• 首页|编委会|期刊简介|期刊荣誉|投稿指南|联系我们|过刊浏览|在线留言
段丽君,张海涛,郭龙,杜佩颖,陈可,琚清兰.典型柑橘种植区土壤有机质空间分布与含量预测[J].华中农业大学学报,2019,38(1):73-81
典型柑橘种植区土壤有机质空间分布与含量预测
Spatial distribution and content prediction of soil organic matter in typical citrus growing areas
投稿时间:2018-01-12  
DOI:
中文关键词:  土壤有机质  空间分层异质性  地理探测器  模型残差  GWRMLR  GWRPLSR
英文关键词:soil organic matter  spatial stratified heterogeneity  GeoDetector  model residuals  GWR-MLR  GWR-PLSR
基金项目:国家自然科学基金面上项目(41371227)
作者单位E-mail
段丽君 华中农业大学资源与环境学院武汉 430070 duanlijun@webmail.hzau.edu.cn 
张海涛 华中农业大学资源与环境学院武汉 430070 hzau_zht@163.com 
郭龙 华中农业大学资源与环境学院武汉 430070  
杜佩颖 华中农业大学资源与环境学院武汉 430070  
陈可 华中农业大学资源与环境学院武汉 430070  
琚清兰 华中农业大学资源与环境学院武汉 430070  
摘要点击次数: 37
全文下载次数: 154
中文摘要:
      以湖北省宜都市红花套镇典型柑橘种植区采集到的329个土壤样本为研究对象,设置土壤有机质(SOM)进行普通克里格(OK)插值的结果为参照,借助地理探测器选取与SOM相关性最大的前5种主要影响因子,分别建立全局模型多元线性回归、偏最小二乘回归和局部模型地理加权回归(GWR),再深入分析模型残差的结构性,构造GWR扩展模型GWRMLR、GWRPLSR,讨论几种SOM预测模型的差异。结果表明:使用GWRPLSR模型预测研究区SOM含量的均方误差和均方根误差可分别降低到9.834和3.136,相对分析误差提高到1.468,实测值与预测值间的相关系数(r)达0.743,具有最高的预测精度,GWRMLR其次,说明除SOM与主要影响因子间存在空间相关性,分析模型残差可进一步消除预测的不平稳性。因此,将模型残差项纳入考虑的局部扩展模型更适宜进行区域化SOM空间分布预测与数字土壤制图。
英文摘要:
      329 soil samples were collected from the citrus growing areas in Honghuatao Town,Yidu City,Hubei Province.Based on the principle of spatial stratified heterogeneity,the top five major impact factors having the greatest correlation with soil organic matter (SOM) were selected with the GeoDetector software.Using the interpolation results of ordinary Kriging as control,the global model multiple linear regression (MLR),partial least squares regression (PLSR) and local model geographical weighted regression (GWR) were established by the soil organic matter and its main environmental factors.After analyzing the structure of the model residuals,GWRMLR and GWRPLSR were constructed as the extensions of GWR model.The results showed that the mean square error (MSE),root mean square error (RMSE),relative analysis error (RPD) and the correlation coefficient (r) between measured and predicted values of GWRPLSR were 9.834,3.136,1.468,0.743,respectively.The GWRPLSR model had the highest prediction accuracy,followed by GWRMLR.In summary,except for the spatial correlation between SOM and its major impact factors,analyzing model residuals can further eliminate the predicted instability.Therefore,taking the model residual terms into consideration is more suitable to predict the regional SOM spatial distribution and digital soil mapping.
查看全文  查看/发表评论  下载PDF阅读器
关闭
版权所有:华中农业大学学报(自然科学版)  
主管单位:教育部 主办单位:华中农业大学 地址:湖北武汉南湖狮子山华中农业大学内
电话:027-87287364 电子邮件:hnlkxb@mail.hzau.edu.cn
您是本站第6013715位访问者  今日一共访问1471次  
技术支持:北京勤云科技发展有限公司