植物硼营养高效的分子调控途径
CSTR:
作者:
作者单位:

华中农业大学资源与环境学院/微量元素研究中心,武汉 430070

作者简介:

姜哲轩,E-mail: jiangzhexuan@webmail.hzau.edu.cn

通讯作者:

徐芳森,E-mail: fangsenxu@mail.hzau.edu.cn

中图分类号:

S143.7+1

基金项目:

国家自然科学基金项目(31972483);国家重点研发计划项目(2022YFD1900705)


Molecular regulatory pathways for boron efficiency in plants
Author:
Affiliation:

College of Resources and Environment/Microelement Research Center, Huazhong Agricultural University,Wuhan 430070,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    植物体内的硼主要存在于细胞壁中,对稳定细胞壁结构和促进生长发育起重要作用。双子叶植物需硼多,对缺硼敏感,但不同物种及不同品种对缺硼的抗性存在极显著的基因型差异。华中农业大学王运华教授在1990年代带领团队开展甘蓝型油菜硼高效品种的筛选,从此开启了我国植物硼营养高效利用的遗传与分子机制研究。近10多年的研究结果表明,植物响应缺硼胁迫提高硼效率存在2条不同的分子调控途径。(1)依赖硼转运基因的途径。在这条途径中,NIPsBORs家族基因受缺硼诱导表达增强根系对土壤硼的吸收和体内硼的转运分配,实现硼的高效吸收和转运,进而提高植物对缺硼胁迫的抗性或适应性;(2)独立于硼转运基因的途径。该途径中,植物通过影响激素信号和细胞壁合成代谢相关基因的表达,调节根系生长发育和细胞壁组分结构等方式,提高体内硼的利用效率,进而增强植物对缺硼的抗性。在硼被确定为植物必需营养元素的百年纪念之际,我们对这一工作进行综述归纳,以飨读者。同时,在王运华先生逝世1周年之际,深切缅怀先生在开启华中农业大学作物硼营养遗传研究领域中所做的奠基性贡献。

    Abstract:

    Boron in plants is mainly present in cell walls and plays an important role in stabilizing the structure of cell wall and promoting the growth and development of plants.Eudicots require more boron and are sensitive to boron deficiency,but there are significant genotypic differences in the resistance of different species and varieties to boron deficiency.Professor Yunhua Wang from Huazhong Agricultural University led a team to screen boron efficient varieties of Brassica napus in the early 1990s,thus initiating studies on the genetic and molecular mechanisms of boron efficiency in plants in China.The results of studying over a decade showed that there were two different molecular regulatory pathways for plants to improve boron efficiency under boron deficiency.In the B transporter-dependent pathway,the expression of NIPs and BORs family genes is induced by boron deficiency,which enhances the absorption of B in root and the distribution of B in shoot,achieving efficient absorption and transport of boron,thereby improving the resistance and adaptability of plants under B deficiency.In the B transporter-independent pathway,plants improve the utilization efficiency of boron in their shoot by influencing hormone signals and the expression of genes related to cell wall synthesis and metabolism,regulating the growth and development of root,and the structure of cell wall component,thereby enhancing plant resistance to boron deficiency.On the 100th anniversary of boron being identified as an essential nutrient for plants,the author reviewed and summarized these researches to enrich readers.At the same time,on the first anniversary of Mr.Wang Yunhua’s pass away,it is to commemorate his groundbreaking contribution in initiating the field of genetic studies on crop boron nutrition at Huazhong Agricultural University.

    图1 植物响应缺硼胁迫的分子调控途径Fig.1 Molecular regulation pathways in response of plants to boron deficiency stress
    参考文献
    [1] WARRINGTON K.The effect of boric acid and borax on the broad bean and certain other plants[J].Annals of botany,1923,37(4):629-672.
    [2] CAKMAK I,KURZ H,MARSCHNER H.Short-term effects of boron,germanium and high light intensity on membrane permeability in boron deficient leaves of sunflower[J].Physiologia plantarum,1995,95(1):11-18.
    [3] HU H,BROWN P H.Localization of boron in cell walls of squash and tobacco and its association with pectin (evidence for a structural role of boron in the cell wall)[J].Plant physiology,1994,105(2):681-689.
    [4] O'NEILL M A,EBERHARD S,ALBERSHEIM P,et al.Requirement of borate cross-linking of cell wall rhamnogalacturonan Ⅱ for Arabidopsis growth[J].Science,2001,294(5543):846-849.
    [5] FLEISCHER A,O'NEILL M A,EHWALD R.The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II[J].Plant physiology,1999,121(3):829-838.
    [6] RYDEN P,SUGIMOTO-SHIRASU K,SMITH A C,et al.Tensile properties of Arabidopsis cell walls depend on both a xyloglucan cross-linked microfibrillar network and rhamnogalacturonan Ⅱ-borate complexes[J].Plant physiology,2003,132(2):1033-1040.
    [7] 王运华,徐芳森,鲁剑巍.中国农业中的硼[M].北京:中国农业出版社,2015.WANG Y H,XU F S,LU J W.Boron in agriculture in China[M].Beijing:China Agriculture Press,2015(in Chinese).
    [8] CAMACHO-CRISTóBAL J J,REXACH J,GONZáLEZ-FONTES A.Boron in plants:deficiency and toxicity[J].Journal of integrative plant biology,2008,50(10):1247-1255.
    [9] 王运华,兰莲芳. 甘蓝型油菜品种对缺硼敏感性差异的研究 (I)[J]. 华中农业大学学报,1995,21(S1):71-78. WANG Y H,LAN L F. A study on the boron efficiency of rape (Brassica napus L.) (I)[J].Journal of Huazhong Agricultural University, 1995,21(S1):71-78 (in Chinese with English abstract).
    [10] 褚海燕,喻敏,王运华,等.甘蓝型油菜品种硼利用效率的差异研究[J].华中农业大学学报,1999,18(2):134-138.CHU H Y,YU M,WANG Y H,et al.Study on differences of boron use efficiency of rape(Brassica napus L.) cultivars[J].Journal of Huazhong Agricultural University,1999,18(2):134-138(in Chinese with English abstract).
    [11] XU F S,WANG Y H,YING W H,et al.Inheritance of boron nutrition efficiency in Brassica napus[J].Journal of plant nutrition,2002,25(4):901-912.
    [12] XU F S,WANG Y H,MENG J.Mapping boron efficiency gene(s) in Brassica napus using RFLP and AFLP markers[J].Plant breeding,2001,120(4):319-324.
    [13] 刘玲,段贤杰,徐芳森,等.植物硼高效吸收利用调控生长的研究进展[J].华中农业大学学报,2022,41(2):1-8.LIU L,DUAN X J,XU F S,et al.Progress on growth regulation of high boron efficiency absorption,utilization in plants[J].Journal of Huazhong Agricultural University,2022,41(2):1-8 (in Chinese with English abstract).
    [14] TAKANO J,NOGUCHI K,YASUMORI M,et al.Arabidopsis boron transporter for xylem loading[J].Nature,2002,420(6913):337-340.
    [15] TAKANO J,MIWA K,YUAN L X,et al.Endocytosis and degradation of BOR1,a boron transporter of Arabidopsis thaliana,regulated by boron availability[J].PNAS,2005,102(34):12276-12281.
    [16] AIBARA I,HIRAI T,KASAI K,et al.Boron-dependent translational suppression of the borate exporter BOR1 contributes to the avoidance of boron toxicity[J].Plant physiology,2018,177:759-774.
    [17] AKIRA Y,TAKUYA H,PASCAL B M,et al.Transport-coupled ubiquitination of the borate transporter bor1 for its boron-dependent degradation[J].The plant cell,2021,23(2):420-438.
    [18] MIWA K,WAKUTA S,TAKADA S,et al.Roles of BOR2,a boron exporter,in cross linking of rhamnogalacturonan II and root elongation under boron limitation in Arabidopsis[J].Plant physiology,2013,163:1699-1709.
    [19] MIWA K,TAKANO J,OMORI H,et al.Plants tolerant of high boron levels[J].Science,2007,318:1417.
    [20] TAKANO J,WADA M,LUDEWIG U,et al.The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation[J].The plant cell,2006,18:1498-1509.
    [21] TAKANA M,TAKANA J,CHIBA Y,et al.Boron-dependent degradation of NIP5;1 mRNA for acclimation to excess boron conditions in Arabidopsis[J].The plant cell,2011,23(9):3547-3559.
    [22] TAKANA M,SOTTA N,YAMAZUMI Y,et al.The minimum open reading frame,AUG-Stop,induces boron-dependent ribosome stalling and mRNA degradation[J].The plant cell,2016,28:2830-2849.
    [23] TANAKA M,WALLACE I S,TAKANO J,et al.NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis[J].The plant cell,2008,20:2860-2875.
    [24] LI T,CHOI W,WALLACE I S,et al.Arabidopsis thaliana NIP7;1:an anther-specific boric acid transporter of the aquaporin superfamily regulated by an unusual tyrosine in helix 2 of the transport pore[J].Biochemistry,2011,50(31):6633-6641.
    [25] ROUTRAY P,LI T,YAMASAKI A,et al.Nodulin intrinsic protein 7;1 is a tapetal boric acid channel involved in pollen cell wall formation[J].Plant physiology,2018,178:1269-1283.
    [26] ZHANG D D,HUA Y P,WANG X H,et al.High-density genetic map identifies a novel major QTL for boron efficiency in oilseed rape (Brassica napus L.)[J/OL].PLoS One,2014,9(11):e112089[2023-07-19].https://doi.org/10.1371/journal.pone.0112089.
    [27] HUA Y P,ZHANG D D,ZHOU T,et al.Transcriptomics-assisted quantitative trait locus fine mapping for the rapid identification of a nodulin 26-like intrinsic protein gene regulating boron efficiency in allotetraploid rapeseed[J].Plant,cell and environment,2016,39(7):1601-1618.
    [28] HE M L,WANG S L,ZHANG C,et al.Genetic variation of BnaA3.NIP5;1 expressing in the lateral root cap contributes to boron deficiency tolerance in Brassica napus[J/OL].PLoS genetics,2021,17(7):e1009661[2023-07-19].https://doi.org/10.1371/journal.pgen.1009661.
    [29] HE M L,ZHANG C,CHU L Y,et al.Specific and multiple-target gene silencing reveals function diversity of BnaA2.NIP5;1 and BnaA3.NIP5;1 in Brassica napus[J].Plant,cell and environment,2021,44(9):3184-3193.
    [30] SUN J H,SHI L,ZHANG C Y,et al.Cloning and characterization of boron transporters in Brassica napus[J].Molecular biology reports,2012,39(2):1963-1973.
    [31] CHEN H F,ZHANG Q,HE M L,et al.Molecular characterization of the genome-wide BOR transporter gene family and genetic analysis of BnaC04.BOR1;1c in Brassica napus[J/OL].BMC plant biology,2018,18(1):193[2023-07-19].https://doi.org/10.1186/s12870-018-1407-1.
    [32] ZHANG Q,CHEN H,HE M,et al.The boron transporter BnaC4.BOR1;1c is critical for inflorescence development and fertility under boron limitation in Brassica napus[J].Plant,cell and environment,2017,40(9):1819-1833.
    [33] WANG S L,LIU L,ZOU D,et al.Vascular tissue-specific expression of BnaC4.BOR1;1c,an efflux boron transporter gene,is regulated in response to boron availability for efficient boron acquisition in Brassica napus[J].Plant and soil,2021,465:171-184.
    [34] LATCHMAN D S.Transcription factors:an overview[J].International journal of biochemistry and cell biology,1997,29:1305-1312.
    [35] WANG H,XU Q,KONG Y H,et al.Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation[J].Plant physiology,2014,164:2020-2029.
    [36] YAN J Y,LI C X,SUN L,et al.A WRKY transcription factor regulates Fe translocation under Fe deficiency[J].Plant physiology,2016,171:2017-2027.
    [37] KASAJIMA I,IDE Y,HIRAI M Y,et al.WRKY6 is involved in the response to boron deficiency in Arabidopsis thaliana[J].Physiologia plantarum,2010,139:80-92.
    [38] RUSHTON P J,SOMSSICH I E,RINGLER P,et al.WRKY transcription factors[J].Trends in plant science,2010,15:247-258.
    [39] FENG Y N,CUI R,WANG S L,et al.Transcription factor BnaA9.WRKY47 contributes to the adaptation of Brassica napus to low boron stress by upregulating the boric acid channel gene BnaA3.NIP5;1[J].Plant biotechnology journal,2020,18(5):1241-1254.
    [40] ZHOU T,HUA Y P,HUANG Y P,et al.Physiological and transcriptional analyses reveal differential phytohormone responses to boron deficiency in Brassica napus genotypes[J/OL].Frontiers in plant science,2016,7:221[2023-07-19].https://doi.org/10.3389/fpls.2016.00221.
    [41] LUIS B,ISIDRO A,ILDEFONSO B,et al.What can boron deficiency symptoms tell us about its function and regulation[J/OL].Plants,2023,12:777[2023-07-19].https://doi.org/10.3390/plants12040777.
    [42] MUSSIGET C,SHIN GH,ALTMANN T.Brassinosteroids promote root growth in Arabidopsis[J].Plant physiology,2003,133:1261-1271.
    [43] ZHANG C,HE M L,WANG S L,et al.Boron deficiency-induced root growth inhibition is mediated by brassinosteroid signalling regulation in Arabidopsis[J].The plant journal,2021,107:564-578.
    [44] GOOSSENS J,FERNANDEZ-CALVO P,SCHWEIZER F,et al.Jasmonates:signal transduction components and their roles in environmental stress responses[J].Plant molecular biology,2016,91:673-689.
    [45] HUANG Y P,WANG S L,WANG C,et al.Induction of jasmonic acid biosynthetic genes inhibits Arabidopsis growth in response to low boron[J].Journal of integrative plant biology,2020,63(5):937-948.
    [46] HUANG Y P,WANG S L,SHI L,et al.JASMONATE RESISTANT 1 negatively regulates root growth under boron deficiency in Arabidopsis[J].Journal of experimental botany,2021,72(8):3108-3121.
    [47] PENG L S,ZENG C Y,SHI L,et al.Transcriptional profiling reveals adaptive responses to boron deficiency stress in Arabidopsis[J].Zeitschrift fur naturforschung section C:a journal of biosciences,2012,67:510-524.
    [48] ZHOU T,HUA Y P,ZHANG B C,et al.Low-boron tolerance strategies involving pectin-mediated cell wall mechanical properties in Brassica napus[J].Plant and cell physiology,2017,58(11):1991-2005.
    [49] JULIEN S,SOE H,BREEANNA U,et al.Suppression of Arabidopsis GGLT1 affects growth by reducing the L-galactose content and borate cross-linking of rhamnogalacturonan-Ⅱ[J].The plant journal,2018,96:1036-1050.
    [50] HIROGUCHOI A,SAKAMOTO S,MITSUDA N,et al.Golgi-localized membrane protein AtTMN1/EMP12 functions in the deposition of rhamnogalacturonan Ⅱ and Ⅰ for cell growth in Arabidopsis[J].Journal of experimental botany,2021,72(10):3611-3629.
    [51] 楚刘阳.基于甘蓝型油菜花蕾缺硼转录谱的PMEI和XTH基因家族鉴定和分析[D].武汉:华中农业大学,2021.CHU L Y.Bioinformatic analysis of PMEI and XTH genes based on the transcriptome of Brassica napus flower and buds in response to boron deficiency[D].Wuhan:Huazhong Agricultural University,2021 (in Chinese with English abstract).
    [52] ZHANG C,HE M L,JIANG Z X,et al.The xyloglucan endotransglucosylase/hydrolase gene XTH22/TCH4 regulates plant growth by disrupting the cell wall homeostasis in Arabidopsis under boron deficiency[J/OL].International journal of molecular sciences,2021,23(3):1250[2023-07-19].https://doi.org/10.3390/ijms23031250.
    [53] TOMA P,HAJNY J,GRUNEWALD W,et al.WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity[J/OL].PLoS genetics,2021,14,e1007177[2023-07-19].https://doi.org/10.1371/journal.pgen.1007177.
    [54] GOMEZ-SOTO D,GALVAN S,ROSALES E,et al.Insights into the role of phytohormones regulating pAtNIP5;1 activity and boron transport in Arabidopsis thaliana[J/OL].Plant science:an international journal of experimental plant biology,2019,287:110198[2023-07-19].https://doi.org/10.1016/j.plantsci.2019.110198.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姜哲轩,徐芳森.植物硼营养高效的分子调控途径[J].华中农业大学学报,2023,42(6):43-49

复制
分享
文章指标
  • 点击次数:753
  • 下载次数: 2451
  • HTML阅读次数: 264
  • 引用次数: 0
历史
  • 收稿日期:2023-07-19
  • 在线发布日期: 2023-12-12
文章二维码