2024, 43(2):134-143.DOI: 10.13300/j.cnki.hnlkxb.2024.02.016
摘要:针对现有检测模型不能满足在自然环境中准确识别多种类柑橘病虫害的问题,提出一种基于改进YOLOv5s模型的常见柑橘病虫害检测方法。改进模型引入ConvNeXtV2模型,构建一个CXV2模块替换YOLOv5s的C3模块,增强提取特征的多样性;添加了动态检测头DYHEAD,提高模型对不同空间尺度、不同任务目标的处理能力;采用CARAFE上采样模块,提高特征提取效率。结果显示,改进后的YOLOv5s-CDC的召回率和平均精度均值分别为81.6%、87.3%,比原模型分别提高了4.9、3.4百分点。与其他YOLO系列模型在多个场景下的检测对比,具有更高的准确率和较强的鲁棒性。结果表明,该方法可用于自然复杂环境下的柑橘病虫害的检测。
2022, 41(6):262-269.DOI: 10.13300/j.cnki.hnlkxb.2022.06.031
摘要:为了快速识别自然环境下的成熟草莓与未成熟草莓,本研究提出了基于EfficientDet-D1的草莓快速检测及分类方法。该方法具有EfficientNet 网络中快速归一化特征加权融合特点,应用该方法与YOLOv3、YOLOv4、Faster-RCNN以及EfficientDet-D0模型进行对比试验,结果显示,YOLOv3、YOLOv4、Faster-RCNN、EfficientDet-D0和EfficientDet-D1等5种算法的平均精度均值(PmA)分别为 89.51%、69.02%、96.54%、96.71%、97.50%。试验结果表明,EfficientDet-D1在成熟草莓与未成熟草莓的检测性能均优于其他4种目标检测算法,有较好的泛化性和鲁棒性,且使用模型参数量较小的EfficientNet网络,更适合作用于移动端识别,可实现草莓快速识别中的速度与精度要求。