秸秆还田对棉花全生育期土壤水盐分布及产量的影响
CSTR:
作者单位:

石河子大学农学院,石河子 832003

作者简介:

张曼玉,E-mail:2574002693@qq.com

通讯作者:

杨海昌,E-mail:yhc2012@126.com

中图分类号:

S562;S505

基金项目:

国家自然科学基金项目(42167036);兵团科技计划项目(2022ZD055);新疆维吾尔自治区重点研发计划项目(2022B02020-1)


Effects of returning straw to field on distribution of water and salt in soil and yield throughout whole growth period of cotton
Author:
Affiliation:

College of Agronomy, Shihezi University, Shihezi 832003, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究秸秆还田对新疆盐渍化土壤降盐保水的作用,通过田间小区试验,设置6种处理:不还田(CK)、棉花秸秆还田(P1)、玉米秸秆还田(P2)、油菜秸秆还田(P3)、棉花秸秆还田+玉米秸秆还田(P12)、棉花秸秆+油菜秸秆还田(P13),分别测定各处理对棉花全生育期0~60 cm土层含水量、电导率、脱盐率、盐基离子含量以及棉花水分利用效率、产量的影响。结果显示:P12、P13处理较其他处理可增强土壤的蓄水能力,随着土壤深度的增加,含水量差异逐渐减小。相比CK处理,P12、P13处理土壤含水量分别提高了3.78%~15.03%、5.06%~18.23%。在棉花全生育期,P12、P13处理可提高0~20 cm土层的脱盐率,电导率较CK处理分别降低3.54%~39.27%、17.83%~40.01%。土壤盐基离子含量呈现出Na+>Ca2+>K+>Mg2+的规律,盐基离子中的Na+、K+、Mg2+含量具有表聚性。相关性分析显示,调控棉田土壤水盐环境(含水量、电导率、脱盐率)可以增加作物水分利用效率,提高产量。结果表明,P12、P13处理较其他处理更能显著增强棉花生育期内农田土壤持水能力并改善盐分分布状况,适合新疆地区盐渍土改良。

    Abstract:

    Field plot experiments were conducted with six treatments including no returning to the? field (CK), returning cotton straw to field (P1), returning maize straw to field (P2), returning rapeseed straw to field (P3), returning cotton straw+maize straw to field (P12); returning cotton straw + rapeseed straw to field (P13) to study the effects of returning straw to field on reducing salt and retaining water in saline-alkali soil of Xinjiang. The effect of each treatment on the content of water, electrical conductivity, desalination rate, base ions, water use efficiency, and yield of the 0-60 cm soil layer during the whole growth period of cotton was measured. The results showed that treatment P12 and P13 enhanced the water storage capacity in soil compared to other treatments. The difference of the content of water decreased gradually with the increase of soil depth. Compared with CK treatment, the content of water in soil of treatment P12 and P13 increased by 3.78%-15.03% and 5.06%-18.23%, respectively. During the whole growth period of cotton,treatment P12 and P13 increased the desalting rate of 0-20 cm soil layer. Compared with CK treatment,the conductivity of treatment P12 and P13 decreased by 3.54%-39.27% and 17.83%-40.01%, respectively. The content of base ions in soil exhibited a pattern of Na+>Ca2+>K+>Mg2+. The content of Na+, K+, Mg2+ in the base ions had the property of surface aggregation. The results of correlation analysis showed that the regulation of soil water and salt environment including the content of water, electrical conductivity, desalination rate in cotton fields increased the water use efficiency and the yield of crop. It is indicated that treatment P12 and P13 can significantly enhance water holding capacity in soil and improve salt distribution in soil during the whole growth period of cotton compared to other treatments. It will provide reference for the improvement of saline-alkali soil in Xinjiang region.

    表 3 水盐相关因子和产量的相关性分析Table 3 Correlation analysis between water-related factors and yield
    表 1 研究区0~60 cm土层土壤理化性质Table 1 Soil physical and chemical properties of 0-60 cm soil layer in the study area
    图1 秸秆还田下棉花不同生育期土壤剖面含水量的变化Fig.1 Soil profile water content changes of cotton at different growth stages under straw returning
    图2 秸秆还田下棉花不同生育期土壤剖面电导率的变化Fig.2 Changes of EC in 0-60 cm soil layer of cotton at different growth stages under straw returning
    图3 棉花不同生育期土壤交换性钾离子的剖面分布Fig.3 Profile distribution of exchangeable K+ in soil of cotton at different growth stages
    图4 棉花不同生育期土壤交换性钠离子的剖面分布Fig.4 Profile distribution of exchangeable Na+ in soil of cotton at different growth stages
    图5 棉花不同生育期土壤交换性钙离子的剖面分布Fig.5 Profile distribution of exchangeable Ca2+ in soil of cotton at different growth stages
    图6 棉花不同生育期土壤交换性镁离子的剖面分布Fig.6 Profile distribution of exchangeable Mg2+ in soil of cotton at different growth stages
    图7 各处理下水分利用效率和产量的变化Fig.7 Changes of water use efficiency and yield under each treatment
    表 2 不同土层深度在收获期的土壤盐分与脱盐率Table 2 Soil salinity and desalination rate of different soil layers at harvest time
    参考文献
    [1] 杨志新,郑旭,陈来宝,等.干旱区盐碱地食叶草根系形态分布适应策略研究[J].草业学报,2022,31(7):15-27.YANG Z X,ZHENG X,CHEN L B,et al.Study on adaptation strategy of root morphology distribution of leaf-eating grass in arid saline-alkali land[J].Journal of pratacultural science,2002,31(7):15-27 (in Chinese with English abstract).
    [2] 陈昱,才硕,姚文武,等.作物秸秆还田资源化利用现状及生态效应研究进展[J].北方园艺,2023(2):121-127.CHEN Y,CAI S,YAO W W,et al.Current situation and ecological effect of crop straw returning[J].Northern horticulture, 2023(2):121-127(in Chinese with English abstract).
    [3] 凌一波,薛颖昊,王家平,等.近20年来新疆农作物秸秆资源量变化、现状分析及综合利用探讨[J].中国农业资源与区划,2023,44(1):130-139.LING Y B,XUE Y H,WANG J P,et al.Discussion on the change, current situation and comprehensive utilization of crop straw resources in Xinjiang in recent 20 years [J].Chinese journal of agricultural resources and regional planning, 2023,44(1):130-139 (in Chinese with English abstract).
    [4] 杨东,李新举,孔欣欣.不同秸秆还田方式对滨海盐渍土水盐运动的影响[J].水土保持研究,2017,24(6):74-78.YANG D,LI X J,KONG X X.Effects of different straw returning modes on the water and salt movement in the coastal saline soil[J].Research of soil and water conservation,2017,24(6):74-78 (in Chinese with English abstract).
    [5] 赵惠丽,董金琎,师江澜,等.秸秆还田模式对小麦-玉米轮作体系土壤有机碳固存的影响[J].土壤学报,2021,58(1):213-224.ZHAO H L,DONG J J,SHI J L,et al.Effect of straw returning mode on soil organic carbon sequestration[J].Acta pedologica sinica,2021,58(1):213-224 (in Chinese with English abstract).
    [6] 朱文玲,李秀双,田霄鸿,等.小麦与秋豆秸秆配施对土壤有机碳固持的影响[J].农业环境科学学报,2018,37(9):1952-1960.ZHU W L,LI X S,TIAN X H,et al.Effects of the combined amendment of wheat and huai bean straws on soil organic carbon sequestration[J].Journal of agro-environment science,2018,37(9):1952-1960 (in Chinese with English abstract).
    [7] 饶继翔,陈昊,吴兴国,等.不同秸秆还田方式对土壤线虫群落特征的影响[J].农业环境科学学报,2020,39(10):2473-2480.RAO J X,CHEN H,WU X G,et al.Effects of different straw returning methods on soil nematode community characteristics[J].Journal of agro-environment science,2020,39(10):2473-2480 (in Chinese with English abstract).
    [8] 杨小虎,罗艳琴,杨海昌,等.玛纳斯河流域绿洲农田土壤盐分反演及空间分布特征[J].干旱区资源与环境,2021,35(2):156-161.YANG X H,LUO Y Q,YANG H C,et al.Soil salinity retrieval and spatial distribution of oasis farmland in Manasi River Basin[J].Journal of arid land resources and environment,2021,35(2):156-161 (in Chinese with English abstract).
    [9] 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.BAO S D.Soil and agricultural chemistry analysis[M].3rd ed.Beijing:China Agriculture Press,2000(in Chinese).
    [10] WANG F,XIAO J F,MING B,et al.Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates[J/OL].Agricultural water management,2021,247:106726[2022-11-08].https://doi.org/10.1016/j.agwat.2020.106726.
    [11] 张秀,朱文美,董述鑫,等.灌水量与密度互作对冬小麦籽粒产量和水分利用效率的影响[J].应用生态学报,2021,32(1):163-174.ZHANG X,ZHU W M,DONG S X,et al.Interactive effects of irrigation regime and planting density on grain yield and water use efficiency in winter wheat[J].Chinese journal of applied ecology,2021,32(1):163-174(in Chinese with English abstract).
    [12] LI Y,CHEN H,FENG H,et al.Influence of straw incorporation on soil water utilization and summer maize productivity:a five-year field study on the Loess Plateau of China[J/OL].Agricultural water management,2020,233:106106[2022-11-08].https://doi.org/10.1016/j.agwat.2020.106106.
    [13] ZHU W,YANG J S,YAO R J,et al.Buried layers change soil water flow and solute transport from the Yellow River Delta,China[J].Journal of soils and sediments,2021,21(4):1598-1608.
    [14] LIU N,LI Y Y,CONG P,et al.Depth of straw incorporation significantly alters crop yield,soil organic carbon and total nitrogen in the North China Plain[J/OL].Soil and tillage research,2021,205:104772[2022-11-08].https://doi.org/10.1016/j.still.2020.104772.
    [15] BERGSTAD M,OR D,WITHERS P J,et al.Retracted:evaporation dynamics and NaCl precipitation on capillarity-coupled heterogeneous porous surfaces[J].Water resources research,2018,54(6):3876-3885.
    [16] 吕丽霞,廖超英,张立新,等.渭北果园白三叶与黑麦草不同配比的腐解及养分释放规律[J].西北农业学报,2013,22(5):162-169.Lü L X,LIAO C Y,ZHANG L X,et al.Release of nutrients during the decomposition of white clover and ryegrass combination with different ratios of them as the green manure in apple orchard in Weibei Highland[J].Acta agriculturae boreali-occidentalis sinica,2013,22(5):162-169 (in Chinese with English abstract).
    [17] 魏欢欢,王仕稳,杨文稼,等.免耕及深松耕对黄土高原地区春玉米和冬小麦产量及水分利用效率影响的整合分析[J].中国农业科学,2017,50(3):461-477.WEI H H,WANG S W,YANG W J,et al.Meta analysis on impact of no-tillage and subsoiling tillage on spring maize and winter wheat yield and water use efficiency on the Loess Plateau[J].Scientia agricultura sinica,2017,50(3):461-477(in Chinese with English abstract).
    [18] CHEN W L,JIN M G,FERRé T P A,et al.Spatial distribution of soil moisture,soil salinity,and root density beneath a cotton field under mulched drip irrigation with brackish and fresh water[J].Field crops research,2018,215:207-221.
    [19] 胡敏,苗庆丰,史海滨,等.不同地膜覆盖对春玉米生长发育及水分利用效率的影响[J].干旱区资源与环境,2017,31(2):173-177.HU M,MIAO Q F,SHI H B,et al.Effects of different film mulching on growth traits and water use efficiency for spring maize[J].Journal of arid land resources and environment,2017,31(2):173-177 (in Chinese with English abstract).
    [20] IYANG C J,LUO Y,SUN L,et al.Effect of deficit irrigation on the growth,water use characteristics and yield of cotton in arid northwest China[J].Pedosphere,2015,25(6):910-924.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张曼玉,杨海昌,张凤华,于善超,孙静,曹政.秸秆还田对棉花全生育期土壤水盐分布及产量的影响[J].华中农业大学学报,2023,42(5):113-121

复制
分享
文章指标
  • 点击次数:702
  • 下载次数: 788
  • HTML阅读次数: 65
  • 引用次数: 0
历史
  • 收稿日期:2022-11-08
  • 在线发布日期: 2023-10-16
文章二维码