Genetic transformation system of plants with non-tissue culture and its application
Author:
Affiliation:

1.College of Forestry, Hennan Agricultural University, Zhengzhou 450046, China;2.Institute of Non-timber Forestry, Chinese Academy of Forestry Sciences, Zhengzhou 450003, China;3.Henan Academy of Forestry Sciences, Zhengzhou 450002, China

Clc Number:

S-1

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference [112]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    The efficient and stable genetic transformation system of plants is an important technical support for the analysis of gene function and molecular breeding. However, the imperfect tissue culture system seriously hinders its application in many plants, especially in crops. In recent years, many efficient genetic transformation systems of plants with non-tissue culture have been established to solve the problems mentioned above. This article focuses on the genetic transformation system of plants with non-tissue culture mediated by Agrobacterium tumefaciens in terms of the current status of application, factors affecting transformation efficiency, and applications of gene editing with flower organ infection, cut-dip-budding (CDB) delivery, regenerative activity dependent in plant injection delivery (RAPID), seed inoculation, development regulatory (DR) assisted transformation, and virus delivery in plants. The application of pollen tube channel method, particle bombardment method and nano delivery method in plants independent of Agrobacterium tumefaciens was summarized. It will provide reference for establishing efficient, simple and genotype-independent genetic transformation system with non-tissue culture in more species and assisting the studies on plant functional genes and the practices of molecular breeding.

    Fig.1 Flow chart of non-tissue culture genetic transformation mediated by Agrobacterium
    Table 1 Efficiency of Agrobacterium-mediated non-tissue culture genetic transformation systems
    Reference
    [1] BéLANGER J G,COPLEY T R,HOYOS-VILLEGAS V,et al.A comprehensive review of in planta stable transformation strategies[J/OL].Plant methods,2024,20(1):79[2025-01-17].https://doi.org/10.1186/s13007-024-01200-8.
    [2] BENNUR P L,O’BRIEN M,FERNANDO S C,et al.Improving transformation and regeneration efficiency in medicinal plants:insights from other recalcitrant species[J].Journal of experimental botany,2025,76(1):52-75.
    [3] CHEN Z L,DEBERNARDI J M,DUBCOVSKY J,et al.Recent advances in crop transformation technologies[J].Nature plants,2022,8(12):1343-1351.
    [4] HAO S Y,ZHANG Y Y,LI R D,et al.Agrobacterium-mediated in planta transformation of horticultural plants:current status and future prospects[J/OL].Scientia horticulturae,2024,325:112693[2025-01-17].https://doi.org/10.1186/s13007-024-01200-8.
    [5] ELLISON E E,NAGALAKSHMI U,GAMO M E,et al.Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs[J].Nature plants,2020,6(6):620-624.
    [6] LI T D,HU J C,SUN Y,et al.Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture[J].Molecular plant,2021,14(11):1787-1798.
    [7] LIU Q,ZHAO C L,SUN K,et al.Engineered biocontainable RNA virus vectors for non-transgenic genome editing across crop species and genotypes[J].Molecular plant,2023,16(3):616-631.
    [8] MA X N,ZHANG X Y,LIU H M,et al.Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9[J].Nature plants,2020,6(7):773-779 .
    [9] LAW S S Y,LIOU G,NAGAI Y,et al.Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria[J/OL].Nature communications,2022,13(1):2417[2025-01-17].https://doi.org/10.1038/s41467-022-30185-y.
    [10] ZHU Y T,ZHU X,WEN Y,et al.Plant hairy roots:induction,applications,limitations and prospects[J/OL].Industrial crops and products,2024,219:119104[2025-01-17].https://doi.org/10.1016/j.indcrop.2024.119104.
    [11] 许智宏,张宪省,苏英华,等.植物细胞全能性和再生[J].中国科学:生命科学,2019,49(10):1282-1300. XU Z H,ZHANG X S,SU Y H,et al.Plant cell totipotency and regeneration[J].Scientia sinica (vitae),2019,49(10):1282-1300 (in Chinese with English abstract).
    [12] CAO X S,XIE H T,SONG M L,et al.Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture[J/OL].The innovation,2023,4(1):100345[2025-01-17].https://doi.org/10.1016/j.xinn.2022.100345.
    [13] BECHTOLD N,PELLETIER G.In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration[J].Methods in molecular biology,1998,82:259-266.
    [14] ESTRADA-NAVARRETE G,ALVARADO-AFFANTRANGER X,OLIVARES J E,et al.Fast,efficient and reproducible genetic transformation of Phaseolus spp.by Agrobacterium rhizogenes[J].Nature protocols,2007,2(7):1819-1824.
    [15] ZHAN X Q,LU Y M,ZHU J K,et al.Genome editing for plant research and crop improvement[J].Journal of integrative plant biology,2021,63(1):3-33.
    [16] SANG Y L,CHENG Z J,ZHANG X S.iPSCs:a comparison between animals and plants[J].Trends in plant science,2018,23(8):660-666.
    [17] ROEDER A H K,OTEGUI M S,DIXIT R,et al.Fifteen compelling open questions in plant cell biology[J].The plant cell,2022,34(1):72-102.
    [18] SESSIONS A,BURKE E,PRESTING G,et al.A high-throughput Arabidopsis reverse genetics system[J].The plant cell,2002,14(12):2985-2994.
    [19] ALONSO J M,STEPANOVA A N,LEISSE T J,et al.Genome-wide insertional mutagenesis of Arabidopsis thaliana[J].Science,2003,301(5633):653-657.
    [20] 李志邈,张海扩,曹家树,等.拟南芥激活标记突变体库的构建及突变体基因的克隆[J].植物生理与分子生物学学报,2005,31(5):499-506. LI Z M,ZHANG H K,CAO J S,et al.Construction of an activation tagging library of Arabidopsis and cloning for mutant genes[J].Acta photophysiologica sinica,2005,31(5):499-506 (in Chinese with English abstract).
    [21] CHUNG M H,CHEN M K,PAN S M.Floral spray transformation can efficiently generate Arabidopsis transgenic plants[J].Transgenic research,2000,9(6):471-476.
    [22] LIU F,CAO M Q,YAO L,et al.In planta transformation of Pakchoi (Brassica campestris L. ssp. chinensis) by infiltration of adult plants with Agrobacterium[J].Acta horticulturae,1998(467):187-192.
    [23] WANG W C,MENON G,HANSEN G.Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants[J].Plant cell reports,2003,22(4):274-281.
    [24] LI J,TAN X L,ZHU F G,et al.A rapid and simple method for Brassica napus floral-dip transformation and selection of transgenic plantlets[J].International journal of biology,2010,2(1):127-131.
    [25] CURTIS I S,NAM H G.Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method:plant development and surfactant are important in optimizing transformation efficiency[J].Transgenic research,2001,10(4):363-371.
    [26] 代法国,胡宗利,陈国平,等.一种获得转基因芥菜的简便方法[J].生命科学研究,2011,15(1):19-23. DAI F G,HU Z L,CHEN G P,et al.A simple method to obtain transgenic mustard[J].Life science research,2011,15(1):19-23 (in Chinese with English abstract).
    [27] GAO Y, REN X L, RUAN S L, et al.Genetic transformation of chinese cabbage (Brassica rapa pekinensis) with floral-dip method[J].Agricultural biotechnology,2012,1(4):22-24.
    [28] BRESSAN R A,ZHANG C,ZHANG H,et al.Learning from the Arabidopsis experience:the next gene search paradigm[J].Plant physiology,2001,127(4):1354-1360.
    [29] AGARWAL S,LOAR S,STEBER C,et al.Floral transformation of wheat[J].Methods in molecular biology,2009,478:105-113.
    [30] ZALE J M,AGARWAL S,LOAR S,et al.Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens[J].Plant cell reports,2009,28(6):903-913.
    [31] 王翠艳,丁东风,于晓菊,等.Floral dip法在大豆遗传转化中的应用研究[J].南开大学学报(自然科学版),2010,43(1):34-38. WANG C Y,DING D F,YU X J,et al.Application of floral dip on the transformation of soybean[J].Acta Scientiarum Naturalium Universitatis Nankaiensis,2010,43(1):34-38 (in Chinese with English abstract).
    [32] TRIEU A T,BURLEIGH S H,KARDAILSKY I V,et al.Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium[J].The plant journal,2000,22(6):531-541.
    [33] HAYTA S,SMEDLEY M A,LI J H,et al.Agrobacterium-mediated transformation systems of Primula vulgaris[J/OL].Plant methods,2018,14:93[2025-01-17].https://doi.org/10.1186/s13007-018-0360-1.
    [34] CAO X S,XIE H T,SONG M L,et al.Extremely simplified cut-dip-budding method for genetic transformation and gene editing in Taraxacum kok-saghyz[J/OL].The innovation life,2023,1(3):100040[2025-01-17].https://doi.org/10.59717/j.xinn-life.2023.100040.
    [35] CAO X S,XIE H T,SONG M L,et al.Simple method for transformation and gene editing in medicinal plants[J].Journal of integrative plant biology,2024,66(1):17-19.
    [36] LU J H,LI S S,DENG S,et al.A method of genetic transformation and gene editing of succulents without tissue culture[J].Plant biotechnology journal,2024,22(7):1981-1988.
    [37] 宋洪英,谢响明,刘忠华,等.农杆菌介导的紫茎泽兰遗传转化研究[J].生物技术通报,2010,26(7):153-156. SONG H Y,XIE X M,LIU Z H,et al.Agrobacterium tumefaciens-mediated genetic transformation of Eupatorium adenophorum spreng[J].Biotechnology bulletin,2010,26(7):153-156 (in Chinese with English abstract).
    [38] 余晓敏,王亚琴,刘雨菡,等.根癌农杆菌介导万寿菊遗传转化体系的建立[J].植物学报,2023,58(5):760-769. YU X M,WANG Y Q,LIU Y H,et al.Establishment of Agrobacterium tumefaciens-mediated genetic transformation system of marigold(Tagetes erecta)[J].Chinese bulletin of botany,2023,58(5):760-769 (in Chinese with English abstract).
    [39] 陈赢男,胡传景,诸葛强,等.杨树农杆菌遗传转化研究30年[J].林业科学,2022,58(12):114-129. CHEN Y N,HU C J,ZHUGE Q,et al.Thirty years of Agrobacterium-mediated genetic transformation of Populus[J].Scientia silvae sinicae,2022,58(12):114-129 (in Chinese with English abstract).
    [40] 周义杰,姜梦嫣,闫希焕,等.枣树遗传转化研究进展[J].北京农学院学报,2019,34(1):107-112. ZHOU Y J,JIANG M Y,YAN X H,et al.Progress on genetic transformation of jujube[J].Journal of Beijing University of Agriculture,2019,34(1):107-112 (in Chinese with English abstract).
    [41] 许德荣.T4溶菌酶基因的遗传转化及作为选择标记基因的研究[D].北京:中国林业科学研究院,2010.XU D R.Studies on T4 lysozyme gene genetic transformation and itspotential as a selection marker gene[D].Beijing:Chinese Academy of Forestry,2010 (in Chinese with English abstract).
    [42] XIAO Y X,DUTT M,MA H J,et al.Establishment of an efficient root mediated genetic transformation method for gene function verification in Citrus[J/OL].Scientia horticulturae,2023,321:112298[2025-01-17].https://doi.org/10.1016/j.scienta.2023.112298.
    [43] MA H J,MENG X Y,XU K,et al.Highly efficient hairy root genetic transformation and applications in Citrus[J/OL].Frontiers in plant science,2022,13:1039094[2025-01-17].https://doi.org/10.3389/fpls.2022.1039094.
    [44] WANG M,QIN Y Y,WEI N N,et al.Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation in citrus seeds and its application in gene functional analysis[J/OL].Frontiers in plant science,2023,14:1293374[2025-01-17].https://doi.org/10.3389/fpls.2023.1293374.
    [45] XU S L,LAI E H,ZHAO L,et al.Development of a fast and efficient root transgenic system for functional genomics and genetic engineering in peach[J/OL].Scientific reports,2020,10(1):2836[2025-01-17].https://doi.org/10.1038/s41598-020-59626-8.
    [46] XIAO Y X,ZHANG S C,LIU Y,et al.Efficient Agrobacterium-mediated genetic transformation using cotyledons,hypocotyls and roots of ‘Duli’ (Pyrus betulifolia Bunge)[J/OL].Scientia horticulturae,2022,296:110906[2025-01-17].https://doi.org/10.1016/j.scienta.2022.110906.
    [47] ALAGARSAMY K,SHAMALA L F,WEI S.Protocol:high-efficiency in-planta Agrobacterium-mediated transgenic hairy root induction of Camellia sinensis var.sinensis[J/OL].Plant methods,2018,14:17[2025-01-17]. https://doi.org/10.1186/s13007-018-0285-8.
    [48] WANG H Y,ZHENG Y S,ZHOU Q,et al.Fast,simple,efficient Agrobacterium rhizogenes-mediated transformation system to non-heading Chinese cabbage with transgenic roots[J].Horticultural plant journal,2024,10(2):450-460.
    [49] ZHANG Y Y,ZHANG D M,ZHONG Y,et al.A simple and efficient in planta transformation method for pommelo (Citrus maxima) using Agrobacterium tumefaciens[J].Scientia horticulturae,2017,214:174-179.
    [50] JAGANATH B,SUBRAMANYAM K,MAYAVAN S,et al.An efficient in planta transformation of Jatropha curcas (L.) and multiplication of transformed plants through in vivo grafting[J].Protoplasma,2014,251(3):591-601.
    [51] 谢幸男,杨莉,刘范,等.‘伏令夏橙’原位转化体系的建立及优化[J].园艺学报,2020,47(1):111-119. XIE X N,YANG L,LIU F,et al.Establishment and optimization of Valencia sweet orange in planta transformation system[J].Acta horticulturae sinica,2020,47(1):111-119 (in Chinese with English abstract).
    [52] MAHER M F,NASTI R A,VOLLBRECHT M,et al.Plant gene editing through de novo induction of meristems[J].Nature biotechnology,2020,38(1):84-89.
    [53] MEI G G,CHEN A,WANG Y R,et al.A simple and efficient in planta transformation method based on the active regeneration capacity of plants[J/OL].Plant communications,2024,5(4):100822[2025-01-17].https://doi.org/10.1016/j.xplc.2024.100822.
    [54] DENG J,LI W Y,LI X M,et al.A fast,efficient,and tissue-culture-independent genetic transformation method for Panax notoginseng and Lilium regale[J/OL].Plants,2024,13(17):2509[2025-01-17].https://doi.org/10.3390/plants13172509.
    [55] LIAN Z Y,NGUYEN C D,LIU L,et al.Application of developmental regulators to improve in planta or in vitro transformation in plants[J].Plant biotechnology journal,2022,20(8):1622-1635.
    [56] MAREN N A,DUAN H,DA K D,et al.Genotype-independent plant transformation[J/OL].Horticulture research,2022,9:uhac047[2025-01-17].http://doi.org/10.1093/hr/uhac047.
    [57] FELDMANN K A,DAVID MARKS M.Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana:a non-tissue culture approach[J].Molecular and general genetics MGG,1987,208(1):1-9.
    [58] KARTHIK S,PAVAN G,SATHISH S,et al.Genotype-independent and enhanced in planta Agrobacterium tumefaciens- mediated genetic transformation of peanut [Arachis hypogaea (L.)][J/OL].3 biotech,2018,8(4):202[2025-01-17]. https://doi.org/10.1007/s13205-018-1231-1.
    [59] ZHONG H,LI C B,YU W J,et al.A fast and genotype-independent in planta Agrobacterium-mediated transformation method for soybean[J/OL].Plant communications,2024,5(12):101063[2025-01-17].https://doi.org/10.1016/j.xplc.2024.101063.
    [60] GE X Y,XU J T,YANG Z E,et al.Efficient genotype-independent cotton genetic transformation and genome editing[J].Journal of integrative plant biology,2023,65(4):907-917.
    [61] HOERSTER G,WANG N,RYAN L,et al.Use of non-integrating Zm-Wus2 vectors to enhance maize transformation[J].In vitro cellular & developmental biology-plant,2020,56(3):265-279.
    [62] LI J P,PAN W B,ZHANG S,et al.A rapid and highly efficient Sorghum transformation strategy using GRF4-GIF1/ternary vector system[J].The plant journal,2024,117(5):1604-1613.
    [63] ZHAO H X,XIE Y P,ZHENG Q L,et al.A simple and efficient non-tissue culture method for genetic transformation of grape immature zygotic embryos via VvBBM overexpression[J/OL].Scientia horticulturae,2024,337:113581[2025-01-17].https://doi.org/10.1016/j.scienta.2024.113581.
    [64] LOWE K,WU E,WANG N,et al.Morphogenic regulators Baby boom and Wuschel improve monocot transformation[J].The plant cell,2016,28(9):1998-2015.
    [65] LIU L,QU J H,WANG C Y,et al.An efficient genetic transformation system mediated by Rhizobium rhizogenes in fruit trees based on the transgenic hairy root to shoot conversion[J].Plant biotechnology journal,2024,22(8):2093-2103.
    [66] WANG N,RYAN L,SARDESAI N,et al.Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum[J].Nature plants,2023,9(2):255-270.
    [67] AREGAWI K,SHEN J Q,PIERROZ G,et al.Morphogene-assisted transformation of Sorghum bicolor allows more efficient genome editing[J].Plant biotechnology journal,2022,20(4):748-760.
    [68] WANG N,ARLING M,HOERSTER G,et al.An efficient gene excision system in maize[J/OL].Frontiers in plant science,2020,11:1298[2025-01-17].https://doi.org/10.3389/fpls.2020.01298.
    [69] DEBERNARDI J M,TRICOLI D M,ERCOLI M F,et al.A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants[J].Nature biotechnology,2020,38(11):1274-1279.
    [70] ZHANG X Y,XU G C,CHENG C H,et al.Establishment of an Agrobacterium-mediated genetic transformation and CRISPR/Cas9-mediated targeted mutagenesis in Hemp (Cannabis sativa L.)[J].Plant biotechnology journal,2021,19(10):1979-1987.
    [71] ZHAO Y,CHENG P,LIU Y,et al.A highly efficient soybean transformation system using GRF3-GIF1 chimeric protein[J].Journal of integrative plant biology,2025,67(1):3-6.
    [72] CHEN Z, DEBERNARDI J M, DUBCOVSKY J, et al. The combination of morphogenic regulators BABY BOOM and GRF-GIF improves maize transformation efficiency[DB/OL].bioRxiv,2022[2025-01-17].https://doi.org/10.1101/2022.09.02.50637.
    [73] CHENG J,SHAO Y,HU X Y,et al.A simple and efficient gene functional analysis method for studying the growth and development of peach seedlings[J/OL].Horticulture research,2024,11(7):uhae155[2025-01-17].https://doi.org/10.1093/hr/uhae155.
    [74] BURCH-SMITH T M,ANDERSON J C,MARTIN G B,et al.Applications and advantages of virus-induced gene silencing for gene function studies in plants[J].The plant journal,2004,39(5):734-746.
    [75] BAEK W,BAE Y,LIM C W,et al.Pepper homeobox abscisic acid signalling-related transcription factor 1,CaHAT1,plays a positive role in drought response[J].Plant,cell & environment,2023,46(7):2061-2077.
    [76] WANG W,LIU S H,CHENG X,et al.Ethylene and polyamines form a negative feedback loop to regulate peach fruit ripening via the transcription factor PpeERF113 by regulating the expression of PpePAO1[J/OL].Postharvest biology and technology,2022,190:111958[2025-01-17].https://doi.org/10.1016/j.postharvbio.2022.111958.
    [77] LEI J F,DAI P H,LI Y,et al.Heritable gene editing using FT mobile guide RNAs and DNA viruses[J/OL].Plant methods,2021,17(1):20[2025-01-17].https://doi.org/10.1186/s13007-021-00719-4.
    [78] SUBRAMANYAM K,RAJESH M,JAGANATH B,et al.Assessment of factors influencing the Agrobacterium-mediated in planta seed transformation of brinjal (Solanum melongena L.)[J].Applied biochemistry and biotechnology,2013,171(2):450-468.
    [79] LU J H,LU S H,SU C L,et al.Tissue culture-free transformation of traditional Chinese medicinal plants with root suckering capability[J/OL].Horticulture research,2023,11(2):uhad290[2025-01-17].https://doi.org/10.1093/hr/uhad290.
    [80] YE B B,ZHANG K,WANG J W.The role of miR156 in rejuvenation in Arabidopsis thaliana[J].Journal of integrative plant biology,2020,62(5):550-555.
    [81] ZHANG W,ZUO Z D,ZHU Y X,et al.Fast track to obtain heritable transgenic sweet potato inspired by its evolutionary history as a naturally transgenic plant[J].Plant biotechnology journal,2023,21(4):671-673.
    [82] YANG J L,YI J,YANG C P,et al.Agrobacterium tumefaciens-mediated genetic transformation of Salix matsudana Koidz.using mature seeds[J].Tree physiology,2013,33(6):628-639.
    [83] FENG Q,XIAO L,HE Y Z,et al.Highly efficient,genotype-independent transformation and gene editing in watermelon (Citrullus lanatus) using a chimeric ClGRF4-GIF1 gene[J].Journal of integrative plant biology,2021,63(12):2038-2042.
    [84] LI X Q,BU F Q,ZHANG M,et al.Enhancing nature’s palette through the epigenetic breeding of flower color in Chrysanthemum[J].New phytologist,2025,245(5):2117-2132.
    [85] LEE H J,BAIK J E,KIM K N.Development of an efficient and heritable virus-induced genome editing system in Solanum lycopersicum[J/OL].Horticulture research,2024:uhae364[2025-01-17].https://doi.org/10.1093/hr/uhae364.
    [86] ZHAO C L,LOU H H,LIU Q,et al.Efficient and transformation-free genome editing in pepper enabled by RNA virus-mediated delivery of CRISPR/Cas9[J].Journal of integrative plant biology,2024,66(10):2079-2082.
    [87] ZHANG C,LIU S H,LI X,et al.Virus-induced gene editing and its applications in plants[J/OL].International journal of molecular sciences,2022,23(18):10202[2025-01-17].https://doi.org/10.3390/ijms231810202.
    [88] ARIGA H,TOKI S,ISHIBASHI K.Potato virus X vector-mediated DNA-free genome editing in plants[J].Plant & cell physiology,2020,61(11):1946-1953.
    [89] ZHOU G Y,WENG J,ZENG Y S,et al.Introduction of exogenous DNA into cotton embryos[J].Methods in enzymology,1983,101:433-481.
    [90] 叶兴国,徐惠君,杜丽璞,等.小麦规模化转基因技术体系构建及其应用[J].中国农业科学,2014,47(21):4155-4171. YE X G,XU H J,DU L P,et al.Establishment and application of large-scale transformation systems in wheat[J].Scientia agricultura sinica,2014,47(21):4155-4171 (in Chinese with English abstract).
    [91] 于美,唐华丽,叶兴国.利用转基因技术和基因编辑技术改良小麦进展[J].植物遗传资源学报,2023,24(1):102-116. YU M,TANG H L,YE X G.Progresses on wheat improvement by using transgenic and genome editing technologies[J].Journal of plant genetic resources,2023,24(1):102-116 (in Chinese with English abstract).
    [92] 李向龙,郑登俞,张春,等.花粉管通道法转EPSPS基因创制耐草甘膦玉米种质[J].福建农业学报,2023,38(5):524-529. LI X L,ZHENG D Y,ZHANG C,et al.Glyphosate-tolerant maize plants generated by pollen tube pathway method[J].Fujian journal of agricultural sciences,2023,38(5):524-529 (in Chinese with English abstract).
    [93] 唐丽颖,陈利娜,敬丹,等.采用花粉管通道法遗传转化月季石榴的研究[J].江西农业学报,2021,33(3):17-24. TANG L Y,CHEN L N,JING D,et al.Agrobacterium-mediated transformation of dwarf pomegranate (Punica granatum) by pollen tube pathway method[J].Acta agriculturae Jiangxi,2021,33(3):17-24 (in Chinese with English abstract).
    [94] 李玲玲,江昌俊,房婉萍,等.花粉管通道法对茶树进行dsTCS基因转化的初步研究[J].安徽农业大学学报,2007,34(1):20-22. LI L L,JIANG C J,FANG W P,et al.Transform of dsTCS into tea plant(Camellia sinensis) by pollen-tube pathway[J].Journal of Anhui Agricultural University,2007,34(1):20-22 (in Chinese with English abstract).
    [95] 陈彦.花粉管通道导入外源DNA方法的研究[J].北方园艺,2010(13):226-228. CHEN Y.Study on techniques of introduction of exogenous DNA into plants via pollen tube pathway[J].Northern horticulture,2010(13):226-228 (in Chinese with English abstract).
    [96] 马盾,黄乐平,黄全生,等.提高棉花花粉管通道法转化率的研究[J].西北农业学报,2005,14(1):10-12. MA D,HUANG L P,HUANG Q S,et al.Study on improvement of pollen tube pathway transformation efficiency through field concrete operation[J].Acta agriculturae boreali-occidentalis sinica,2005,14(1):10-12 (in Chinese with English abstract).
    [97] 刘传亮,田瑞平,孔德培,等.棉花规模化转基因技术体系构建及其应用[J].中国农业科学,2014,47(21):4183-4197. LIU C L,TIAN R P,KONG D P,et al.Establishment and application of efficient transformation system for cotton[J].Scientia agricultura sinica,2014,47(21):4183-4197 (in Chinese with English abstract).
    [98] 段晓岚,陈善葆.外源DNA导入水稻引起性状变异[J].中国农业科学,1985,18(3):6-10. DUAN X L,CHEN S B.Variation of the characters in rice(Oryza sativa) induced by foreign DNA uptake[J].Scientia agricultura sinica,1985,18(3):6-10 (in Chinese with English abstract).
    [99] 奚亚军,林拥军,张启发,等.利用花粉管通道法将叶片衰老抑制基因PSAG12-IPT导入普通小麦的研究[J].作物学报,2004,30(6):608-612. XI Y J,LIN Y J,ZHANG Q F,et al.Studies on introduction of leaf senescence-inhibition gene PSAG12-IPT into common wheat through pollen-tube pathway[J].Acta agronomica sinica,2004,30(6):608-612 (in Chinese with English abstract).
    [100] 侯文胜,郭三堆,路明.利用花粉管通道法将cryIa基因导入小麦[J].作物学报,2003,29(6):806-809.HOU W S,GUO S D,LU M.Development of transgenic wheat with a synthetical insecticidal crystal protein gene via pollen-tube pathway[J].Acta agronomica sinica,2003,29(6):806-809 (in Chinese with English abstract).
    [101] BEGEMANN M B,GRAY B N,JANUARY E,et al.Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases[J/OL].Scientific reports,2017,7(1):11606[2025-01-17].https://doi.org/10.1038/s41598-017-11760-6.
    [102] DUAN X L,HOU Q L,LIU G Y,et al.Expression of Pinellia pedatisecta lectin gene in transgenic wheat enhances resistance to wheat aphids[J/OL].Molecules,2018,23(4):748[2025-01-17]. https://doi.org/10.3390/molecules23040748.
    [103] DU H W,SHEN X M,HUANG Y Q,et al.Overexpression of Vitreoscilla hemoglobin increases waterlogging tolerance in Arabidopsis and maize[J/OL].BMC plant biology,2016,16:35[2025-01-17].https://doi.org/10.1186/s12870-016-0728-1.
    [104] BELIDE S,VANHERCKE T,PETRIE J R,et al.Robust genetic transformation of sorghum (Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos[J/OL].Plant methods,2017,13:109[2025-01-17].https://doi.org/10.1186/s13007-017-0260-9.
    [105] GAO S W,YANG Y Y,WANG C F,et al.Transgenic sugarcane with a cry1Ac gene exhibited better phenotypic traits and enhanced resistance against sugarcane borer[J/OL].PLoS One,2016,11(4):e0153929[2025-01-17].https://doi.org/10.1371/journal.pone.0153929.
    [106] ZHANG L Y,GU L K,RINGLER P,et al.Three WRKY transcription factors additively repress abscisic acid and gibberellin signaling in aleurone cells[J].Plant science,2015,236:214-222.
    [107] BONAWITZ N D,AINLEY W M,ITAYA A,et al.Zinc finger nuclease-mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non-homologous end joining[J].Plant biotechnology journal,2019,17(4):750-761.
    [108] DEMIRER G S,ZHANG H,MATOS J L,et al.High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants[J].Nature nanotechnology,2019,14(5):456-464.
    [109] THAGUN C,CHUAH J A,NUMATA K.Targeted gene delivery into various plastids mediated by clustered cell-penetrating and chloroplast-targeting peptides[J/OL].Advanced science,2019,6(23):1902064[2025-01-17].https://doi.org/10.1002/advs.201902064.
    [110] WANG B,HUANG J,ZHANG M L,et al.Carbon dots enable efficient delivery of functional DNA in plants[J].ACS applied bio materials,2020,3(12):8857-8864.
    [111] MITTER N,WORRALL E A,ROBINSON K E,et al.Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses[J/OL].Nature plants,2017,3:16207[2025-01-17].https://doi.org/10.1038/nplants.2016.207.
    [112] CHEN K,HAN H S,ZHAO S,et al.Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR-Cas9 ribonucleoprotein[J/OL].Nature biotechnology,2024:1-32[2025-01-17].https://doi.org/10.1038/s41587-024-02437-3.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

冯梦琦,王若雨,司马璐,姜楠,翟晓巧,赵振利,范国强. Genetic transformation system of plants with non-tissue culture and its application[J]. Jorunal of Huazhong Agricultural University,2025,44(2):228-242.

Copy
Share
Article Metrics
  • Abstract:12
  • PDF: 29
  • HTML: 0
  • Cited by: 0
History
  • Received:January 17,2025
  • Online: April 02,2025
Article QR Code