无乳链球菌与小鼠巨噬细胞互作转录组测序分析
作者:
作者单位:

1.华中农业大学水产学院,武汉 430070;2.岭南现代农业科学与技术广东省实验室,广州 510542;3.长江经济带大宗水生生物产业绿色发展教育部工程研究中心,武汉 430070

作者简介:

杨岚,E-mail:yang_lan_21@webmail.hzau.edu.cn

通讯作者:

周洋,E-mail:zhouyang@mail.hzau.edu.cn

中图分类号:

S943

基金项目:

岭南现代农业实验室科研项目(NT2021008);现代农业产业技术体系专项(CARS-46)


Transcriptome analysis of Streptococcus agalactiae surviving in mouse macrophages
Author:
Affiliation:

1.College of Fisheries,Huazhong Agricultural University, Wuhan 430070, China;2.Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510542, China;3.Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Wuhan 430070, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    巨噬细胞是先天性免疫系统的重要组成部分,但无乳链球菌(Streptococcus agalactiae)却能在巨噬细胞内存活并以巨噬细胞为载体入侵中枢神经系统。为解析无乳链球菌在巨噬细胞内的存活机制,将无乳链球菌HN016与RAW264.7共孵育,提取胞内细菌RNA后进行转录组测序(RNA-seq)、Gene Ontology(GO)及Kyoto encyclopedia of genes and genomes(KEGG)富集分析;于体外将HN016与罗非鱼原代巨噬细胞孵育,提取胞内细菌RNA,并利用quantitative real-time PCR(qPCR)验证目标基因(包括:sipfbsAcylBcylDcylEneuAcpsBcfb)表达情况。结果显示,与无处理组相比,共筛选到1 215个差异表达基因(DEG),其中896个上调基因,319个下调基因。GO富集结果显示,DEG在分子功能、生物学过程和细胞组分3大类中均显著富集。KEGG富集结果显示,显著富集通路主要为ABC转运体、核糖体和群体感应等代谢途径。在DEG中,筛选到无乳链球菌毒力相关基因27个,包括fbsA(+8.65)、sip(+6.28)、cylD(+4.93)和cfb(-4.65)等,并利用qPCR验证RNA-seq结果,二者数据一致。而检测罗非鱼原代巨噬细胞内存活细菌的转录水平发现其目标基因的表达水平与小鼠巨噬细胞的相似。因此推测,无乳链球菌在被巨噬细胞吞入后,巨噬细胞内的有害环境增强了无乳链球菌的信号传导机制,刺激了无乳链球菌的能量运输和对巨噬细胞所产生的次生代谢物代谢的能力,并且提高了毒力相关基因的表达水平。

    Abstract:

    Macrophage is an essential component of the innate immune system. However, Streptococcus agalactiae has the ability to survive within macrophage, allowing it to infiltrate the central nervous system. To elucidate the mechanisms underlying the survival of S. agalactiae within macrophages, we investigated the genome-wide transcriptional changes of S. agalactiae following phagocytosis by RAW264.7 and explored the metabolic pathways and genes associated with the intracellular survival of S. agalactiae. The S. agalactiae strain HN016 was co-incubated with RAW264.7 and the intracellular bacteria were subjected to transcriptome sequencing (RNA-seq), gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis. Additionlly, HN016 was incubated with primary tilapia macrophages in vitro and RNA from the intracellular bacteria were extracted. Quantitative real-time PCR (qPCR) was used to verify the expression of the target genes. The results showed that a total of 1 215 differentially expressed genes (DEGs), including 869 up-regulated genes and 319 down-regulated genes, were screened, compared with the untreated group. DEGs were significantly enriched in all three Go terms: molecular function, biological process, and cellular component. KEGG enrichment analysis showed that the main enriched pathways were ABC transporter, ribosome, quorum sensing, and glycolysis/gluconeogenesis. Among the DEGs, 27 virulence-related genes were screened, including fbsA (+8.65), sip (+6.28), cylD (+4.93), and cfb (-4.65). qPCR was used to validate the RNA-seq results, and the agreement between two datasets demonstrated the reliability of the RNA-seq analysis. The transcript levels of surviving bacteria in primary macrophages of tilapia were similar to those in mouse macrophages. Based on these findings, it was hypothesized that the noxious environment within macrophage enhanced the signaling mechanisms, energy transport capacity, and metabolic capacity of secondary metabolites produced by macrophages, as well as the expression levels of virulence-related genes of S. agalactiae.

    图1 差异基因散点图Fig.1 Scatter-plot of DEGs
    图2 差异基因的GO注释Fig.2 GO annotations of DEGs
    图3 差异基因的GO富集分析Fig.3 GO enrichment analysis of DEGs
    图4 差异基因的KEGG注释Fig.4 KEGG annotations of DEGs
    图5 差异基因的KEGG富集分析Fig.5 KEGG enrichment analysis of DEGs
    图6 毒力相关DEG聚类分析Fig.6 Clustering analysis of virulence-related DEGs
    图7 部分毒力基因相对表达水平Fig.7 Relative expression levels of virulence genes
    表 1 引物信息Table 1 Primer information
    表 2 细菌转录组数据Table 2 Transcriptome data of bacteria
    表 3 毒力相关非差异表达基因Table 3 Virulence-related non-DEGs
    参考文献
    [1] ELLIOTT J A,FACKLAM R R,RICHTER C B.Whole-cell protein patterns of nonhemolytic group B,type Ib,streptococci isolated from humans,mice,cattle,frogs,and fish[J].J Clin Microbiol,1990,28(3):628-630.
    [2] COUREUIL M,LéCUYER H,BOURDOULOUS S,et al.A journey into the brain:insight into how bacterial pathogens cross blood-brain barriers[J].Nat Rev Microbiol,2017,15(3):149-159.
    [3] DANEMAN R,PRAT A.The blood-brain barrier[J/OL].Cold Spring Harb Perspect Biol, 2015,7(1):a020412[2024-04-11].https://doi.org/10.1101/cshperspect.a020412.
    [4] SEALE A C,BIANCHI-JASSIR F,RUSSELL N J,et al.Estimates of the burden of group B streptococcal disease worldwide for pregnant women,stillbirths,and children[J].Clin Infect Dis,2017,65(suppl 2):200-219.
    [5] EVANS J J, KLESIUS P H, SHOEMAKER C A. An overview of Streptococcus in warm water fish[J]. Aquaculture, 2006, 7: 10-13.
    [6] BENMIMOUN B,PAPASTEFANAKI F,PéRICHON B,et al.An original infection model identifies host lipoprotein import as a route for blood-brain barrier crossing[J/OL].Nat Commun,2020,11:6106[2023-04-11].https://doi.org/10.1038/s41467-020-19826-2.
    [7] SHABAYEK S,SPELLERBERG B.Acid stress response mechanisms of group B streptococci[J/OL].Front Cell Infect Microbiol,2017,7:395[2023-04-11].https://doi.org/10. 3389/fcimb.2017.00395.
    [8] FLANNAGAN R S,COSíO G,GRINSTEIN S.Antimicrobial mechanisms of phagocytes and bacterial evasion strategies[J].Nat Rev Microbiol,2009,7(5):355-366.
    [9] RUSSELL D G,VANDERVEN B C,GLENNIE S,et al.The macrophage marches on its phagosome:dynamic assays of phagosome function[J].Nat Rev Immunol,2009,9(8):594-600.
    [10] KAPLAN E L,CHHATWAL G S,ROHDE M.Reduced ability of penicillin to eradicate ingested group A streptococci from epithelial cells:clinical and pathogenetic implications[J].Clin Infect Dis,2006,43(11):1398-1406.
    [11] DREVETS D A,JELINEK T A,FREITAG N E.Listeria monocytogenes-infected phagocytes can initiate central nervous system infection in mice[J].Infect Immun,2001,69(3):1344-1350.
    [12] NIZET V,KIM K S,STINS M,et al.Invasion of brain microvascular endothelial cells by group B streptococci[J].Infect Immun,1997,65(12):5074-5081.
    [13] CUMLEY N J,SMITH L M,ANTHONY M,et al.The CovS/CovR acid response regulator is required for intracellular survival of group B Streptococcus in macrophages[J].Infect Immun,2012,80(5):1650-1661.
    [14] HERTZéN E,JOHANSSON L,KANSAL R,et al.Intracellular Streptococcus pyogenes in human macrophages display an altered gene expression profile[J/OL].PLoS One,2012,7(4):e35218[2023-04-11].https://doi.org/10.1371/journal.pone.0035218.
    [15] JIN H,WAN Y,ZHOU R,et al.Identification of genes transcribed by Haemophilus parasuisin necrotic porcine lung through the selective capture of transcribed sequences (SCOTS)[J].Environ Microbiol,2008,10(12):3326-3336.
    [16] GUO D C,LU Y,ZHANG A Q,et al.Identification of genes transcribed by Pasteurella multocida in rabbit livers through the selective capture of transcribed sequences[J].FEMS Microbiol Lett,2012,331(2):105-112.
    [17] DAVIDSON A L, DASSA E, ORELLE C, et al. Structure, function, and evolution of bacterial ATP-binding cassette systems[J]. Microbiol Mol Biol Rev, 2008, 72(2): 317-364.
    [18] LANG S H,PALMER M.Characterization of Streptococcus agalactiae CAMP factor as a pore-forming toxin[J].J Biol Chem,2003,278(40):38167-38173.
    [19] SKALKA B,SMOLA J.Lethal effect of CAMP-factor and UBERIS-factor:a new finding about diffusible exosubstances of Streptococcus agalactiae and Streptococcus uberis[J].Zentralbl Bakteriol A,1981,249(2):190-194.
    [20] HENSLER M E,QUACH D,HSIEH C J,et al.CAMP factor is not essential for systemic virulence of group B Streptococcus[J].Microb Pathog,2008,44(1):84-88.
    [21] HAFT R F,WESSELS M R,MEBANE M F,et al.Characterization of cpsF and its product CMP- N-acetylneuraminic acid synthetase,a group B streptococcal enzyme that can function in K1 capsular polysaccharide biosynthesis in Escherichia coli[J].Mol Microbiol,1996,19(3):555-563.
    [22] WANG E L,WANG K Y,CHEN D F,et al.Molecular cloning and bioinformatic analysis of the Streptococcus agalactiae neuA gene isolated from tilapia[J].Genet Mol Res,2015,14(2):6003-6017.
    [23] SCHUBERT A,ZAKIKHANY K,PIETROCOLA G,et al.The fibrinogen receptor FbsA promotes adherence of Streptococcus agalactiae to human epithelial cells[J].Infect Immun,2004,72(11):6197-6205.
    [24] GUTEKUNST H,EIKMANNS B J,REINSCHEID D J.The novel fibrinogen-binding protein FbsB promotes Streptococcus agalactiae invasion into epithelial cells[J].Infect Immun,2004,72(6):3495-3504.
    [25] YAMAMOTO S,MIYAKE K,KOIKE Y,et al.Molecular characterization of type-specific capsular polysaccharide biosynthesis genes of Streptococcus agalactiae type Ia[J].J Bacteriol,1999,181(17):5176-5184.
    [26] ZHANG D F,KE X L,LIU Z G,et al.Capsular polysaccharide of Streptococcus agalactiaeis an essential virulence factor for infection in Nile tilapia (Oreochromis niloticus Linn.)[J/OL].J Fish Dis,2018:jfd.12935[2023-04-11].https://doi.org/10.1111/jfd.12935.
    [27] CIESLEWICZ M J,CHAFFIN D,GLUSMAN G,et al.Structural and genetic diversity of group B streptococcus capsular polysaccharides[J].Infect Immun,2005,73(5):3096-3103.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨岚,张永安,周洋.无乳链球菌与小鼠巨噬细胞互作转录组测序分析[J].华中农业大学学报,2024,43(6):307-315

复制
分享
文章指标
  • 点击次数:30
  • 下载次数: 214
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-04-11
  • 在线发布日期: 2025-01-07
文章二维码