基于SVM算法的超声波速度-土壤含水率估计模型
CSTR:
作者:
作者单位:

1.华南农业大学工程学院,广州 510642;2.岭南现代农业科学与技术广东省实验室,广州 510642

作者简介:

陈盈宜,E-mail:chenyingyicyy@stu.scau.edu.cn

通讯作者:

李君,E-mail: autojunli@scau.edu.cn.

中图分类号:

S152.7

基金项目:

岭南现代农业广东省实验室科研项目(NZ2021040);国家荔枝产业技术体系项目(CARS-32)


A SVM algorithm-based model for estimating ultrasonic velocity-soil moisture
Author:
Affiliation:

1.College of Engineering, South China Agricultural University, Guangzhou 510642, China;2.Guangdong Province Laboratory for Lingnan Agricultural Science and Technology, Guangzhou 510642, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为快速准确获取土壤含水率信息,便于农业精准灌溉,引入支持向量机算法(SVM)对4种不同干湿交替处理下超声波速度与土壤含水率进行拟合分析和回归训练优化,构建基于超声波速度的土壤含水率预测模型。结果显示,与传统的烘干法相比较,利用该模型在田间验证土壤含水率,平均相对误差为1.5%左右。研究结果表明,基于SVM模型构建的超声波速度-土壤含水率预测模型能够较好地描述被研究区域内土壤含水率,可为利用超声波特性实现对农田土壤水分的持续监测提供参考。

    Abstract:

    It is extremely important to obtain accurate information of soil moisture and understand the dynamic change pattern of soil moisture. A support vector machine algorithm(SVM) was introduced for fitting analysis and regression training optimization of ultrasonic velocity-soil moisture under four different treatments of alternating wet and dry, and a prediction model of the soil moisture based on ultrasonic velocity was constructed. The prediction model was used to estimate the water content of soil in farmland tillage layer with different moisture requirements. The results showed that the average relative error of verifying soil moisture in the field with the model constructed was about 1.5% compared with the traditional drying method. It is indicated that the prediction model for ultrasonic velocity-soil moisture based on SVM model can effectively describe the soil moisture in the area studied. It will provide reference for utilizing ultrasonic characteristics to achieve continuous monitoring of soil moisture in farmland.

    表 2 不同初始含水率下SVM算法训练集的R2和MRETable 2 R2 and MRE of SVM algorithm trainingset under different initial moisture content
    表 1 支持向量机模型参数优化值Table 1 Optimization values of support vector machine model parameters
    图1 土壤样本实物图Fig.1 Physical picture of soil sample
    图2 超声波检测装置示意图Fig.2 Schematic diagram of ultrasonic testing device
    图3 SVM算法模型训练集对土壤含水率的预测结果Fig.3 Estimation results of soil moisture content training set based on SVM algorithm model with different initial moisture content
    图4 SVM算法模型测试集对土壤含水率的预测结果Fig.4 Estimation results of soil moisture content test set based on SVM algorithm model with different initial moisture content
    图5 2种方法预测结果平均相对误差图Fig.5 Average relative error graph of prediction results of two methods
    参考文献
    相似文献
    引证文献
引用本文

陈盈宜,潘丽敏,叶勇,李君,黄光文.基于SVM算法的超声波速度-土壤含水率估计模型[J].华中农业大学学报,2024,43(2):247-253

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-20
  • 在线发布日期: 2024-04-02
文章二维码