摘要
为探究CVC1302调控生发中心B细胞发生体细胞高频突变的免疫机制,本研究将4-羟基-3-硝基苯乙酰基耦联鸡卵白蛋白(NP-OVA)混合免疫增强剂CVC1302后,利用ISA206乳化获得疫苗。BALB/c小鼠分为2组,分别后腿肌肉注射NP-ISA206和NP-CVC1302-ISA206,每只50 μg NP-OVA,免疫后14 d,利用流式分选获得生发中心B细胞,利用巢氏PCR扩增B细胞免疫球蛋白序列可变区VH186.2,Western blot检测诱导活化的胞苷脱氨酶(AID)、Pax5表达水平,β-actin作为内参,比较组间AID、Pax5表达差异;利用荧光定量PCR检测AID、Pax5基因转录水平。试验结果显示:CVC1302显著诱导生发中心B细胞免疫球蛋白序列VH186.2突变频率,试验组W33L突变频率为62.2%,而对照组仅为20.25%;CVC1302可提升AID蛋白、Pax5蛋白表达水平,其中试验组AID蛋白相对表达水平为0.72,对照组仅为0.16,试验组Pax5蛋白相对表达水平为0.62,对照组仅为0.26;CVC1302增强AID基因、Pax5基因转录水平,相较于对照组分别提高2.36、4.13倍。推断CVC1302依赖Pax5介导AID表达,调控生发中心B细胞发生体细胞高频突变。
机体感染病原体或者接受免疫后,引流淋巴结内抗原特异性B细胞被激活迁移至初级淋巴小结,并在该处快速克隆增殖,进而形成生发中心(germinal center,GC
免疫增强剂CVC1302组分包含TLR和NOR激动剂。前期研
5周龄BALB/c雌性小鼠购自扬州大学;NP-OVA购自美国Bioscience Technologies公司;免疫增强剂CVC1302为笔者所在团队制备所得;Montanid
本研究参照文献[
免疫后14 d,采集小鼠腹股沟淋巴结,用PBS冲洗3次,将淋巴结置于70 μm滤网上进行研磨,获得单个淋巴细胞。细胞先利用B细胞负选磁珠进行初次分选,随后用anti-GL-7-PE进行染色,用流式分选仪分选获得GC B细胞,一部分细胞提取RNA,利用Real-time PCR检测AID转录水平;一部分细胞利用试剂盒提取蛋白,利用Western blot检测AID表达水平。
分选获得的GC B细胞利用试剂盒提取基因组DNA,通过巢氏PCR扩增VH186.2片段,引物见
目的基因 Target gene | 引物名称 Primer name | 引物序列(5′-3′) Primer sequences (5′-3′) |
---|---|---|
VH186.2 |
外部引物-F Outer primer-F |
GTGACAACAATGATTAGACCCCTG AGCTCTATCATGCTCTTCTTGGCA |
外部引物-R Outer primer-R | ||
内部引物-F Inner primer-F |
GTGACAACAATGATTAGACCCCTG AGATGGAGGCCAGTCAGGGAC | |
内部引物-R Inner primer-R |
外部引物PCR程序为:95 ℃ 5 min,95 ℃ 1 min,55 ℃ 30 s,72 ℃ 1 min,共进行25个循环;72 ℃延伸10 min。内部引物PCR程序为:95 ℃ 5 min,95 ℃ 1 min,55 ℃ 30 s,72 ℃ 30 s,共进行25个循环;72 ℃延伸10 min。跑胶回收扩增的VH186.2片段并连接到pMD18-T载体(Takara)上利用T7引物进行测序;测序结果利用IgBlast(NCBI)进行分析统计。
将分选获得的2组GC B细胞分别用Trizol提取RNA,反转为cDNA后,利用Real-time PCR分别检测基因AID和Pax5转录水平,以β⁃actin作为内参基因,试验所涉及的基因引物见
目的基因 Target gene | 引物序列(5′-3′) Primer sequences (5′-3′) | 退火温度/℃ Annealing temperature |
---|---|---|
β⁃actin | CACTGCCGCATCCTCTTCC/CAATAGTGATGACCTGGCCGT | 53 |
AID | GGAGAGATAGTGCCACCTCC/TCTCAGAAACTCAGCCACGT | |
Pax5 | CACAGTCCTACCCTATTGTCAC/TCCAGAAAATTCACTCCCAGG |
取相同数目分选的GC B细胞置于冰上,加入蛋白裂解液,冰上裂解约30 min,每10 min在震荡仪上混匀涡旋1次。将样品置于离心机4 ℃ 12 000 r/min离心10 min,取上清,加入5×SDS上样缓冲液,100 ℃作用10 min,进行SDS-PAGE和Western blot。分别利用AID、Pax5一抗37 ℃作用1 h;PBST洗涤后,HRP-羊抗兔IgG 37 ℃作用1 h,洗涤3次后,将高敏型ECL化学发光试剂滴加至目的条带大小处,利用化学发光成像仪观察拍照。图片利用Image J进行灰度分析,比较组间AID条带灰度值/β-actin条带灰度值和Pax5条带灰度值/β-actin条带灰度值。
考虑到抗体亲和力成熟与体细胞高频突变相关联,因此,小鼠免疫后14 d,制备淋巴结细胞,流式分选GC B细胞,并利用巢氏PCR对VH186.2片段进行测序分析。由

图1 CVC1302 诱导VH186.2片段突变
Fig.1 CVC1302 induced mutation of VH186.2
A:VH186.2片段占比;B:W33L突变频率;C:VH186.2片段氨基酸突变频率。A: The percentage of VH186.2; B: The mutation ratio of W33L; C: The mutation ratio of amino acid of VH186.2.
考虑到体细胞高频突变主要由AID介导,本研究比较分析NP-CVC1302-ISA206与NP-ISA206对照组诱导AID转录与表达水平。由

图2 CVC1302处理下GC B细胞AID基因转录水平
Fig.2 CVC1302 regulates the transcription level of AID in GC B cells
**表示P<0.01,差异极显著;***表示P<0.001,差异极显著。下同。** represent extremely significant differences between groups (P<0.01);*** represent extremely significant differences between groups (P<0.001).The same as below.

图3 CVC1302处理下GC B细胞AID表达水平
Fig.3 CVC1302 regulates the expression level of AID in GC B cells
A:AID蛋白表达;B:AID蛋白相对表达水平。A:AID protein expression; B: Relative expression level of AID protein.
小鼠免疫后14 d,取腹股沟淋巴结,流式分选获得GC B细胞,分别利用Real-time PCR和Western blot分别检测Pax5转录和表达水平。由

图4 CVC1302处理下GC B细胞Pax5基因转录水平
Fig.4 CVC1302 regulates the transcription level of Pax5 in GC B cells

图5 CVC1302处理下GC B细胞Pax5表达水平
Fig.5 CVC1302 regulates the expression level of Pax5 in GC B cells
A:Pax5蛋白表达;B:Pax5蛋白相对表达水平。A: Pax5 protein expression; B: Relative expression level of Pax5 protein.
免疫增强剂的研制注重于抗体水平及其持续期的检测,然而高亲和力的抗体可以更高效地识别并中和病原体,以抵抗高毒力病原体感染。文献中关于免疫增强剂调控AID也仅限于其表达量的变
位于生发中心暗区的GC B细胞增殖分裂,与此同时,AID作用于单链DNA,使GC B细胞重链和轻链的V区基因发生SHM。突变后的GC B细胞间BCR亲和力存在差异,进入明区后,经过FDC和Tfh细胞的双重辅助后,具有高亲和力BCR的B细胞分化为浆细胞,其分泌的抗体对抗原具有高亲和力,此现象为亲和力成
参考文献References
VICTORA G D, NUSSENZWEIG M C. Germinal centers[J]. Annual review of immunology, 2012,30:429-457. [百度学术]
YOUNG C, BRINK R. The unique biology of germinal center B cells[J]. Immunity, 2021,54(8):1652-1664. [百度学术]
MAYER C T, GAZUMYAN A, KARA E E, et al. The microanatomic segregation of selection by apoptosis in the germinal center[J/OL]. Science,2017,358(6360):eaao2602[2023-12-15]. https://doi.org/10.1126/science.aao2602. [百度学术]
WANG J H. The role of activation-induced deaminase in antibody diversification and genomic instability[J]. Immunologic research, 2013,55(1/2/3):287-297. [百度学术]
YU K F. AID function in somatic hypermutation and class switch recombination[J]. Acta biochimica et biophysica sinica, 2022,54(6):759-766. [百度学术]
CHEN Z G, WANG J H. Signaling control of antibody isotype switching[J]. Advances in immunology, 2019,141:105-164. [百度学术]
YEAP L S, MENG F L. Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification[J]. Advances in immunology, 2019,141:51-103. [百度学术]
LIN K I, ANGELIN-DUCLOS C, KUO T C, et al. Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells[J]. Molecular and cellular biology, 2002,22(13):4771-4780. [百度学术]
SCHRADER C E, LINEHAN E K, MOCHEGOVA S N, et al. Inducible DNA breaks in Ig S regions are dependent on AID and UNG[J]. The journal of experimental medicine,2005,202(4):561-568. [百度学术]
CHEN J, YU X M, ZHENG Q S, et al. The immunopotentiator CVC1302 enhances immune efficacy and protective ability of foot-and-mouth disease virus vaccine in pigs[J]. Vaccine, 2018,36(52):7929-7935. [百度学术]
DU L P, CHEN J, HOU L T, et al. Long-term humoral immunity induced by CVC1302-adjuvanted serotype O foot-and-mouth disease inactivated vaccine correlates with promoted T follicular helper cells and thus germinal center responses in mice[J]. Vaccine, 2017,35(51):7088-7094. [百度学术]
DU L P, HOU L T, YU X M, et al. Pattern-recognition receptor agonist-containing immunopotentiator CVC1302 boosts high-affinity long-lasting humoral immunity[J/OL]. Frontiers in immunology, 2021,12:697292[2023-12-15]. https://doi.org/10.3389/fimmu.2021.697292. [百度学术]
RIVERA C E, ZHOU Y L, CHUPP D P, et al. Intrinsic B cell TLR-BCR linked coengagement induces class-switched, hypermutated, neutralizing antibody responses in absence of T cells[J/OL]. Science advances,2023,9(17):eade8928[2023-12-15]. http://doi.org/10.1126/sciadv.ade8928. [百度学术]
GITLIN A D, MAYER C T, OLIVEIRA T Y, et al. T cell help controls the speed of the cell cycle in germinal center B cells[J]. Science,2015,349(6248):643-646. [百度学术]
NAGAOKA H, TRAN T H, KOBAYASHI M, et al. Preventing AID, a physiological mutator, from deleterious activation: regulation of the genomic instability that is associated with antibody diversity[J]. International immunology, 2010,22(4):227-235. [百度学术]
CHEN D Y, WANG Y, VIJAY G K M, et al. Coupled analysis of transcriptome and BCR mutations reveals role of OXPHOS in affinity maturation[J]. Nature immunology,2021,22(7):904-913. [百度学术]