基于改进YOLOv5s模型的柑橘病虫害识别方法
CSTR:
作者:
作者单位:

1.福建农林大学机电工程学院,福州 350002;2.福建农林大学计算机与信息学院,福州350002

作者简介:

郑宇达,E-mail:403553702@qq.com

通讯作者:

邹腾跃,E-mail:zouty@fafu.edu.cn

中图分类号:

TP391.4

基金项目:

福建省自然科学基金项目(2019J01402)


Improved YOLOv5s based identification of pests and diseases in citrus
Author:
Affiliation:

1.College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China;2.College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对现有检测模型不能满足在自然环境中准确识别多种类柑橘病虫害的问题,提出一种基于改进YOLOv5s模型的常见柑橘病虫害检测方法。改进模型引入ConvNeXtV2模型,构建一个CXV2模块替换YOLOv5s的C3模块,增强提取特征的多样性;添加了动态检测头DYHEAD,提高模型对不同空间尺度、不同任务目标的处理能力;采用CARAFE上采样模块,提高特征提取效率。结果显示,改进后的YOLOv5s-CDC的召回率和平均精度均值分别为81.6%、87.3%,比原模型分别提高了4.9、3.4百分点。与其他YOLO系列模型在多个场景下的检测对比,具有更高的准确率和较强的鲁棒性。结果表明,该方法可用于自然复杂环境下的柑橘病虫害的检测。

    Abstract:

    Accurately identifying pests and diseases in citrus can be used to timely reduce the economic losses.A common method for detecting pests and diseases in citrus based on the improved YOLOv5s model was proposed to solve the problems that the existing models of detection cannot accurately identify multiple types of pests and diseases of citrus in the natural environment.The model was improved by introducing the ConvNeXtV2 model and constructing a CXV2 module to replace the C3 module of YOLOv5s, enhancing the diversity of extracted feature.The dynamic detection head DYHEAD was added to improve the processing ability of the model for different spatial scales and task targets.The CARAFE upsampling module was used to improve the efficiency of extracting feature.The results showed that the improved YOLOv5s-CDC had a mean recall rate and average precision of 81.6% and 87.3%,4.9 percentage points and 3.4 percentage points higher than that of the original model,respectively.Compared with the detection with other YOLO serial models in multiple scenarios,it had higher accuracy and stronger robustness.It is indicated that this method can be used for detecting the diseases and pests of citrus in complex natural environments.

    表 4 模型消融实验结果Table 4 Model ablation experimental results
    表 7 检测头模块横向对比Table 7 Horizontal comparison of detection head module
    表 5 CARAFE模块不同采样核参数性能对比Table 5 Performance comparison of different sampling kernel parameters in module CARAFE
    表 1 柑橘病虫害数据集信息Table 1 Information of citrus pests and diseases data set
    表 2 实验平台参数Table 2 Experimental platform parameters
    表 8 不同模型检测性能对比Table 8 Comparison of different detection models
    表 6 上采样模块横向对比Table 6 Horizontal comparison of upsampling module
    表 3 基线模型测试Table 3 Baseline model testing
    图1 病害类型Fig.1 Disease types
    图2 YOLOv5s-CDC网络结构Fig.2 Diagram of the YOLOv5s-CDC network
    图3 ConvNeXtV2模块结构Fig.3 Structure diagram of ConvNeXtV2
    图4 动态检测头框架Fig.4 Framework of dynamic head
    图5 动态检测头注意力机制模块Fig.5 Attention mechanism module of dynamic head
    图7 模型整体损失比较Fig.7 Comparison of total loss
    图8 模型PmA比较Fig.8 Comparison of PmA
    图9 不同场景下不同模型检测效果对比Fig.9 Comparison of model detection effects in different scenarios
    表 9 不同模型中各类病虫害PA对比Table 9 Comparison of PA for diseases in different models
    参考文献
    相似文献
    引证文献
引用本文

郑宇达,陈仁凡,杨长才,邹腾跃.基于改进YOLOv5s模型的柑橘病虫害识别方法[J].华中农业大学学报,2024,43(2):134-143

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-24
  • 在线发布日期: 2024-04-02
文章二维码