基于核密度估计的土壤样本代表性修正研究
作者:
作者单位:

华中农业大学资源与环境学院,武汉 430070

作者简介:

李坤,E-mail:2601277070@qq.com

通讯作者:

黄魏,E-mail:ccan@mail.hzau.edu.cn

中图分类号:

S159.9

基金项目:

国家自然科学基金项目(42171056;41877001)


Representative revision of soil samples based on estimation of kernel density
Author:
Affiliation:

College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为充分利用历史样点数据获取更可靠的土壤-环境知识,进而获取更高精度的土壤预测推理图,采用样本代表性修正方法获取更高的知识精度,利用样本空间与总体空间环境协变量的空间相似度关系,以核密度估计为基础,采用3种不同算法对每个土壤采样点探寻最优权重,并以土壤表层有机质含量预测制图为例验证方法的科学性和有效性。结果显示,该修正方法最高可将多元线性回归制图的RMSE和MAE分别降低10.30%和12.74%,证实了该方法的可行性与有效性。

    Abstract:

    How to obtain more reliable soil-environment knowledge from existing historical samples has become an important scientific issue in digital soil mapping. This article used the method of revising the representativeness of samples to obtain higher accuracy of knowledge. Three different algorithms and the spatial similarity relationship between the covariates of the sample space and the overall spatial environment were used to identify the optimal weights for each sampling point of soil based on the estimation of kernel density. The prediction mapping of the content of organic matter on the surface of soil was used as an example to verify the scientific and validity of the method. The results showed that the revised method reduced RMSE and MAE of multiple linear regression mapping by 10.30% and 12.74%, confirming the feasibility and validity of this method. It will provide technical support for processing the data from sampling points of soil to make full use of historical data and improve the accuracy of mapping soil.

    图1 研究区验证点位置分布图Fig.1 Verification point location distribution map in the study area
    图2 样本空间(A)和总体空间(B)的采样点分布Fig.2 Sample points distribution in sample space(A) and population space(B)
    图3 第一(A)、二(B)、三(C)主成分协变量图层Fig.3 First(A), second(B), and third(C) principal component covariate layers
    图4 每个协变量组分样本空间和总体空间的概率密度曲线Fig.4 Probability density curves of sample space and population space for each covariate component
    图5 样本空间和总体空间的总概率密度曲线Fig.5 Total probability density curve of sample space and population space
    图6 遗传算法、差分进化算法、粒子群优化算法样本代表性修正的最优曲线Fig.6 Optimal curve of sample representativeness correction of genetic algorithm,differential evolution algorithm,particle swarm optimization algorithm
    图7 基于不同算法的最优权重点地理分布Fig.7 Optimal weight distribution based on different algorithms
    图8 不同算法迭代200代相似度演化Fig.8 Iterative similarity evolution based on different algorithms for 200 generations
    图9 加权与未加权的土壤有机质含量预测制图Fig.9 Mapping of soil organic matter content prediction based on initial weight and optimal weight
    表 1 协变量空间最优带宽Table 1 Optimal bandwidth of the covariate space
    表 2 基于初始权重和最优权重的制图精度对比Table 2 Comparison of mapping accuracy based on initial weights and optimal weights
    表 3 基于不同算法预测制图显著性关系Table 3 Significance relationship of predictive mapping based on weighting of different algorithms
    参考文献
    相似文献
    引证文献
引用本文

李坤,陈宇昊,李文岳,王子影,傅佩红,黄魏.基于核密度估计的土壤样本代表性修正研究[J].华中农业大学学报,2025,44(1):94-104

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-05
  • 在线发布日期: 2025-03-03
文章二维码