摘要
为探究myomaker基因在团头鲂(Megalobrama amblycephala)肌纤维发育中的调控作用,通过石蜡切片和HE染色方法分析不同日龄团头鲂肌纤维发育特征,采用RT-PCR及qRT-PCR技术鉴定myomaker基因的cDNA序列,并探讨该基因在团头鲂不同发育阶段及不同组织部位的时空表达模式。石蜡切片结果显示团头鲂肌纤维直径在20~60 d持续递增,其中在40、50和60 d均显著递增(P<0.05),且在40~50 d时其肌纤维直径递增最快。基因结构分析发现团头鲂myomaker基因全长4 693 bp,包含5个外显子和4个内含子,开放阅读框为663 bp,共编码220个氨基酸,其编码蛋白为7次跨膜蛋白。氨基酸相似度比对显示myomaker基因保守性较高;系统进化树分析显示,团头鲂myomaker基因与鲤等鲤科鱼类的myomaker基因聚为一支,具有最近的亲缘关系。荧光定量结果显示,myomaker在1月龄团头鲂肌肉组织中表达量极其显著高于其他组织(P<0.000 1),同时myomaker在团头鲂出膜后15~30 d表达量逐渐上升,在30 d表达量最高(P<0.05)。基于形态学和基因表达特征,推测myomaker基因在团头鲂30 d后肌纤维的融合中发挥重要的调控作用,从而促进肌纤维的肥大。
关键词
肌肉既是鱼类的结构组织和动力器官,同时也是人类重要蛋白质来源之一,其生长发育直接影响了鱼类的生长速度和肌肉品
尽管骨骼肌细胞增殖和分化的转录调控机制研究较
团头鲂(Megalobrama amblycephala),俗称武昌鱼,因其生长迅速、抗病力强、成活率高和养殖成本低等优点而成为我国重要的淡水养殖鱼
试验所用团头鲂样品均取自华中农业大学水产学院南湖基地。随机选取3月龄团头鲂1尾,取其肌肉组织(白肌)用于基因鉴定试验;随机选取1月龄团头鲂个体3尾,取其肝脏、脑、肠道、肌肉、尾鳍共5个组织,用于组织特异性表达分析;选取同一批繁殖的团头鲂子代胚后发育不同时期(20、30、40、50和60 d)样品,取其背鳍起始位置下方、水平膈膜上方的肌肉组织置于肌肉固定液中保存,用于肌肉组织横截面切片观察分析;同时选取15、20、30、40、50和60 d不同发育时期团头鲂(每个发育时期3尾),取其背鳍起始位置下方、水平膈膜上方的肌肉组织块置于液氮速冻后-80 ℃保存,用于不同发育时期基因表达分析。
将固定好的肌肉组织置于浓度递增的乙醇溶液中进行脱水,处理后的肌肉组织放入石蜡中包埋,冷却后进行切片(切片厚度为5 μm),并用苏木精-伊红进行染色。切片用Pannoramic MIDI数字切片扫描仪(3DHISTECH 公司,布达佩斯,匈牙利)进行扫描,并利用Image J 1.51s软件测量肌纤维直径 [d=(长轴+短轴)/2]。
采用Trizol法提取团头鲂肌肉组织总RNA,使用1%琼脂糖凝胶电泳和超微量分光光度计KAIAO K5600(凯奥科技发展有限公司,北京)检测RNA质量和浓度,采用HiScript II 1st Strand cDNA Synthesis Kit(+gDNA wiper)(诺维赞生物科技股份有限公司,南京)反转录合成cDNA模板。从团头鲂基因组信息调取myomaker的基因序列并设计引物MymkA(
引物名称 Primer name | 序列(5'-3') Primer sequence | 退火温度/℃ Annealing temperature | 用途 Usages |
---|---|---|---|
MymkAF MymkAR MymkRT2F MymkRT2R β-Actin-R β-Actin-L |
CGCTTCTCCAAAAGATCTGG GCCTGTTTCTCGCATAAAGC ATGGAGGCCATGGTCTATTTCT CTGTGCCATACACGCTGAAGTA CGTGCTGTTTTCCCTTCCATT CAATACCGTGCTCAAAGGATACTT |
65
65
65 |
鉴定cDNA序列 Identification of cDNA sequence 基因表达分析 Gene expression analysis 内参基因 Housekeeping gene |
通过NCBI Blast对团头鲂myomaker基因组序列(NC_063047.1)和cDNA序列进行对比,分析myomaker基因的结构。通过NCBI上的Open Reading Frame Finder(https://www.ncbi.nlm.nih.gov/orffinder/)预测团头鲂Myomaker氨基酸序列,并使用Blast功能对氨基酸序列进行同源性比对。Myomaker的分子质量和理论等电点分别由Uniprot Database(https://www.uniprot.org/)、Compute pI/Mw tool (https://web.expasy.org/compute_pi/)预测。蛋白质跨膜结构由MHMM(https://dtu.biolib.com/DeepTMHMM)预测。使用Clustal X软件将团头鲂与其他物种的Myomaker氨基酸序列进行多重序列比对分析。采用最大似然法(maximum-likehoood, ML),利用MEGA11软件构建myomaker基因的系统进化树,并进行自展(bootstrap, 1 000 replicates)检
团头鲂5个不同组织和6个不同发育时期样品RNA的提取和逆转录与“团头鲂myomaker基因的鉴定”中所使用的方法相同。根据团头鲂myomaker cDNA序列设计荧光定量引物MymkRT2,以β-Actin为内参基因(引物序列见
本研究取团头鲂背鳍起始位置下方、水平膈膜上方的肌肉组织,即

图 1 团头鲂取样位置(A)及不同日龄(B~F)团头鲂肌纤维横切面
Fig. 1 Sampling position of Megalobrama amblycephala(A) and cross sections of muscle fibers of M. amblycephala at different ages(B-F)

图 2 不同日龄团头鲂肌纤维平均直径(A)及其分布频率(B)
Fig. 2 Statistical diagram of muscle fiber diameter(A) and the frequency of muscle fibers distributed in epaxial muscle of M. amblycephala from 20 d to 60 d(B)
不同小写字母表示不同发育时期具有显著性差异(P<0.05)。Different lowercase letters indicated significant differences in different developmental stages (P<0.05).
Myomaker基因位于团头鲂4号染色体(Chr4)41043747...41048440,上下游基因分别为Adamtsl2和TCC16,全长4 693 bp,包含5个外显子和4个内含子,开放阅读框为663 bp,共编码220个aa(

图 3 myomaker基因结构(A)及团头鲂myomaker基因全长序列(B)
Fig. 3 Structural organization of the myomaker gene (A) and full-length sequence of the myomaker gene in M. amblycephala (B)
5’UTR和3’UTR使用白色方框表示,外显子使用黑色方框表示,内含子用加粗箭头线表示。5’UTR and 3’UTR are represented by white boxes, exons by black boxes and introns by bold arrow lines.
对人(Hominidae)、鼠(Mus musculus)、红原鸡(Gallus gallus)、湾鳄(Crocodylus porosus)、热带爪蟾(Xenopus tropicalis)、团头鲂及其他鱼类Myomaker的氨基酸序列进行对比分析,结果显示Myomaker在各物种间较保守。哺乳动物myomaker基因编码221 aa,而在鱼类myomaker基因编码的氨基酸数目存在差异。例如虹鳟(Oncorhynchus mykiss)myomaker基因编码434 aa,斑马鱼(Danio rerio)myomaker基因编码221 aa。氨基酸序列比对发现不同物种间Myomaker前220 aa保守性较高,氨基酸序列C端存在一些变异(

图 4 Myomaker氨基酸序列多重对比分析
Fig. 4 Multiple alignment analysis Myomaker amino acid sequences
物种顺序Order of species:小鼠Mus musculus(NP_079652.1)、人Homo sapiens(NP_001073952.1)、湾鳄Crocodylus porosus(XP_019396684.1)、红原鸡Gallus gallus(NP_001305386.1)、热带爪蟾Xenopus tropicalis(XP_031747428.1)、金线鲃Sinocyclocheilus rhinocerous(XP_016428797.1)、团头鲂Megalobrama amblycephala(XP_048045298.1)、斑马鱼Danio rerio(NP_001002088.1)、黄颡鱼Tachysurus fulvidraco(XP_026994082.2)、红腹锯鲑脂鲤Pygocentrus nattereri(XP_017540240.2)、鲤Cyprinus carpio(XP_042612674.1)、黑头呆鱼Pimephales promelas(XP_039517783.1)、斑点叉尾鮰Ictalurus punctatus(XP_047005770.1)、大口黑鲈Micropterus salmoides(XP_038559766.1)、鳜Siniperca chuatsi(XP_044052078.1)、罗非鱼Oreochromis niloticus(XP_013126336.1)、黄鳍棘鲷Acanthopagrus latus(XP_036954818.1)、红点鲑Salvelinus alpinus(XP_023834965.1)、虹鳟Oncorhynchus mykiss(XP_036791554.1)、大鳞大马哈鱼Oncorhynchus tshawytscha(XP_024294891.2). 下划线表示小卫星序列。The underline indicates minisatellite.

图 5 团头鲂(A)、黄鳍棘鲷(B)及大鳞大马哈鱼(C)Myomaker跨膜结构比较
Fig. 5 Comparison of Myomaker transmembrane structure of M. amblycephala(A), Acanthopagrus latus(B), and Oncorhynchus tshawytscha(C)
红色矩形为跨膜螺旋结构,蓝色线段是位于膜外的结构,粉红色线段是位于膜内的结构。The red rectangle is the transmembrane helical structure, the blue line segment is the structure located inside the membrane, the red line segment is the structure located outside the membrane.
将团头鲂的Myomaker氨基酸序列与其他物种构建系统进化树(

图 6 基于Myomaker氨基酸序列构建的系统发育树
Fig. 6 Phylogenetic tree constructed based on the amino acid sequence of Myomaker
团头鲂不同组织myomaker基因定量表达结果(

图 7 myomaker在团头鲂不同组织中的相对表达量
Fig. 7 The relative expression level of myomaker in different tissues of M. amblycephala
L:肝脏 Liver; B:脑 Brain; I:肠道 Intestine; M:肌肉 Muscle;F:尾鳍 Fin;不同小写字母表示myomaker在不同组织的表达差异显著(P<0.05)。Different lowercase letters represent significant differences of myomaker expression in different tissues (P<0.05).
定量表达分析结果(

图 8 myomaker在不同发育时期团头鲂肌肉中的表达
Fig. 8 Expression of myomaker in the muscles of M. amblycephala at different developmental stages
不同小写字母表示不同发育时期差异显著(P<0.05)。Different lowercase letters indicate significant difference at different developmental stage(P<0.05).
在小鼠和斑马鱼等物种中,Myomaker作为一种肌肉特异性膜蛋白,精确地控制着成肌细胞的融合以防止非肌肉细胞核并入肌纤
氨基酸序列比对发现Myomaker在大多数物种中仅包含220个氨基酸,不同物种Myomaker前220 aa保守性较高,但其氨基酸序列C端存在一些变异。红点鲑、虹鳟和大鳞大马哈鱼Myomaker氨基酸序列显著长于其他物种,附加氨基酸链主要由编码30个核苷酸的12~17个小卫星序列组
Myomaker蛋白定位于细胞膜,也存在于高尔基体和囊泡
之前的研究表明,myomaker基因在肌肉发育和肌肉再生过程中介导成肌细胞的融
myomaker基因在团头鲂不同发育阶段的肌肉组织中显著性差异表达,从15 d到30 d myomaker表达量逐渐上升,并在30 d时表达量最高,与其余时期具有显著差异(P<0.05),而后随着团头鲂的生长发育其表达量逐渐降低。myomaker基因在虹鳟的胚胎期、4月龄(15 g)、8月龄(150 g)和18月龄(1 500 g)虹鳟的白肌中均有表达,其表达量随着体质量的增加而减
综上,本研究鉴定了团头鲂myomaker基因cDNA序列,并进行了氨基酸序列对比和系统进化分析;通过对团头鲂myomaker基因的组织表达特征、不同日龄肌肉组织中表达规律进行定量表达分析,结合组织切片分析,发现该基因在团头鲂肌纤维的融合中发挥重要作用,从而促进肌纤维的肥大。本研究结果有助于揭示团头鲂胚后肌纤维增殖和肥大的调控机制,可为团头鲂肌肉的快速生长提供理论支持。
参考文献References
JOHNSTON I A,BOWER N I,MACQUEEN D J.Growth and the regulation of myotomal muscle mass in teleost fish[J].Journal of experimental biology,2011,214(10):1617-1628. [百度学术]
石军,褚武英,张建社.鱼类肌肉生长分化与基因表达调控[J].水生生物学报,2013,37(6):1145-1152.SHI J,CHU W Y,ZHANG J S.Muscle growth,differentiation and gene expression regulation in fish[J].Acta hydrobiologica sinica,2013,37(6):1145-1152(in Chinese with English abstract). [百度学术]
BI P P,RAMIREZ-MARTINEZ A,LI H,et al.Control of muscle formation by the fusogenic micropeptide myomixer[J].Science,2017,356(6335):323-327. [百度学术]
朱艳, 张进威, 齐婧, 等. Myomaker和Myomerger调控成肌细胞融合的分子机制 [J]. 遗传, 2019, 41(12): 1110-1118. ZHU Y, ZHANG J W, QI J, et al. Molecular regulation mechanism of Myomaker and Myomerger in myoblast fusion [J]. Hereditas, 2019, 41(12): 1110-1118(in Chinese with English abstract). [百度学术]
CHAL J,POURQUIÉ O.Making muscle:skeletal myogenesis in vivo and in vitro[J].Development,2017,144(12):2104-2122. [百度学术]
ZANOU N,GAILLY P.Skeletal muscle hypertrophy and regeneration:interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways[J].Cellular and molecular life sciences,2013,70(21):4117-4130. [百度学术]
程春芳,万娟,丁恺志,等.成肌细胞增殖与分化及其调控机制[J].中国组织工程研究,2023,27(14):2200-2206.CHENG C F,WAN J,DING K Z,et al.Regulatory mechanism of myoblast proliferation and differentiation[J].Chinese journal of tissue engineering research,2023,27(14):2200-2206(in Chinese with English abstract). [百度学术]
BENTZINGER C F,WANG Y X,RUDNICKI M A.Building muscle:molecular regulation of myogenesis[J/OL].Cold Spring Harbor perspectives in biology,2012,4(2):a008342[2023-10-09].https://doi.org/10.1101/cshperspect.a008342. [百度学术]
MOHAMMADABADI M,BORDBAR F,JENSEN J,et al.Key genes regulating skeletal muscle development and growth in farm animals[J/OL].Animals,2021,11(3):835[2023-10-09]. https://doi.org/10.3390/ani11030835. [百度学术]
阮宁. RASSF4对骨骼肌成肌细胞分化融合的影响及作用机制 [D]. 吉林: 吉林大学, 2022: 5-6. RUAN N. Effect and mechanism of RASSF4 protein on the differentiation and fusion of skeletal muscle myoblasts [D]. Jining: Jilin University, 2022: 5-6(in Chinese with English abstract). [百度学术]
HINDI S M,TAJRISHI M M,KUMAR A.Signaling mechanisms in mammalian myoblast fusion[J/OL].Science signaling,2013,6(272):re2[2023-10-09]. https://doi.org/10.1126/scisignal.2003832. [百度学术]
MILLAY D P,O’ROURKE J R,SUTHERLAND L B,et al.Myomaker is a membrane activator of myoblast fusion and muscle formation[J].Nature,2013,499(7458):301-305. [百度学术]
MILLAY D P,SUTHERLAND L B,BASSEL-DUBY R,et al.Myomaker is essential for muscle regeneration[J].Genes & development,2014,28(15):1641-1646. [百度学术]
LEIKINA E,GAMAGE D G,PRASAD V,et al.Myomaker and myomerger work independently to control distinct steps of membrane remodeling during myoblast fusion[J].Developmental cell,2018,46(6):767-780. [百度学术]
CUI S, LI L, YU R T, et al. β-Catenin is essential for differentiation of primary myoblasts via cooperation with MyoD and α-catenin[J/OL]. Development, 2019, 146(6): dev167080[2023-10-09]. https://doi.org/10.1242/dev.167080. [百度学术]
GAMAGE D G,LEIKINA E,QUINN M E,et al.Insights into the localization and function of myomaker during myoblast fusion[J].Journal of biological chemistry,2017,292(42):17272-17289. [百度学术]
SHI J,CAI M X,SI Y F,et al.Knockout of myomaker results in defective myoblast fusion,reduced muscle growth and increased adipocyte infiltration in zebrafish skeletal muscle[J].Human molecular genetics,2018,27(20):3542-3554. [百度学术]
LUO W,LI E X,NIE Q H,et al.Myomaker,regulated by MYOD,MYOG and miR-140-3p,promotes chicken myoblast fusion[J].International journal of molecular sciences,2015,16(11):26186-26201. [百度学术]
HUANG Y J,WU S X,ZHANG J R,et al.Methylation status and expression patterns of myomaker gene play important roles in postnatal development in the Japanese flounder (Paralichthys olivaceus)[J].General and comparative endocrinology,2019,280:104-114. [百度学术]
PERELLÓ-AMORÓS M,OTERO-TARRAZÓN A,JORGE-PEDRAZA V,et al.Myomaker and myomixer characterization in gilthead sea bream under different myogenesis conditions[J/OL].International journal of molecular sciences,2022,23(23):14639[2023-10-09].https://doi.org/10.3390/ijms232314639. [百度学术]
LANDEMAINE A,RAMIREZ-MARTINEZ A,MONESTIER O,et al.Trout myomaker contains 14 minisatellites and two sequence extensions but retains fusogenic function[J].Journal of biological chemistry,2019,294(16):6364-6374. [百度学术]
陈宇龙, 张丽红, 周佳佳, 等. 团头鲂肌腱发育相关基因tnmd/xirp2a的克隆和表达[J]. 华中农业大学学报, 2019, 38(2): 1-8. CHEN Y L, ZHANG L H, ZHOU J J, et al. Cloning and expression analysis of tnmd / xirp2a genes relating to tendon development in Megalobrama amblycephala [J]. Journal of Huazhong Agricultural University, 2019, 38(2): 1-8(in Chinese with English abstract). [百度学术]
ZHU K C,YU D H,ZHAO J K,et al.Morphological analysis and muscle-associated gene expression during different muscle growth phases of Megalobrama amblycephala[J].Genetics and molecular research,2015,14(3):11639-11651. [百度学术]
ZHU K C,WANG H L,WANG H J,et al.Characterization of muscle morphology and satellite cells,and expression of muscle-related genes in skeletal muscle of juvenile and adult Megalobrama amblycephala[J].Micron,2014,64:66-75. [百度学术]
DU J H, DU C, LI X H, et al. The mechanism of Megalobrama amblycephala muscle injury repair based on RNA-seq [J/OL]. Gene, 2022, 827, 146455[2023-10-09]. https://doi.org/10.1016/j.gene.2022.146455. [百度学术]
LIU L F,CHEN Y L,DIAO J H,et al.Identification and characterization of novel circRNAs involved in muscle growth of blunt snout bream (Megalobrama amblycephala)[J/OL].International journal of molecular sciences,2021,22(18):10056[2023-10-09]. https://doi.org/10.3390/ijms221810056. [百度学术]
TAMURA K,STECHER G,KUMAR S.MEGA11:molecular evolutionary genetics analysis version 11[J].Molecular biology and evolution,2021,38(7):3022-3027. [百度学术]