玉米籽粒发育突变体emp35的表型分析与基因定位
CSTR:
作者:
作者单位:

1.长江大学生命科学学院,荆州434023;2.华中农业大学作物遗传改良全国重点实验室,武汉430070;3.湖北中医药大学检验学院,武汉430065

作者简介:

刘津,E-mail: 13317194570@163.com

通讯作者:

杜何为,E-mail: 200457@yangtzeu.edu.cn

中图分类号:

S513.3

基金项目:

国家自然科学基金项目(32072069);湖北省自然科学基金创新群体项目(2022CFA030);湖北洪山实验室重大项目(2022hszd029)


Phenotype identification and gene mapping of maize kernel development mutant emp35
Author:
Affiliation:

1.College of Life Science, Yangtze University, Jingzhou 434023, China;2.National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;3.College of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为解析玉米籽粒形成的遗传基础,探究Emp35基因在玉米籽粒发育中的作用,对籽粒缺陷突变体empty pericarp35emp35)进行表型鉴定、胚乳细胞显微观察、胚乳贮藏物质含量测定及图位克隆。结果显示:突变体籽粒发育缓慢,明显小于同期发育的正常籽粒,成熟籽粒干瘪呈空皮状;胚乳细胞显微观察发现emp35的胚和胚乳发育严重滞后,胚乳细胞中线粒体结构异常;淀粉和蛋白质积累减少;F2代分离果穗上正常籽粒与发育缺陷籽粒呈3∶1分离,表明籽粒缺陷表型由单个隐性核基因突变所致。采用集团分离分析法(bulked segregant analysis, BSA) 将Emp35定位于第8染色体 127.90~163.36 Mb区间,在该区间内开发了4个InDel标记,连锁作图将Emp35精细定位于139 571 117~146 176 858区间。

    Abstract:

    The phenotype identification, microscopic observation of endosperm cells, determining the content of storage substance in endosperm, and map-based cloning of a defective maize kernel mutant named as empty pericarp35 (emp35) were conducted to study its physiological function in the development of maize kernel and map the Emp35 gene. The results showed that the development of emp35 kernels was slow and significantly smaller than that of the wild-type kernels during the same period of development, resulted in the shrunken and empty pericarp kernels. The development of embryo and endosperm in the emp35 was severely delayed, and the mitochondrial structure in endosperm cells was abnormal. The accumulation of starch and protein in the emp35 was reduced. The seeds in the F2 population segregated in a ratio of 3 wild type to 1 empty pericarp, indicating that the defective kernel phenotype is controlled by a single recessive nuclear gene. The Emp35 gene was mapped at the interval between 127.90 Mb and 163.36 Mb on the chromosome 8 of maize with a bulked segregant analysis (BSA). Four InDel markers were developed within this interval, and Emp35 gene was finely mapped at the interval between 139 571 117-146 176 858.

    图1 野生型和突变体的籽粒表型Fig.1 Phenotypes of wild-type and mutant kernels
    图2 野生型和突变体籽粒发育进程的细胞学观察Fig.2 Cytological observation of the development processes of wild-type and mutant kernels
    图3 野生型和突变体籽粒胚乳细胞的扫描电镜及透射电镜观察Fig.3 Scanning electron microscopic and transmission electron microscopic observation of wild-type and mutant endosperms
    图4 emp35籽粒中的淀粉和蛋白质含量Fig.4 Starch and protein content in wily-type and mutant kernels
    图5 Δ(SNP index)值及SNP/InDel在各染色体上的分布Fig.5 Distribution of the Δ(SNP index) and SNP/InDel’s on maize chromosomes
    图6 128~146 Mb区间的分子标记遗传连锁图Fig.6 Molecular marker genetic linkage map in 128 to 146 Mb interval
    表 1 Emp35定位研究所用引物序列Table 1 Primers used in Emp35 gene mapping
    参考文献
    [1] 王汉宁,王晓明.从源库观点看玉米籽粒产量的形成[J].甘肃农业大学学报,1992,27(1):86-92.WANG H N,WANG X M.Viewing the formation of maize grain yield from the source-sink theory[J].Journal of Gansu Agricultural University,1992,27(1):86-92 (in Chinese with English abstract).
    [2] DAI D W,MA Z Y,SONG R T.Maize kernel development[J/OL].Molecular breeding,2021,41(1):2[2023-04-26]. https://doi.org/10.1007/s11032-020-01195-9.
    [3] MA Z R,DOONER H K.A mutation in the nuclear-encoded plastid ribosomal protein S9 leads to early embryo lethality in maize[J].The plant journal,2004,37(1):92-103.
    [4] LI C L,SHEN Y,MEELEY R,et al.Embryo defective 14 encodes a plastid-targeted cGTPase essential for embryogenesis in maize[J].The plant journal,2015,84(4):785-799.
    [5] SOSSO D,CANUT M,GENDROT G,et al.PPR8522 encodes a chloroplast-targeted pentatricopeptide repeat protein necessary for maize embryogenesis and vegetative development[J].Journal of experimental botany,2012,63(16):5843-5857.
    [6] SUZUKI M,SATO Y,WU S,et al.Conserved functions of the MATE transporter BIG EMBRYO1 in regulation of lateral organ size and initiation rate[J].The plant cell,2015,27(8):2288-2300.
    [7] SCHMIDT R J,KETUDAT M,AUKERMAN M J,et al.Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes[J].The plant cell,1992,4(6):689-700.
    [8] GIROUX M J,HANNAH L C.ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize[J].Molecular & general genetics,1994,243(4):400-408.
    [9] COLEMAN C E,CLORE A M,RANCH J P,et al.Expression of a mutant alpha-zein creates the floury2 phenotype in transgenic maize[J].PNAS,1997,94(13):7094-7097.
    [10] WANG G F,WANG F,WANG G,et al.Opaque1 encodes a myosin XI motor protein that is required for endoplasmic reticulum motility and protein body formation in maize endosperm[J].The plant cell,2012,24(8):3447-3462.
    [11] YAO D S,QI W W,LI X,et al.Maize opaque10 encodes a cereal-specific protein that is essential for the proper distribution of zeins in endosperm protein bodies[J/OL].PLoS genetics,2016,12(8):e1006270 [2023-04-26]. https://doi.org/10.1371/journal.pgen.1006270.
    [12] BOMMERT P,WERR W.Gene expression patterns in the maize caryopsis:clues to decisions in embryo and endosperm development[J].Gene,2001,271(2):131-142.
    [13] MILLER M E,CHOUREY P S.The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development[J].The plant cell,1992,4(3):297-305.
    [14] BECRAFT P W,STINARD P S,MCCARTY D R.CRINKLY4:a TNFR-like receptor kinase involved in maize epidermal differentiation[J].Science,1996,273(5280):1406-1409.
    [15] REN X M,PAN Z Y,ZHAO H L,et al.EMPTY PERICARP11 serves as a factor for splicing of mitochondrial nad1 intron and is required to ensure proper seed development in maize[J].Journal of experimental botany,2017,68(16):4571-4581.
    [16] CAI M J,LI S Z,SUN F,et al.Emp10 encodes a mitochondrial PPR protein that affects the cis-splicing of nad2 intron 1 and seed development in maize[J].The plant journal,2017,91(1):132-144.
    [17] CHEN X Z, YAO D S, SONG R T.Maize endosperm protein extraction and analysis[J/OL].Bio-protocol, 2013,3(14): e832[2023-04-26]. https://doi.bio-protocol.org/e832.
    [18] DOYLE J.DNA protocols for plants[M]//HEWITT G M,JOHNSTON A W B,YOUNG J P W.Molecular techniques in taxonomy.Berlin:Springer,1991:283-293.
    [19] MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J/OL]. EMBnet.journal, 2011,17(1): 10[2023-04-26].https://doi.org/10.14806/ej.17.1.200.
    [20] BOLGER A M,LOHSE M,USADEL B.Trimmomatic:a flexible trimmer for Illumina sequence data[J].Bioinformatics,2014,30(15):2114-2120.
    [21] LI H,DURBIN R.Fast and accurate short read alignment with Burrows-Wheeler transform[J].Bioinformatics,2009,25(14):1754-1760.
    [22] LI H,HANDSAKER B,WYSOKER A,et al.The sequence alignment/map format and SAMtools[J].Bioinformatics,2009,25(16):2078-2079.
    [23] MCKENNA A, HANNA M, BANKS E, et al. The genome analysis Toolkit: a MapReduce framework for analyzing next generation DNA sequencing data[J]. Genome research, 2010, 20(9): 1297-1303.
    [24] SMALL I, PEETERS N. The PPR motif : a TPR-related motif prevalent in plant organellar proteins[J]. Trends in biochemical sciences, 2000, 25(2):45-47.
    [25] SCHMITZ-LINNEWEBER C,SMALL I. Pentatricopeptide repeat proteins: a socket set for organelle gene expression[J]. Trends in plant science, 2008, 13(12): 663-670.
    [26] SUN F, ZHANG X Y, SHEN Y, et al. The pentatricopeptide repeat protein EMPTY PERICARP8 is required for the splicing of three mitochondrial introns and seed development in maize[J]. The plant journal, 2018, 95:919-932.
    [27] YANG Y Z, DING S, WANG H C, et al. The pentatricopeptide repeat protein EMP9 is required for mitochondrial ccmB and rps4 transcript editing, mitochondrial complex biogenesis and seed development in maize[J].New phytologist, 2017, 214(2):782-795.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘津,汤艳芳,杜何为,张祖新.玉米籽粒发育突变体emp35的表型分析与基因定位[J].华中农业大学学报,2024,43(2):85-92

复制
分享
文章指标
  • 点击次数:365
  • 下载次数: 1256
  • HTML阅读次数: 88
  • 引用次数: 0
历史
  • 收稿日期:2023-04-26
  • 在线发布日期: 2024-04-02
文章二维码