究证实大豆卵磷脂可替代蛋黄作为冷冻保护剂,当添加5%大豆卵磷脂进行精液冷冻时可达到最佳的冷冻效果,这些替代方法可减少使用蛋黄所存在的潜在生物安全性问12。Equex STM也是一种常用的冷冻保护剂,它是基于十二烷基硫酸钠和三乙醇胺的合成物质,因Equex STM和蛋黄结合时可从蛋黄中提取更多的脂质或脂蛋白到冷冻液中,进而可显著提高精子的冻融质量和受精能13-14。笔者总结了近些年来在猪冷冻稀释液中添加不同冷冻保护剂对猪精子冻融后活力的影响,如表1所示。

表1  冷冻稀释液中常用冷冻保护剂及最适添加量
Table 1  Common CPAs in the semen freezing extender and their optimal addition amounts
冷冻保护剂 Cryoprotectant agents精子活力/% Sperm motility添加量 Added amount参考文献Reference
Orvus Es paste (OEP) 54.82 1.5% [14]
Equex STM paste 63.00±6.00 0.5% [15]
甘油Glycerol 44.00±3.00 3.0% [16]
二甲基亚砜 DMSO 34.50±4.62 3.0% [17]
乙二醇 EG 43.00±4.00 0.5 mL [18]

除上述常用的冷冻保护剂外,抗氧化剂常被添加到冷冻稀释液中,如白藜芦醇、谷氨酰胺、表儿茶素、绿原酸、α-硫辛酸、红景天多糖、虾青素等,但冷冻稀释液中添加不同的抗氧化剂提高冻融后精子活力的水平不同 (表2)。

表2  不同抗氧化剂处理后猪精子冻融活力
Table 2  Freeze-thaw vitality of pig sperm under different antioxidants

抗氧化剂

Antioxidant

添加前精子冻融活力/%

Frozen-thawed of sperm motility before adding antioxidants

添加后精子冻融活力/%

Frozen-thawed of sperm motility after adding antioxidants

添加量

Added amount

参考文献

Reference

白藜芦醇 Resveratrol 40.12 ± 0.08 69.33±0.04 50 µmol/L [19]
谷氨酰胺 Glutamine 52.75 ± 0.63 58.50±0.65 40 mmol/L [20]
表儿茶素 Epicatechin 37.93 ± 0.54 48.17±0.67 75 µmol/L [21]
绿原酸 Chlorogenic acid 31.60 ± 1.03 56.50±1.31 50 µg/mL [22]
α-硫辛酸 α-Thioctic acid 43.79 ± 0.56 51.27±0.59 6 mg/mL [23]
红景天多糖 Rhodiola rosea polysaccharide 46.80 ± 1.80 60.10±1.40 6 mg/L [24]
虾青素 Astaxanthin 39.47 ± 2.22 56.09±1.91 2 µmol/L [25]

2.2 猪精液冻前平衡和冷却速度

冻前平衡指精液进行程序化冷冻前要经历一段较长时间的缓慢降温平衡过程,该过程需要经过2个重要的温度节点:17~15 ℃和5~4 ℃,猪精子经历最明显的脂质相变是在15~5 ℃。在降温平衡过程中,当由常温降至10 ℃以下时精子会发生冷休克现象,当继续降温至1~2 ℃时,冷休克现象仍然存在,并会导致更多的精子丧失生存能力。因此,精子在程序冷冻前需在15 ℃平衡2~3 h,以使精子逐渐获得对抗冷休克的能力。在冻前平衡过程中,可通过每间隔40 min轻微摇晃精液来防止精子发生冷休克现象。有研究表明降温平衡过程可通过维持质膜的脂质结构来增加精子的冷冻耐受性,为达到猪精液最佳冷冻效果,通常冻前降温平衡时间为17~20 ℃保存24 h

26。平衡降温效果还与其他多种因素有关,如稀释液的种类,当稀释液为AHP(Androhep® Plus)或ASP(Androstar® Plus)时,在10 ℃下平衡24 h的精子表现出更好的低温耐受性,这主要是因为该稀释液包含非动物来源的细胞膜保护成分,会降低精子体外保存时对低温的高度敏感性。当乳糖-蛋黄 (不含甘油)用作稀释介质时,在5 ℃下平衡4 h就能够取得更好的冷冻效27

除冻前平衡外,程序性冷冻速度也对冷冻效果有很大影响。若冷却速度过快,细胞内的水分不能完全流出,导致水分在细胞内冻结形成冰晶,冰晶将引起精子冷冻损伤;若冷冻速度过慢会导致脱水过多,使得细胞器及膜体积收缩,影响细胞膜脂质-蛋白质复合物、致使大分子变性、诱导不可逆的膜融合,从而造成精子损伤。一般认为猪精液最佳冷冻速度为30~50 ℃/min。采用0.5 mL冷冻细管进行程序性冷冻时,速度为20、40或60 ℃/min和液氮熏蒸均能提高猪精液的冻融效

28-29

2.3 猪冷冻精液解冻

解冻剂种类较多,物质成分各不相同。因此冻精使用不同解冻剂进行解冻时,解冻时间和温度没有统一的标准。解冻剂的研究主要集中在精浆和抗氧化剂方面。精浆作为精液的组成部分,是自然条件下输送精子的必需介质,主要由蛋白质组成,还含有一系列无机离子、盐、糖、柠檬酸、前列腺素和电解质,精浆还为精子存活提供了适合的生理条件,如酸碱度和渗透压等。此外,精浆含有清除小分子自由基的功能,包括维生素C、尿酸、酪氨酸、还原型谷胱甘肽和亚牛磺酸

30。因此,精浆在维持精子生存能力及代谢、运动和获能调节中起着关键作用。

在解冻剂中添加精浆是否有利于精子活力的恢复仍存在争议。众多学者认为冷冻前应通过离心尽可能去除精浆,只留下富含精子的部分进行冷

31-33。在解冻时添加精浆可防止质膜不稳定及其他类似获能的变化,因而添加精浆作为解冻介质有利于维持质膜的完整性,且添加精浆作为解冻介质可维持精子活力,有助于精液在体外保存过程中维持由快速和线性运动精子组成的亚群。研究表明,添加50%精浆可以最有效地维持精子的活34。但也有研究发现在精子体外保存时,添加10%的精浆并没有对精子保护起到实质性作用,与精子体外储存能力丧失相关的因素是精液稀释程度而非精浆的有无,精液稀释倍数越高精液活力丧失越33。另有研究认为精浆在冻精解冻后的体外保存过程中对精子的存活是有害的,精浆中含有的内毒素(脂多糖)已被确定为损害公猪精子耐冻性的原因之一,当内毒素(脂多糖)与精子表面存在的Toll样受体4结合后可破坏质膜的稳定32。精浆在冻精中的作用存在不同看法的原因可能与精浆的来源、精浆添加量及与精子接触的时间、培养温度等因素相关。除添加一定比例抗氧化剂可提高猪冻精解冻效果外,其他能够激活精子的物质还包括咖啡因,但咖啡因作为解冻剂成分来添加时会造成严重的多精受精现象。有报道发现,使用肌酸和β-甲基环糊素联合处理可以使体外受精双原核率达到70%左35。笔者总结了近些年在解冻剂中添加不同类型解冻保护物质对精子冻融后活力的影响,详见表3

表3  解冻剂中常用的利于精子活力恢复的物质
Table 3  Common sperm revitalization substances added to thawing extenders
物质名称 Name of substance精子活力/% Sperm motility添加量 Added amount参考文献 Reference
胆固醇负载的环糊精Cholesterol-loaded cyclodextrins 52.40 12.5 mg CLC/500×106 sperm [36]
精浆Seminal plasma ≈60 50% [37]
黄芪多糖Astragalus polysaccharide 58.33±4.40 0.5 mg/mL [38]
白藜芦醇Resveratrol ≈50 1 mmol/L [39]
表儿茶素Epicatechin ≈50 25 µmol/L [39]
β-巯基乙醇 2-Hydroxy-1-ethanethiol ≈80 25 µmol/L [40]
咖啡因/氯化钙Caffeine/ CaCl2 42.50±1.10 1.15/3.97 mmol/L [40]

此外,解冻速度对精子活力有很大的影响,因而寻找合适的解冻平衡点至关重要。解冻温度包括低温解冻(0~5 ℃)、中温解冻(30~40 ℃)和高温解冻(50~70 ℃),且不同的解冻温度对应不同的解冻时间,如37 ℃解冻20 s、50 ℃解冻16 s、70 ℃解冻8 s等。低温解冻可能会导致重结晶现象,对精子造成进一步的损伤,但损伤更多是由于渗透性冷冻保护剂不能快速排出所导致。有研究指出70 ℃解冻8 s后,精子曲线运动速度(curvilinear velocity,VCL)、直线运动速度(straight-line velocity,VSL)、平均运动速度(average path velocity,VAP)和头部摆动振幅(amplitude of lateral head displscement,ALH)等指标均优于37 ℃解冻20 s

41

3 猪精液冻融过程中冷冻损伤及抗冻机制

3.1 猪精液冻融过程中物理结构损伤对精子质量的影响

细胞在冷冻和解冻过程中的物理结构损伤除了低温损伤,还包括中等低温范围(-15 ℃和-5 ℃)的致死性。冷冻流程涉及几个重要温度节点:15~5 ℃冷冻冲击和-5~-50 ℃冰晶形成。当溶液被快速降温至-5 ℃和-15 ℃时会产生自发性的冰核,一旦冰核产生,随着温度的继续降低将向所有方向快速增大,导致精子和溶质都将被限制在未冻结的部分中,从-15 ℃到-160 ℃会促使一些小冰晶和液态水转化为较大的冰晶,随着冰晶的不断形成,精子细胞只能不断堆积到狭窄的未冻结溶液通道中,不可避免地对细胞造成机械损

42

冷冻保护剂可防止冰晶对细胞的损伤,如甘油可通过氢键相互作用实现高度溶于水,并能透过细胞的质膜,随着冰晶的不断形成,冷冻液中未结晶部分中甘油的浓度逐渐升高,从而降低了这部分未冻结溶质的冰点,进而抑制了冰晶的形成。甘油与水之间的氢键相互作用还可以抑制冰晶的扩散,随着未冷冻部分甘油的浓度不断升高,溶质玻璃化逐渐形成,有效减少了冰晶对精子细胞造成的机械损伤。因此在冷冻过程中,控制冰晶形成的大小和数量,维持冰晶在微晶状态,可以更好地保护精子。

3.2 猪精液冻融过程中功能性损伤对精子质量的影响

1) 氧化应激对精子冻融的影响。氧化应激会引起DNA损伤,电子呼吸链和线粒体转录系统都会被过量的活性氧(reactive oxygen species,ROS)破坏,而向精液中添加抗氧化剂可抑制ROS引起的氧化损

43。研究发现,在冷冻过程中产生的ROS并不多,低温保存可降低线粒体产生ROS的能44。ROS产生的时间主要在精液采集后稀释及降温平衡过程和解冻过程,精子ROS的形成受精子内源性抗氧化物介导,如位于细胞质和线粒体中的超氧化物歧化酶,但致使超氧化物歧化酶浓度升高的确切机制尚不清楚。

与氧化应激关系密切的生物化学反应是脂质过氧化,ROS和精子功能之间的负相关关系涉及脂质过氧化级联反应,冷冻精子比新鲜精子表现出更高的脂质过氧化水平,而脂质过氧化水平与4-羟基壬烯醛(4-hydroxynonenal, 4-HNE)有关。4-HNE是一种细胞毒性醛类物质,同时是精子衰老的标志

45。4-HNE是一种强氧化剂,可以与蛋白质、DNA和脂质等生物分子发生共价结合,从而引起细胞损伤。由于ROS的生成,精子线粒体基因编码的ETC蛋白(MT-ND1,MT-ND6)以及MT-TFA和POLRMT被4-HNE修饰,这类蛋白质修饰被认为是氧化应激的关键诱因,造成线粒体DNA片段降解,转录系统和ETC呼吸链均受到影响,进而影响精子功46-47。冷冻保存过程中精子内蛋白和DNA结构的变化是冻融精子活力下降的原因,冻融会影响精子头部核蛋白的功能,诱导DNA结构发生显著变化及鱼精蛋白磷酸化水平发生降低,从而改变精子核中鱼精蛋白-1与DNA的相互作用,并破坏核蛋白半胱氨酸基团之间的二硫键,进而影响核蛋白和DNA之间的结合。因此,精子在冻融过程中,ROS升高会导致DNA片段损伤和精子核内染色质的变化,从而影响相关基因的转录与翻译,最终导致精子损伤。

2)质膜变化对精子冻融的影响。细胞质膜一般由磷脂、可变数量的甾醇如胆固醇、一定数量的蛋白质等构成,磷脂赋予细胞膜流动性,胆固醇维持刚性和稳定性。随着温度降低,膜脂质会经历物理相的变化,由流体相变为凝胶相,甾醇的存在可抑制这种脂质相的变化,但猪精子质膜上胆固醇与磷脂比例低(猪:0.26,牛:0.45),且胆固醇分布不对称,导致精子质膜对低温引起的脂质物理相的变化更敏感,造成猪精子冻融效果

48。猪精子质膜含有高比例的多不饱和脂肪酸,极易受到自由基的攻击,这使得它对氧化应激以及随后的脂质过氧化更加敏感。不饱和磷脂比其他磷脂更早胶凝并发生相分离。因此,在冷冻过程中完整的蛋白质无法进入到膜内结晶凝胶结构域内,造成蛋白质聚集到剩余的液体脂质结构域中,导致许多蛋白质-脂质相互作用丧失,最终导致完整膜蛋白通过脂质相分离变得不可逆地聚集,膜脂质被重组,部分胆固醇分子被释放。目前有研究使用环糊素负载胆固醇处理精液,通过增加精子膜的胆固醇含量提高精子对低温的耐受性,这可能是提高冻融精子质量的一种较好的策49

膜冷冻损伤会对离子通道的功能造成影响,这也是冻融精子受精能力下降的原因。冷冻会导致精子蛋白质丰度变化,Chen

50通过比较新鲜和冻融的猪精子蛋白质组发现多达41种蛋白质的数量发生了改变,其中有6种蛋白质在冷冻保存后含量下降,35种蛋白质含量上升,这41种蛋白质可分为10个不同类别,涉及到多种生理过程,如精子的过早获能、粘连、能量供应以及精子-卵母细胞的结合和融合等,用蛋白质印迹法进一步证实,在冻融精子中,激酶锚定蛋白(3AKAP3)、超氧化物歧化酶1(SOD1)、磷酸丙糖异构酶(TPI1)和外周致密纤维蛋白2(ODF2)的表达增加。另有研究证实TPI1可作为猪精子冷冻保存前的生物标志物,TPI1与解冻后精子活力具有高度相关性,被认为能够预测精子耐冻性的高7

3)酪氨酸磷酸化对精子冻融的影响。精子蛋白的酪氨酸磷酸化发生在输卵管部位,是精子获能的标志。在冷冻过程中由于质膜的相变以及脂质与蛋白质之间相互作用被破坏,导致质膜不稳定并失去选择渗透性的能力,从而增加细胞外离子如Ca2+和HCO3-的流入水平。Ca2+和HCO3-的流入会导致冻融精子出现冷冻获能或类似获能的变化,这也是精子在冻融后受精率发生降低的原因之一。研究证明精子体外保存会导致酪氨酸磷酸化的总体增加,造成一种功能性的、过早发生的获能样状态,这种低温诱导的非调节性获能被称为“低温获能

51

通常酪氨酸磷酸蛋白沿着鞭毛分布,可能参与精子的运动调节和超活化过程,而猪精子中与获能相关的酪氨酸磷酸蛋白定位于头部而不是鞭毛,表明精子头部在获能和顶体反应中起到重要作用。同时,冷冻保存降低了猪精子中胆固醇的含量,又因猪精子质膜的胆固醇、磷脂比例本来就比较低,导致抗冻能力进一步下降,从而使猪精子更容易诱发这种获能样变化。与获能同时出现的是一种酪氨酸磷酸蛋白复合物p32,这是一种前顶体蛋白酶结合蛋白sp32的酪氨酸磷酸化形式,与顶体蛋白成熟相关,p32的升高与精子Ca2+水平提高和顶体丢失相关。因此p32可以作为顶体反应的信号分子,在猪精子冷冻过程中,p32出现可认为精子发生顶体反应,猪精子冷却至5 ℃比仅冷却至15 ℃产生更大程度的低温获能和自发顶体反应,蛋黄的存在可以明显减少自发的顶体反应,提高解冻后精子的活力。

4 猪精液冻融过程中其他因素对精子质量的影响

4.1 包装形式对精子冻融的影响

冷冻精液常见的包装储存形式有安瓿瓶、颗粒型冷冻保存、铝箔(塑料)袋和麦管灌装。当灌装形式具有较大表面积与体积比时,精液冻融过程中温度变化更加均匀,冷冻过程中有更大的表面来散热,解冻过程中能够迅速升温,冻融效果更好。例如2 mL扁平细管或5 mL塑料细管,被称为扁平包装形式,在精子冻融后活力较0.25 mL细管效果要好,并且其可容纳更多精液,在实际生产时减少解冻细管的根数,减少操作的复杂性。与0.5 mL细管相比,扁平灌装形式在精子冷冻保存过程中可更加均匀地脱水,但其体积大,所需精液剂量大也是该方法的弊端。

4.2 细菌对精子冻融的影响

精液中细菌的来源包括内源性和外源性2种。内源性细菌通常包括公猪包皮、尿道、外生殖器,或泌尿生殖道感染导致的细菌,内源性细菌通常对精液质量影响较小。外源性细菌主要与采精过程相关,包括环境条件、采集手法、采精器具等。细菌对冻融精子的影响主要体现在对精子理化性质的影响,如顶体完整性、质膜性质、蛋白质变化

52。此外,细菌的存在会造成冻融精子发生凝集现象,进而使精子的活力迅速丧失。为了避免细菌对冻融精子的影响,一般的处理方法是在冷冻液中添加抗生素,但长期使用各种抗生素会增加细菌的耐药性。因此,为尽量避免细菌造成的影响,最好的解决办法是优化收集精液的卫生条件,在采精和冷冻保存过程中尽量减少细菌的污染。

4.3 其他因素对精子冻融的影响

温度和光周期会影响公猪附睾中存储精子的进一步成熟。有研究证明,精液耐冻性取决于精子收集的季节,冬春两季采集的精子比秋、夏两季具有更高的耐冻性,更能耐受冷冻保

53。此外,采精的前半部分,尤其是最初的10 mL,比后半部分具有更高的耐冻性,可能的原因是前半部分含有较低水平的碳酸氢盐,或者精液后半部分的精浆会产生负面影54

精液运输过程也会对精液质量造成一定影响,有研究人员使用特定的模拟设备模拟猪精液运输过程中受振动带来的影响,结果显示,精液在300 r/min频率下、持续进行6 h圆形水平振动处理,会导致精液介质碱性化,碱性条件会损伤精子的质量,在之后7 d的储存期间,持续振动处理会进一步导致精子线粒体活性、顶体和质膜完整性降

55。因此在精液冷冻前收集和运输过程中应该注重每一步细节,尽量降低对精子造成的不必要损害。

5 提高猪精液冻融效果新方法

5.1 基于纳米技术提高猪精液冻融效果

近年来,纳米技术被逐渐用于畜禽精液净化选择,即根据物质的特性对其进行纳米技术处理,改变物质状态、赋予物质新功能。有研究证实添加新型冷冻保护剂纳米化红景天多糖进行精液冷冻,当添加体积比为15%时,可将精子冻融后的活力提高11%,达到69%

56。另有研究在冷冻过程中添加40 µg/mL纳米载体包含的抗氧化剂-白藜芦醇,可减少精子冷冻引起的损57。此外,纳米技术结合分子标记技术可用于精子生存能力和形态(如头部和尾部异常)检测。通过将生物标志物附着到用于选择性靶向精子的纳米颗粒上,可针对性筛选优质精子,如将磁性氧化铁纳米颗粒(magnetic iron oxide nanoparticles, MNP)与联膜蛋白V或凝集素结合,再同精液孵育30 min后使用磁场分离,当纳米颗粒质量为87.5 μg(约218 750粒纳米颗粒),精子数目为1.6×109~2.0×109时,可有效去除3%异常精子,保留97%优质精58。因此,纳米技术的发展为开发新型猪精子筛选技术、精液选择、精子冷冻提供了新的方向。

5.2 添加耐冻生物标志物提高猪精液冻融效果

蛋白质组学和代谢组学可在特定条件下识别和量化相关分子,检测出的分子可作为精子功能的潜在生物标志物。目前较多研究聚焦分子生物标志物预测精子低温耐受性、减轻冷冻和解冻对精子的不利影响。通过凝胶色谱分离技术将精浆分为2类不同质量组分:SP1(>40 ku)、SP2(<40 ku),将这2种不同质量等级的精浆分别添加在解冻液中,与不添加精浆组相比,这2种精浆均可显著(P<0.01)提高精子运动特性、膜完整性和活

37。有研究使用UHPLC-QTOF-MS技术分析不同冻融能力公猪精浆代谢水平的差异,结果表明D-天冬氨酸、N-乙酰-L-谷氨酸和肌苷的含量存在显著差6。这些发现为探索不同冻融能力的精子代谢生物标志物提供了研究方向。除此之外,精浆中C型2类尼曼-匹克蛋白(Niemanne Pick C2 , NPC2)的含量也可预测精子的冷冻能力,这种蛋白对胆固醇有较高的亲和力,在公猪精浆中发现NPC2的16 ku和19 ku 2种亚型在PFE中的相对水平高于GFE中,PFE中NPC2的含量高于GFE,会导致胆固醇的外排,进而影响质膜的流动性和冷冻效7。针对不同个体猪精液体外长时间保存效果存在差异性进行研究,可筛选出颗粒蛋白前体(granulin precursor)、豆荚蛋白前体(legumain)和AWN前体蛋白(AWN precursor)3种候选蛋白,并表明不同个体猪精液体外长期保存能力间的差异可能与精子对自身SP的耐受性不同相关,而不同个体SP之间的差异又体现在所筛选出的3种候选蛋白丰度间的差异。因此,3种候选蛋白可作为不同个体精子体外保存的标志蛋白,这有助于筛选适宜做精液冻存的公猪个59。总之,应用蛋白组学进行猪精子冷冻损伤机理研究,有助于揭示精子冷冻损伤的分子机理,寻找合适的与精子冷冻性相关的生物标志物,为实现猪精液高效的冷冻保存提供重要依据,笔者总结了猪精子的分子生物标志物及其主要生物学功能(表4)。

表 4  猪精子冷冻性分子生物标志物及其功能
Table 4  Freezability markers of porcine sperm and their function

分子生物标志物

Freezability markers

功能 Function

Reference

参考文献

G 蛋白亚基α13 GNA13

参与精子获能、顶体反应、卵母细胞融合

Involved in sperm capacitation, acrosome reaction, oocyte fusion

[37]

肌苷 Inosine

次黄嘌呤 Hypoxanthine

肌酸 Creatine

参与能量代谢

Involved in energy metabolism

[6]
细胞内胆固醇转运蛋白 2 NPC2

结合质膜胆固醇,影响质膜流动性

Binds plasma membrane cholesterol and affects plasma membrane fluidity

[7]

颗粒蛋白前体 Granulin precursor

精子黏附蛋白 AWN

富含半胱氨酸、抵抗氧化应激

Enriched with cysteine, resistant to oxidative stress

[59]
纤连蛋白 1 Fibronectin-1

预测低温造成精子损伤因素,如氧化应激

Predicting the factors of sperm damage caused by low temperature

[60]

热休克蛋白90AA1

Heat shock protein 90AA1

应激条件下保持细胞代谢和结构的完整性

Maintaining cellular metabolism and structural integrity under stressful conditions

[61]

6 展望

猪精液冷冻保存是猪精子长期保存最有效的方法,但冷冻过程会对精子造成损害,使得解冻后精子活力、受胎率和窝产仔数方面比鲜精效果差。近年来,国内多家企业开展了冻精技术的探索,相继研发了猪精液冷冻保存技术,并与相关生猪企业进行冻精配种合作,取得了一定成果。有报道称国内某些企业冻精解冻后活力可达70%~80%,且受胎率实现了与鲜精配种同等效果的繁育水平,达90%以上,使得我国冷冻精液解冻后活力及配种效果达到世界领先水

62。但我国目前在猪精液冷冻方面规范化和标准化的技术体系建设上并不完善。因此,应当对猪精液冻融生产工艺中各个流程进行优化组合,删繁就简后制定一套规范化、标准化的猪精液冷冻体系,并建立快速、简便、准确的冻融精子质量评估方法,以实现在生猪生产过程中大规模使用猪冷冻精液,从而降低种公猪引种和饲养管理的成本,减少不必要的生物安全风险。

参考文献References

1

POLGE C,SALAMON S,WILMUT I.Fertilizing capacity of frozen boar semen following surgical insemination[J].Veterinary record,1970,87(15):424-429. [百度学术] 

2

SALAMON S,VISSER D.Fertility test of frozen boar spermatozoa[J/OL].Australian journal of biological sciences,1973,26(1):291[2023-10-17].https://doi.org/10.1071/BI9730291. [百度学术] 

3

吴石坚,许典新.猪冷冻精液人工授精的推广与应用(1981—1988)[J].中国畜牧杂志,1990,26(4):22-24.WU S J,XU D X.Popularization and application of artificial insemination with frozen semen in pigs (1981-1988)[J].Chinese journal of animal science,1990,26(4):22-24 (in Chinese) . [百度学术] 

4

丹羽太左卫门.日本にぢけゐ豚凍結精液実用化試驗の結果おちび今後の利用方向につぃマ[J].Animal science abroad (pigs and poultry),1991,11(3):31-34 (in Japanese). [百度学术] 

5

DIDION B A,BRAUN G D,DUGGAN M V.Field fertility of frozen boar semen:a retrospective report comprising over 2600 AI services spanning a four year period[J].Animal reproduction science,2013,137(3/4):189-196. [百度学术] 

6

ZHANG Y T,LIANG H L,LIU Y,et al.Metabolomic analysis and identification of sperm freezability-related metabolites in boar seminal plasma[J/OL].Animals,2021,11(7):1939[2023-10-17].http://doi.org/10.21203/rs.3.rs-402774/v1. [百度学术] 

7

MAŃKOWSKA A,BRYM P,SOBIECH P,et al.Promoter polymorphisms in STK35 and IFT27 genes and their associations with boar sperm freezability[J].Theriogenology,2022,189:199-208. [百度学术] 

8

PURDY P H,GRAHAM J K,AZEVEDO H C.Evaluation of boar and bull sperm capacitation and the acrosome reaction using flow cytometry[J/OL].Animal reproduction science,2022,246:106846[2023-10-17].https://doi.org/10.1016/j.anireprosci.2021.106846. [百度学术] 

9

ARENAS NÚÑEZ M A,DE LOURDES JUÁREZ-MOSQUEDA M,GUTIÉRREZ-PÉREZ O,et al.Glycerol decreases the integrity of the perinuclear theca in boar sperm[J].Zygote,2013,21(2):172-177. [百度学术] 

10

OKAZAKI T,ABE S,SHIMADA M.Improved conception rates in sows inseminated with cryopreserved boar spermatozoa prepared with a more optimal combination of osmolality and glycerol in the freezing extender[J].Animal science journal,2009,80(2):121-129. [百度学术] 

11

WANG P,WANG Y F,WANG C W,et al.Effects of low-density lipoproteins extracted from different avian yolks on boar spermatozoa quality following freezing–thawing[J].Zygote,2014,22(2):175-181. [百度学术] 

12

汪俊跃,张树山,戴建军,等.高压均质(HPH)大豆卵磷脂替代卵黄在猪精液冷冻保存效果的研究[J].中国兽医科学,2020,50(11):1461-1468.WANG J Y,ZHANG S S,DAI J J,et al.High pressure homogeneity(HPH) soybean lecithin-based extender as an alternative for boar sperm freezing[J].Chinese veterinary science,2020,50(11):1461-1468 (in Chinese with English abstract). [百度学术] 

13

BEZERRA L G P,SOUZA A L P,LAGO A E A,et al.Addition of equex STM to extender improves post-thawing longevity of collared peccaries’ sperm[J].Biopreservation and biobanking,2019,17(2):143-147. [百度学术] 

14

FRASER L,JASIEWICZ E,KORDAN W.Supplementation of different concentrations of Orvus Es Paste (OEP) to ostrich egg yolk lipoprotein extender improves post-thaw boar semen quality[J].Polish journal of veterinary sciences,2014,17(2):225-230. [百度学术] 

15

WU T W,CHENG F P,CHEN I H,et al.The combinatorial effect of different equex STM paste concentrations,cryoprotectants and the straw-freezing methods on the post-thaw boar semen quality[J].Reproduction in domestic animals,2013,48(1):53-58. [百度学术] 

16

YANG C H,WU T W,CHENG F P,et al.Effects of different cryoprotectants and freezing methods on post-thaw boar semen quality[J].Reproductive biology,2016,16(1):41-46. [百度学术] 

17

LOPES K R F,COSTA L L M,LIMA G L,et al.Dimethylformamide is no better than glycerol for cryopreservation of canine semen[J].Theriogenology,2009,72(5):650-654. [百度学术] 

18

曾维斌,王志刚,刘丑生,等.猪冷冻精液的研究[J].中国畜牧兽医,2005,32(5):36-38.ZENG W B,WANG Z G,LIU C S,et al.Study on frozen semen of pigs[J].China animal husbandry & veterinary medicine,2005,32(5):36-38 (in Chinese). [百度学术] 

19

王昕.白藜芦醇对猪冷冻精子细胞凋亡及凋亡途径的影响[D].上海:上海海洋大学,2015.WANG X.Effects of resveratrol on apoptosis and apoptosis pathway of porcine frozen sperm cells[D].Shanghai:Shanghai Ocean University,2015 (in Chinese with English abstract). [百度学术] 

20

张树山,戴建军,吴彩凤,等.谷氨酰胺与鸡卵黄低密度脂蛋白提高猪精液冷冻效果的研究[J].上海农业学报,2013,29(2):5-8.ZHANG S S,DAI J J,WU C F,et al.Effect of glutamine and low-density lipoproteins of hen’s egg yolk on cryopreservation of boar semen[J].Acta agriculturae Shanghai,2013,29(2):5-8 (in Chinese with English abstract). [百度学术] 

21

贺巾津.表儿茶素对猪精液冷冻保存效果的影响[D].杨凌:西北农林科技大学,2021.HE J J.Effect of epicatechin on cryopreservation of pig semen[D].Yangling:Northwest A & F University,2021 (in Chinese with English abstract). [百度学术] 

22

何涛.绿原酸、木犀草素和黄精多糖对猪精液冷冻保存效果的研究[D].兰州:甘肃农业大学,2021.HE T.Study on the effect of chlorogenic acid,luteolin and Huangjing polysaccharide on cryopreservation of pig semen[D].Lanzhou:Gansu Agricultural University,2021 (in Chinese with English abstract). [百度学术] 

23

沈涛.丹参多糖和α-硫辛酸对猪精液冷冻保存效果的影响研究[D].杨凌:西北农林科技大学,2015.SHEN T.Effects of Salvia miltiorrhiza polysaccharide and α-lipoic acid on cryopreservation of pig semen[D].Yangling:Northwest A & F University,2015 (in Chinese with English abstract). [百度学术] 

24

赵红卫.红景天粗多糖中基分对猪精子冻后生化指标及活力的影响[J].家畜生态学报,2014,35(5):57-63.ZHAO H W.Impact of middle components of Rhodiola polysaccharide on biochemical & sperm characteristics of cryopreserved boar semen[J].Acta ecologae animalis domastici,2014,35(5):57-63 (in Chinese with English abstract). [百度学术] 

25

GUO H T,WANG J R,SUN L Z,et al.Effects of astaxanthin on plasma membrane function and fertility of boar sperm during cryopreservation[J].Theriogenology,2021,164:58-64. [百度学术] 

26

TORRES M A,MONTEIRO M S,PASSARELLI M S,et al.The ideal holding time for boar semen is 24 h at 17 ℃ prior to short-cryopreservation protocols[J].Cryobiology,2019,86:58-64. [百度学术] 

27

SCHÄFER J,WABERSKI D,JUNG M,et al.Impact of holding and equilibration time on post-thaw quality of shipped boar semen[J].Animal reproduction science,2017,187:109-115. [百度学术] 

28

BAISHYA S K,BISWAS R K,KADIRVEL G,et al.Effect of conventional and controlled freezing method on the post thaw characteristics of boar spermatozoa[J].Animal reproduction science,2014,149(3/4):231-237. [百度学术] 

29

SILVA C G,CUNHA E R,BLUME G R,et al.Cryopreservation of boar sperm comparing different cryoprotectants associated in media based on powdered coconut water,lactose and trehalose[J].Cryobiology,2015,70(2):90-94. [百度学术] 

30

LI J W,BARRANCO I,TVARIJONAVICIUTE A,et al.Seminal plasma antioxidants are directly involved in boar sperm cryotolerance[J].Theriogenology,2018,107:27-35. [百度学术] 

31

PAVANELI A P P,DA SILVA PASSARELLI M,DE FREITAS F V,et al.Removal of seminal plasma prior to liquid storage of boar spermatozoa:a practice that can improve their fertilizing ability[J].Theriogenology,2019,125:79-86. [百度学术] 

32

OKAZAKI T,SHIMADA M.New strategies of boar sperm cryopreservation:development of novel freezing and thawing methods with a focus on the roles of seminal plasma[J].Animal science journal,2012,83(9):623-629. [百度学术] 

33

LUTHER A- M,WABERSKI D.In vitro aging of boar spermatozoa:role of sperm proximity and seminal plasma[J].Andrology,2019,7(3):382-390. [百度学术] 

34

FERNÁNDEZ-GAGO R,ÁLVAREZ-RODRÍGUEZ M,ALONSO M E,et al.Thawing boar semen in the presence of seminal plasma improves motility,modifies subpopulation patterns and reduces chromatin alterations[J/OL].Reproduction,fertility and development,2017,29(8):1576[2023-10-17].https://doi.org/10.1071/RD15530. [百度学术] 

35

张树山,张德福,韩雪峻,等.猪冷冻精液生产技术标准与规范及相关问题解读[J].猪业科学,2020,37(4):98-102.ZHANG S S,ZHANG D F,HAN X J,et al.The interpretation of technical standards for boar frozen semen[J].Swine industry science,2020,37(4):98-102 (in Chinese with English abstract). [百度学术] 

36

TOMÁS C,GÓMEZ-FERNÁNDEZ J,GÓMEZ-IZQUIERDO E,et al.Addition of cholesterol-loaded cyclodextrins to the thawing extender:effects on boar sperm quality[J].Reproduction in domestic animals,2014,49(3):427-432. [百度学术] 

37

FRASER L,WASILEWSKA-SAKOWSKA K,ZASIADCZYK Ł,et al.Fractionated seminal plasma of boar ejaculates analyzed by LC–MS/MS:its effects on post-thaw semen quality[J/OL].Genes,2021,12(10):1574[2023-10-17].https://www.mdpi.com/2073-4425/12/10/1574. [百度学术] 

38

WENG X G,CAI M M,ZHANG Y T,et al.Effect of Astragalus polysaccharide addition to thawed boar sperm on in vitro fertilization and embryo development[J].Theriogenology,2018,121:21-26. [百度学术] 

39

BUCCI D,SPINACI M,YESTE M,et al.Combined effects of resveratrol and epigallocatechin-3-gallate on post thaw boar sperm and IVF parameters[J].Theriogenology,2018,117:16-25. [百度学术] 

40

YAMAGUCHI S,FUNAHASHI H.Effect of the addition of beta-mercaptoethanol to a thawing solution supplemented with caffeine on the function of frozen-thawed boar sperm and on the fertility of sows after artificial insemination[J].Theriogenology,2012,77(5):926-932. [百度学术] 

41

TOMÁS C,GÓMEZ-FERNÁNDEZ J,GÓMEZ-IZQUIERDO E,et al.Effect of the holding time at 15 ℃ prior to cryopreservation,the thawing rate and the post-thaw incubation temperature on the boar sperm quality after cryopreservation[J].Animal reproduction science,2014,144(3/4):115-121. [百度学术] 

42

CHANG T,ZHAO G.Ice inhibition for cryopreservation:materials,strategies,and challenges[J/OL].Advanced science,2021,8(6):2002425[2023-10-17].https://doi.org/10.1002/advs.202002425. [百度学术] 

43

ZHU Z D,UMEHARA T,TSUJITA N,et al.Itaconate regulates the glycolysis/pentose phosphate pathway transition to maintain boar sperm linear motility by regulating redox homeostasis[J].Free radical biology and medicine,2020,159:44-53. [百度学术] 

44

FLORES E,FERNÁNDEZ-NOVELL J M,PEÑA A,et al.Cryopreservation-induced alterations in boar spermatozoa mitochondrial function are related to changes in the expression and location of midpiece mitofusin-2 and actin network [J].Theriogenology,2010,74(3):354-363. [百度学术] 

45

MARTINMUÑOZ P,FERRUSOLA C O,VIZUETE G,et al.Depletion of intracellular thiols and increased production of 4-hydroxynonenal that occur during cryopreservation of stallion spermatozoa lead to caspase activation,loss of motility,and cell death[J].Biology of reproduction,2015,93(6):1-11. [百度学术] 

46

ZHONG H Q,YIN H Y.Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer:focusing on mitochondria[J].Redox biology,2015,4:193-199. [百度学术] 

47

ZHU Z D,KAWAI T,UMEHARA T,et al.Negative effects of ROS generated during linear sperm motility on gene expression and ATP generation in boar sperm mitochondria[J].Free radical biology and medicine,2019,141:159-171. [百度学术] 

48

YESTE M,RODRÍGUEZ-GIL J E,BONET S.Artificial insemination with frozen-thawed boar sperm[J].Molecular reproduction and development,2017,84(9):802-813. [百度学术] 

49

BATISSACO L, ARRUDA R P, ALVES M B R, et al.Cholesterol-loaded cyclodextrin is efficient in preserving sperm quality of cryopreserved ram semen with low freezability [J].Reproductive biology, 2020, 20(1):14-24. [百度学术] 

50

CHEN X L,ZHU H B,HU C H,et al.Identification of differentially expressed proteins in fresh and frozen-thawed boar spermatozoa by iTRAQ-coupled 2D LC–MS/MS[J].Reproduction,2014,147(3):321-330. [百度学术] 

51

CHAVES B R,PINOTI PAVANELI A P,BLANCO-PRIETO O,et al.Exogenous albumin is crucial for pig sperm to elicit in vitro capacitation whereas bicarbonate only modulates its efficiency[J/OL].Biology,2021,10(11):1105[2023-10-17].https://doi.org/10.3390/biology10111105. [百度学术] 

52

ZHANG J,LIU H A,YANG Q Z,et al.Genomic sequencing reveals the diversity of seminal bacteria and relationships to reproductive potential in boar sperm[J/OL].Frontiers in microbiology,2020,11:1873[2023-10-17].https://doi.org/10.3389/fmicb.2020.01873. [百度学术] 

53

BARRANCO I,ORTEGA M D,MARTINEZ-ALBORCIA M J,et al.Season of ejaculate collection influences the freezability of boar spermatozoa[J].Cryobiology,2013,67(3):299-304. [百度学术] 

54

PÉREZ-PATIÑO C,LI J W,BARRANCO I,et al.The proteome of frozen-thawed pig spermatozoa is dependent on the ejaculate fraction source[J/OL].Scientific reports,2019,9:705[2023-10-17].https://doi.org.10.1038/s41598-018-36624-5. [百度学术] 

55

SCHULZE M,BORTFELDT R,SCHÄFER J,et al.Effect of vibration emissions during shipping of artificial insemination doses on boar semen quality[J].Animal reproduction science,2018,192:328-334. [百度学术] 

56

韩晓.纳米化处理红景天多糖对猪精液冷冻效果的影响[D].上海:上海海洋大学,2013.HAN X.Effect of nano-treatment of Rhodiola polysaccharide on freezing effect of pig Semen[D].Shanghai:Shanghai Ocean University,2013 (in Chinese with English abstract). [百度学术] 

57

SOARES S L,BRITO C R C,ANCIUTI A N,et al.Nanocarried antioxidants in freezing extenders for boar spermatozoa[J/OL].Andrologia,2021,53(10):e14199[2023-10-17].https://doi.org/10.1111/and.14199. [百度学术] 

58

DURFEY C L,SWISTEK S E,LIAO S F,et al.Nanotechnology-based approach for safer enrichment of semen with best spermatozoa[J].Journal of animal science and biotechnology,2019,10(1):1-12. [百度学术] 

59

HÖFNER L,LUTHER A M,PALLADINI A,et al.Tolerance of stored boar spermatozoa to autologous seminal plasma:a proteomic and lipidomic approach[J/OL].International journal of molecular sciences,2020,21(18):6474[2023-10-17].https://www.mdpi.com/1422-0067/21/18/6474. DOI:10.3390/ijms21186474. [百度学术] 

60

VILAGRAN I,YESTE M,SANCHO S,et al.Comparative analysis of boar seminal plasma proteome from different freezability ejaculates and identification of fibronectin 1 as sperm freezability marker[J].Andrology,2015,3(2):345-356. [百度学术] 

61

WATERHOUSE K E,GJELDNES A,TVERDAL A,et al.Alterations of sperm DNA integrity during cryopreservation procedure and in vitro incubation of bull semen[J].Animal reproduction science,2010,117(1/2):34-42. [百度学术] 

62

黄启震,周米,常迪,等.猪冷冻精液生产关键技术的研究[J].猪业科学,2018,35(12):104-107.HUANG Q Z,ZHOU M,CHANG D,et al.Study on key technology of pig frozen semen production[J].Swine industry science,2018,35(12):104-107 (in Chinese). [百度学术]