典型城市工业集聚区土壤重金属污染精准刻画及健康风险评估
CSTR:
作者:
作者单位:

1.邢台市生态环境局邢东新区分局,邢台 054001;2.中国科学院地理科学与资源研究所/陆地表层格局与模拟院重点实验室,北京 100101;3.中国科学院大学,北京 100049;4.石家庄市平山环境监控中心,石家庄 050400

作者简介:

卢合峰,E-mail:xthbtr@163.com

通讯作者:

阎秀兰,E-mail:yanxl@igsnrr.ac.cn

中图分类号:

X53;X820.4

基金项目:

国家自然科学基金项目(42207456;U21A2023)


Accurate characterization and health risk assessment of heavy metal pollution in soil of typical urban industrial agglomeration areas
Author:
Affiliation:

1.Xingdong New Area Branch, Xingtai Ecological and Environmental Bureau, Xingtai 054001,China;2.Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences/Key Laboratory of Land Surface Patterns and Simulation, Beijing 100101,China;3.University of Chinese Academy of Sciences, Beijing 100049, China;4.Shijiazhuang Pingshan Environment Monitoring Center,Shijiazhuang 050400,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为提高工业集聚区土壤污染刻画模型的精度,以河北省某在产工业聚集区土壤重金属作为研究对象,对比研究距离权重法(IDW)、普通克里金(OK)、支持向量机(SVM)和梯度提升决策树(GBDT)等不同插值方法在处理浓度非平稳、有偏数据的刻画精度问题。结果显示:该场地土壤中主要污染物为As,GBDT在刻画土壤As污染时表现出最高的精度(R2=0.911 5);GBDT可视化结果发现,As的浓度分布格局为“斑块聚集”,并且表现出明显向深层迁移的趋势;相关性分析结果表明,As浓度在场地土壤中的分异行为主要与土壤岩性和水文地质条件有关;蒙特卡罗模拟风险评估结果显示,场地土壤成人和儿童的总致癌风险指数均超过指导值,并且儿童遭受的非致癌性和致癌性风险高于成人。

    Abstract:

    The heavy metals in the soil of an industrial agglomeration areas in Hebei Province were used to conduct a comparative study on the problem of characterization accuracy in handling non-stationary concentration and biased data with different interpolation methods including distance weighting(IDW), ordinary Kriging(OK), support vector machine(SVM), and gradient enhanced decision tree(GBDT) to improve the accuracy of models for characterizing the soil pollution in industrial agglomeration areas. The results showed that the main pollutant in the soil of this site was arsenic, and GBDT exhibited the highest accuracy in characterizing arsenic pollution in soil (R2=0.911 5). The results of GBDT visualization showed that the concentration distribution pattern of arsenic was "patchy aggregation" and had a good vertical migration capacity. The results of correlation analysis showed that the differentiation behavior of Arsenic concentration in the soil of this site was mainly related to the soil lithology and hydrogeological conditions. The results of Monte Carlo-based simulation showed that the total cancer risk index of both adults and children in the soil of this site exceeded the guidance value, and children suffered from higher non carcinogenic and carcinogenic risks than adults.

    表 4 基于不同模型模拟的土壤污染物人体健康风险Table 4 Human health risks of soil contaminants simulated in different models
    图1 研究区采样点位(A)和土壤岩性(B)Fig.1 Locations of sample sites(A), soil layering profile(B) in the study area
    图2 土壤中污染物的污染指标Fig.2 The pollution indexes of contaminants in soil
    图3 重金属与土壤基本理化性质的Pearson相关性分析Fig.3 Correlation hot map between heavy metals and soil parameters
    图4 不同模型的散点图拟合Fig.4 Scatterplots of different models fitting
    图5 使用GBRT模型刻画不同深度土壤中As的空间分布Fig.5 Spatial distribution of As in soil at different depths using GBRT modeling
    图6 土壤总非致癌和总致癌的风险概率分布以及各参数敏感度结果Fig.6 Probability distribution for hazard index and total carcinogenic risk in soil and sensitivity results for various parameters
    表 2 场地土壤重金属含量描述性统计Table 2 Descriptive statistics of soil heavy metal
    表 3 不同模型的验证结果Table 3 Scatterplots of different models validating results
    表 1 输入参数的含义及蒙特卡罗概率风险评估的取值Table 1 Input parameters and values in health risk assessment with Monte Carlo simulator
    参考文献
    [1] SU Y,YU Y Q.Spatial agglomeration of new energy industries on the performance of regional pollution control through spatial econometric analysis[J/OL].Science of the total environment,2020,704:135261[2023-10-25].https://doi.org/10.1016/j.scitotenv.2019.135261.
    [2] PODGORSKI J,BERG M.Global threat of arsenic in groundwater[J].Science,2020,368(6493):845-850.
    [3] ZHU L,ZHANG X X,ZHANG J C,et al.Saltwater intrusion weakens Fe-(oxyhydr)oxide-mediated (im)mobilization of Ni and Zn in redox-fluctuating soil-groundwater system[J/OL].Water research,2022,221:118799[2023-10-25].https://doi.org/10.1016/j.watres.2022.118799.
    [4] HOU S Y,ZHAO X,LIU Y,et al.Spatial analysis connects excess water pollution discharge,industrial production,and consumption at the sectoral level[J/OL].NPJ clean water,2022,5:4[2023-10-25].https://doi.org/10.1038/s41545-022-00152-7.
    [5] RAN H Z,GUO Z H,YI L W,et al.Pollution characteristics and source identification of soil metal(loid)s at an abandoned arsenic-containing mine,China[J/OL].Journal of hazardous materials,2021,413:125382[2023-10-25].https://doi.org/10.1016/j.jhazmat.2021.125382.
    [6] ZENG J Q,LI C X,WANG J T,et al.Pollution simulation and remediation strategy of a zinc smelting site based on multi-source information[J/OL].Journal of hazardous materials,2022,433:128774[2023-10-25].https://doi.org/10.1016/j.jhazmat.2022.128774.
    [7] 范俊楠,贺小敏,杜维,等.基于标准化方法和统计分析法的土壤重金属环境基线值分析比较[J].华中农业大学学报,2021,40(1):160-167.FAN J L,HE X M,DU W,et al. Analyzing and comparing environmental baseline values of heavy metals in soil based on standardized method and statistical method[J]. Journal of Huazhong Agricultural University, 2021,40 (1): 160-167 (in Chinese with English abstract).
    [8] 陶欢,廖晓勇,曹红英,等.场地土壤污染物含量三维刻画的研究进展[J].地理学报,2022,77(3):559-573.TAO H,LIAO X Y,CAO H Y,et al.Research progress of three-dimensional delineation of soil pollutants at contaminated sites[J].Acta geographica sinica,2022,77(3):559-573 (in Chinese with English abstract).
    [9] LIU G,ZHOU X,LI Q,et al.Spatial distribution prediction of soil As in a large-scale arsenic slag contaminated site based on an integrated model and multi-source environmental data[J/OL].Environmental pollution,2020,267:115631[2023-10-25].https://doi.org/10.1016/j.envpol.2020.115631.
    [10] GUO Z H,ZHANG Y X,XU R,et al.Contamination vertical distribution and key factors identification of metal(loid)s in site soil from an abandoned Pb/Zn smelter using machine learning[J/OL].Science of the total environment,2023,856:159264[2023-10-25].https://doi.org/10.1016/j.scitotenv.2022.159264.
    [11] ZHAI Y Z,JIANG Y,CAO X Y,et al.Valuation of ecosystem damage induced by soil-groundwater pollution in an arid climate area:framework,method and case study[J/OL].Environmental research,2022,211:113013[2023-10-25].https://doi.org/10.1016/j.envres.2022.113013.
    [12] QIAO P W,LI P Z,CHENG Y J,et al.Comparison of common spatial interpolation methods for analyzing pollutant spatial distributions at contaminated sites[J].Environmental geochemistry and health,2019,41(6):2709-2730.
    [13] ZHAO B,ZHU W X,HAO S F,et al.Prediction heavy metals accumulation risk in rice using machine learning and mapping pollution risk[J/OL].Journal of hazardous materials,2023,448:130879[2023-10-25].https://doi.org/10.1016/j.jhazmat.2023.130879.
    [14] PENG Y X,CHEN J,XIE E Z,et al.Three-dimensional spatial prediction of Zn in the soil of a former tire manufacturing plant using machine learning and readily attainable multisource auxiliary data[J/OL].Environmental pollution,2023,318:120931[2023-10-25].https://doi.org/10.1016/j.envpol.2023.120931.
    [15] ZHOU Y,JIANG D D,DING D,et al.Ecological-health risks assessment and source apportionment of heavy metals in agricultural soils around a super-sized lead-zinc smelter with a long production history,in China[J/OL].Environmental pollution,2022,307:119487[2023-10-25].https://doi.org/10.1016/j.envpol.2022.119487.
    [16] SUN Y,LIANG X J,XIAO C L.Assessing the influence of land use on groundwater pollution based on coefficient of variation weight method:a case study of Shuangliao City[J].Environmental science and pollution research international,2019,26(34):34964-34976.
    [17] ZHANG H,YIN A J,YANG X H,et al.Use of machine-learning and receptor models for prediction and source apportionment of heavy metals in coastal reclaimed soils[J/OL].Ecological indicators,2021,122:107233[2023-10-25].https://doi.org/10.1016/j.ecolind.2020.107233.
    [18] HUANG B,YUAN Z J,LI D Q,et al.Effects of soil particle size on the adsorption,distribution,and migration behaviors of heavy metal(loid)s in soil:a review[J].Environmental science processes & impacts,2020,22(8):1596-1615.
    [19] CHEN R H,TENG Y G,CHEN H Y,et al.A coupled optimization of groundwater remediation alternatives screening under health risk assessment:an application to a petroleum-contaminated site in a typical cold industrial region in Northeastern China[J/OL].Journal of hazardous materials,2021,407:124796[2023-10-25].https://doi.org/10.1016/j.jhazmat.2021.124796.
    [20] GUO T,ZHOU Y J,CHEN S C,et al.The influence of periphyton on the migration and transformation of arsenic in the paddy soil:rules and mechanisms[J/OL].Environmental pollution,2020,263:114624[2023-10-25].https://doi.org/10.1016/j.envpol.2020.114624.
    [21] ZONG Y T,XIAO Q,LU S G.Distribution,bioavailability,and leachability of heavy metals in soil particle size fractions of urban soils (northeastern China)[J].Environmental science and pollution research international,2016,23(14):14600-14607.
    [22] O'CONNOR D,PAN S Z,SHEN Z T,et al.Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles[J].Environmental pollution,2019,249:527-534.
    [23] WANG J X,ZHANG W J.Evaluating the adsorption of Shanghai silty clay to Cd(Ⅱ),Pb(Ⅱ),As(Ⅴ),and Cr(Ⅵ):kinetic,equilibrium,and thermodynamic studies[J/OL].Environmental monitoring and assessment,2021,193(3):131[2023-10-25].https://doi.org/10.1007/s10661-021-08904-7.
    [24] XUE Q,RAN Y,TAN Y Z,et al.Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate:implications for arsenic mobility and fate in natural environments[J].Chemosphere,2019,224:103-110.
    [25] YANG X,LIU S Y,LIANG T,et al.Ball-milled magnetite for efficient arsenic decontamination:insights into oxidation-adsorption mechanism[J/OL].Journal of hazardous materials,2022,427:128117[2023-10-25].https://doi.org/10.1016/j.jhazmat.2022. 128117.
    [26] GAYE B,ZHANG D Z,WULAMU A.Improvement of support vector machine algorithm in big data background[J/OL].Mathematical problems in engineering,2021,2021:1-9[2023-10-25].https://doi.org/10.1155/2021/5594899.
    [27] ZHENG J T,WANG P,SHI H Y,et al.Quantitative source apportionment and driver identification of soil heavy metals using advanced machine learning techniques[J/OL].Science of the total environment,2023,873:162371[2023-10-25].https://doi.org/10.1016/j.scitotenv.2023. 162371.
    [28] MUKHERJEE I,SINGH U K,SINGH R P,et al.Characterization of heavy metal pollution in an anthropogenically and geologically influenced semi-arid region of East India and assessment of ecological and human health risks[J/OL].Science of the total environment,2020,705:135801[2023-10-25].https://doi.org/10.1016/j.scitotenv.2020. 135801.
    [29] CHEN H X,XU F N,CHEN Z Z,et al.Arsenic and cadmium removal from water by a calcium-modified and starch-stabilized ferromanganese binary oxide[J].Journal of environmental sciences,2020,96:186-193.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

卢合峰,阎秀兰,刘思言,苏艳超,杨潇.典型城市工业集聚区土壤重金属污染精准刻画及健康风险评估[J].华中农业大学学报,2023,42(6):185-195

复制
分享
文章指标
  • 点击次数:860
  • 下载次数: 1216
  • HTML阅读次数: 93
  • 引用次数: 0
历史
  • 收稿日期:2023-10-25
  • 在线发布日期: 2023-12-12
文章二维码