网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

餐厨剩余物发酵产物对克氏原螯虾生长、肌肉品质、免疫酶活和消化功能的影响  PDF

  • 焦婷 1
  • 徐智威 1
  • 蔡云霞 2
  • 顾泽茂 1
1. 华中农业大学水产学院/双水双绿研究院/湖北洪山实验室/长江经济带大宗水生生物产业绿色发展教育部工程研究中心,武汉 430070; 2. 北京嘉博文生物科技有限公司,北京 100015

中图分类号: Q959.223+.63

最近更新:2025-02-14

DOI:10.13300/j.cnki.hnlkxb.2025.01.021

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

为综合评估餐厨剩余物发酵产物在克氏原螯虾(Procambarus clarkii)养殖中的适用性,试验在克氏原螯虾基础饲料中分别添加0(对照组)、3%、6%和9%比例的餐厨剩余物发酵产物,探究餐厨剩余物发酵产物对克氏原螯虾生长性能、肌肉品质、免疫与消化功能的影响。结果显示: (1)饲料中添加餐厨剩余物发酵产物饲喂30 d对克氏原螯虾增重率、肝胰腺指数、出肉率和特定生长率无显著影响(P>0.05),但可显著提高存活率、总产出和总增重率,显著降低饲料系数(P<0.05); 6%添加组的总产出和总增重率最大,分别比对照组高52.70%和108.51%。(2)餐厨剩余物发酵产物的添加对肌肉粗蛋白含量无显著影响(P>0.05),但可显著提高肌肉弹性(P<0.05); 3%和6%添加组肌肉粗脂肪含量较对照组显著降低12.61%和13.77%(P<0.05); 9%添加组肌肉中4种主要鲜味氨基酸总量显著低于对照组和3%添加组(P<0.05)。(3)饲喂30 d时,6%添加组碱性磷酸酶、酸性磷酸酶和溶菌酶活性较对照组显著升高76.56%、65.28%和172.42%,且溶菌酶活性显著高于3%和9%添加组(P<0.05)。(4)饲喂30 d时,3%添加组肝胰腺脂肪酶活性显著高于其他3组,餐厨剩余物发酵产物添加组淀粉酶活性均显著升高(P<0.05); 组织学观察显示6%添加组虾的肝胰腺形态较好,且富含R、E、F细胞。以上结果表明,餐厨剩余物发酵产物可以应用于克氏原螯虾饲料中,适宜添加量为6%,此时克氏原螯虾的存活率提高、饲料系数下降,可获得较好的总产出和总增重率,且肌肉品质、免疫力、消化功能整体提升,综合效益最好。

近年来,受新冠疫情、极端天气和国际冲突等突发事件的影响,国内饲料粮原料价格持续上涨,粮食安全受到威胁,制约了我国水产养殖业的发

1。为促进养殖业节粮降耗,农业农村部持续推进豆粕减量替代行动,其中“开源替代”可从供给端缓解饲粮压力,合适的饲料原料替代资源利用已是大势所趋。研究表明,餐厨剩余物具有较高的营养价2,蛋白和能量水平大致在玉米和豆粕之间(粗蛋白约20%3,可作为一种高能高蛋白的优质饲料原料。我国每年产生约1.5亿t餐厨剩余物,内含蛋白质与744万t大豆的蛋白产出接4,对该部分资源进行利用具有广阔的市场前景。

未经处理的餐厨剩余物可能含有病原菌和同源性蛋白,直接用于畜禽养殖易引发动物疫病及人畜共患传染病,存在安全隐患,因此需要进行无害化处

5。目前,高温干燥与微生物发酵是餐厨剩余物饲料化的主要方式。相比于高温干燥法,微生物发酵法能将餐厨剩余物中的大分子营养物质分解为易被消化吸收的小分子物质,制成的餐厨剩余物发酵产物饲料富含各种酶类与微生物菌体蛋白,安全性高且适口性好,目前已在鸡、猪饲养上显示出了良好的发展前6-7。水产养殖中,餐厨剩余物发酵产物在鱼类上的应用研究较8-12,但在其他水产动物上较少。因此,为了进一步挖掘餐厨剩余物在水产养殖业的利用价值,需要深入开展餐厨剩余物发酵产物对不同水产动物的影响研究。

克氏原螯虾(Procambarus clarkii)俗称小龙虾,是我国养殖规模最大的淡水经济虾类,2021年总产量已达263.36万t

13,产业发展迅猛。小龙虾属杂食性,具有食性广、适应性强、繁殖速度快等优点。本研究以小龙虾为试验对象,在基础饲料中添加不同比例的餐厨剩余物发酵产物,探究该发酵产物对小龙虾生长性能、肌肉品质、免疫酶活和消化功能的影响,以期综合评估餐厨剩余物发酵产物在小龙虾养殖中的适用性,并进一步丰富餐厨剩余物在水产动物上应用的基础资料。

1 材料与方法

1.1 试验饲料配制

试验所用基础饲料购自荆州家泰饲料有限公司,餐厨剩余物发酵产物原料由北京嘉博文生物科技有限公司提供,其粗蛋白≈17%,粗脂肪>10%。在基础饲料中分别添加0%(对照组)、3%、6%和9%餐厨剩余物发酵产物,制成等氮等脂(含粗蛋白32%,粗脂肪约6%)的4组饲料。

上述饲料的制备方法为: 预处理除去餐厨剩余物中的杂物,初步破碎、固液分离,得到初破碎物料,再对初破碎物料进行破碎制浆、除砂、均质,得到均质浆料。将均质浆料加热至105~115 ℃,保温35~45 min,得到湿解浆液后,进行固、油、水三相分离,将固相与有机辅料混合均匀,得到预混料。预混料高温灭菌后,将含有芽孢杆菌等的BGB复合菌(北京嘉博文生物科技有限公司提供)与冷却后的预混料混合均匀,加热进行好氧发酵,得到发酵物料,经过干燥等后处理得到餐厨剩余物发酵产物原料。餐厨剩余物发酵产物原料的水分、粗蛋白、粗脂肪和粗灰分分别为11.64%、17.75%、11.96%和5.96%。将各原料粉碎并过孔径0.25 mm筛,按照配方准确称取,各种饲料成分按含量从小到大逐级混匀,加水充分混匀后,转入制粒机中制成粒径大小为2.5 mm的沉水性饲料颗粒,自然风干。饲料的原料组成和营养水平如表1所示。餐厨剩余物发酵产物氨基酸组成如表2所示。

表1  饲料的原料组成和营养水平(干物质)
Table 1  Raw material composition and nutritional level of feed (dry matter) ( % )
项目 Item餐厨剩余物发酵产物添加比例 Adding level
03%6%9%
原料 Ingredient
魔芋粉 Konjaku flour 4.00 4.00 4.00 4.00
血粉 Blood powder 4.00 4.00 4.00 4.00
米糠 Rice bran 8.00 5.00 2.00 0.06

餐厨剩余物发酵产物

Fermentation products of table leftovers

0.00 3.00 6.00 9.00
青饼 Rapeseed cake 30.00 30.00 30.65 30.00
大豆粕 Soybean meal 15.32 13.91 11.63 10.80

宠物级鸡肉粉

Poultry by-product meal

2.50 2.64 3.01 3.75
小麦 Wheat 18.00 18.00 18.00 18.00
喷浆豆渣 Soybean residue 5.00 5.00 5.00 5.00
红饼 Rapeseed cake 10.00 11.23 12.43 12.11
饲料营养水平 Nutritional level of diets
粗蛋白 Crude protein 32.00 32.00 32.00 32.00
粗脂肪 Crude lipid 6.08 6.00 6.00 6.00
粗灰分 Crude ash 7.21 7.15 7.11 7.08
蛋氨酸 Methionine 0.52 0.52 0.52 0.52
赖氨酸 Lysine 1.55 1.55 1.55 1.55
总能 /(MJ/kg) Total energy 17.54 17.54 17.54 17.50

注:  试验所用米糠粗脂肪含量大于15%,大豆粕、宠物级鸡肉粉、小麦的粗蛋白含量分别为43%、65%、12%。Note:The crude fat content of rice bran was more than 15%,and the crude protein content of soybean meal,poultry by-product meal and wheat were 43%,65% and 12%,respectively.

表2  餐厨剩余物发酵产物氨基酸组成(干物质)
Table 2  Amino acid composition of fermentation products of table leftovers (dry matter)

氨基酸

Amino acid

含量/%

Content

氨基酸

Amino acid

含量/%

Content

赖氨酸 Lys 0.74 色氨酸 Trp 0.16
蛋氨酸 Met 0.22 半胱氨酸 Cys 0.35
缬氨酸 Val 1.00 酪氨酸 Tyr 0.55
异亮氨酸 Ile 0.72 天冬氨酸 Asp 1.52
亮氨酸 Leu 1.19 丝氨酸 Ser 0.79
苯丙氨酸 Phe 0.79 谷氨酸 Glu 3.34
苏氨酸 Thr 0.67 甘氨酸 Gly 1.17
组氨酸 His 0.40 丙氨酸 Ala 1.06
精氨酸 Arg 0.95 脯氨酸 Pro 1.43

1.2 养殖管理

试验基地位于华中农业大学双水双绿研究院科研基地(30°08′0.68″N,112°57′5.07″E),试验时间从2022年5月12日到6月10日,为期30 d。试验网箱放置于基地内虾稻种养田,网箱长×宽×高=3 m×2 m×1.5 m。试验用虾苗从网箱所在的池塘内捕捞获得。将600尾(5.33±0.40) g的体质健壮、活动力强且附肢完整的试验虾随机分到12个网箱试验系统中,分成4组,每组3个重复,每个重复50尾虾。每天18:00投喂饲料,投饲率为3%~5%。试验期间水质良好,pH为7.3~8.1,溶氧5.8~7.2 mg/L,水温24.2~27.1 ℃,氨氮<0.2 mg/L。

1.3 样品采集

试验开始后,分别在第15、30天进行取样,采样前24 h禁食。每个网箱取9尾虾,每3尾虾为1个小组进行混合取样。测量并记录每尾虾的体质量,然后使用1 mL注射器从虾头胸甲后部插入心脏,取血淋巴混样于2 mL EP管中。血淋巴在4 ℃条件下放置3 h后,以10 000 r/min离心30 min,取上清液作为待测血清,-80 ℃冻存,用于免疫酶活测定。采血后解剖小龙虾,取出肝胰腺和腹部肌肉,称质量,用于计算肝胰腺指数和出肉率。将肝胰腺和肌肉混样-80 ℃冻存,分别用于消化酶活性和营养成分的测定。每个网箱随机取3尾虾相同位置的肝胰腺样品,置于4%多聚甲醛中固定以制备组织切片。

1.4 指标测定及切片观察

1)生长性能测定。测定初均质量、末均质量、肝胰腺和肌肉质量,并计算增重率、肝胰腺指数、出肉率、特定生长率、存活率、饲料系数、总产出和总增重率(总产出与总投入的差值占总投入的比值)。各指标的计算参照文献[

14]公式。

2)肌肉基本成分和水解氨基酸测定。采用冷冻干燥法测定肌肉水分含量; 550 ℃马弗炉灼烧法测定粗灰分含量(GB/T 5009.4-2016); 凯氏定氮法测定粗蛋白含量(GB/T 5009.5-2016); 索氏抽提法测定粗脂肪含量(GB/T 5009.6-2016)。肌肉水解氨基酸的测定采用酸水解法(GB/T 5009.124-2016)。

3)肌肉质构特性测定。取克氏原螯虾前二腹节新鲜肌肉块,剪切成直径约2 cm、厚度约1 cm的圆片,使用TA.XT.Plus型质构仪(英国Stable Micro Systems)进行质地多面剖析模式测试,测定肌肉硬度、弹性、内聚力、胶黏性、咀嚼性、回复性。室温下采用平底圆柱形探头P/36R对肉样进行2次压缩测试,条件为: 测试前、中、后的探头速率均为2 mm/s,压缩程度65%,停留间隔时间5 s,触发力5 g。

4)血清免疫酶和肝胰腺消化酶活性测定。使用南京建成生物工程研究所试剂盒测定免疫酶和消化酶活性,包括碱性磷酸酶(AKP)、酸性磷酸酶(ACP)、溶菌酶(LZM)、胰蛋白酶(trypsin)、淀粉酶(AMS)和脂肪酶(LPS)。

5)组织切片观察。肝胰腺样品固定48 h,经过脱水、透明、浸蜡、包埋、切片等步骤处理后,用苏木精-伊红(HE)对切片染色,中性树脂封片后用Olympus BX53显微镜观察肝胰腺组织形态,并使用成像系统进行成像和图像采集。

1.5 数据分析

数据以平均值±标准误(mean±SE)的形式表示。使用SPSS 26.0软件进行单因素方差分析(One-way ANOVA),若有差异,则用Duncan’s法进行多重比较,P<0.05表示具有显著差异。最后使用Origin85软件作图。

2 结果与分析

2.1 克氏原螯虾的生长性能

投喂餐厨剩余物发酵产物后克氏原螯虾的生长性能如表3所示,饲料投喂30 d后,各组WGR、HSI、MY和SGR均无显著差异(P>0.05)。餐厨剩余物发酵产物添加组虾的存活率、总产出和总增重率均显著高于对照组,饲料系数均显著低于对照组(P<0.05)。其中,6%添加组的总产出为787.56 g,总增重率为196.71%,分别比对照组高52.70%和108.51%。

表3  饲料投喂30 d后克氏原螯虾的生长性能和产出情况
Table 3  Growth performance and output of Procambarus clarkii after 30 days of feeding
指标 Index餐厨剩余物发酵产物添加比例 Adding level
03%6%9%
初均质量/g Initial body weight 5.31±0.39 5.29±0.38 5.31±0.37 5.42±0.45
末均质量/g Final body weight 23.69±3.19 22.45±1.14 20.55±0.48 21.48±0.68
增重率/% Weight gain rate 345.82±54.10 324.18±23.50 287.10±12.59 296.28±6.58
肝胰腺指数/% Hepatosomatic index 7.79±1.21 7.63±0.21 7.31±0.46 8.23±0.77
出肉率/% Meat yield 13.20±1.00 13.03±2.52 11.49±0.10 11.38±1.69
特定生长率/(%/d) Specific growth rate 4.97±0.41 4.81±0.19 4.51±0.11 4.59±0.06
存活率/% Survival rate 44.00±5.29b 68.00±4.00a 76.67±11.02a 72.00±11.14a
饲料系数Feed conversion ratio 2.43±0.15a 1.66±0.14b 1.68±0.26b 1.69±0.20b
总投入/g Total input 265.38±4.08 264.68±1.52 265.46±2.38 270.92±3.99
总产出/g Total output 515.74±17.55b 763.38±62.17a 787.56±112.39a 775.41±142.38a
总增重率/% Total weight gain rate 94.34±6.13b 188.51±25.20a 196.71±42.67a 185.82±48.68a

注:  表中数据为3个重复的平均值; 同行数据中不同字母表示有显著差异(P<0.05); 下表同。Note:Data are means of triplicates. The values with different letters are significantly different (P<0.05). The same as below.

2.2 克氏原螯虾的肌肉组成成分

表4所示,投喂餐厨剩余物发酵产物30 d后,各组虾肌肉中的粗蛋白、灰分含量差异不显著(P>0.05)。餐厨剩余物发酵产物添加组与对照组在水分方面无显著差异(P>0.05),6%和9%添加组水分含量显著高于3%添加组(P<0.05)。对照组中粗脂肪含量最高,9%添加组低于对照组,但差异不显著(P>0.05),而3%和6%添加组则显著低于对照组(P<0.05),分别低12.61%和13.77%。

表4  克氏原螯虾肌肉基本成分比较
Table 4  Comparison of muscle composition of Procambarus clarkii ( % )
指标 Index餐厨剩余物发酵产物添加比例Adding level
03%6%9%
水分 Moisture 73.34±0.58ab 70.14±1.92b 74.64±0.37a 74.47±3.67a
粗蛋白(干物质) Crude protein (dry matter) 83.79±3.85 83.12±4.06 79.71±0.04 81.66±1.53
粗脂肪(干物质) Crude lipid (dry matter) 6.90±0.61a 6.03±0.33b 5.95±0.38b 6.39±0.32ab
灰分(干物质) Ash (dry matter) 8.04±3.33 9.56±3.80 13.02±0.42 10.68±1.27

2.3 克氏原螯虾肌肉的氨基酸组成

表5所示,投喂餐厨剩余物发酵产物后克氏原螯虾各组30 d时的肌肉组织中均检测出17种氨基酸,其中Glu含量均最高,其次为Asp、Ala; 含量最低的是Cys。各组必需氨基酸(EAA)总量、非必需氨基酸(NEAA)总量以及ΣEAA/ΣNEAA均无显著差异(P>0.05)。4种主要鲜味氨基酸(DAA)总量随着餐厨剩余物发酵产物的比例增加而减少,当添加比例达9%时,ΣDAA显著低于对照组和3%添加组(P<0.05)。

表5  克氏原螯虾肌肉氨基酸种类及含量分析
Table 5  Analysis of amino acid species and content in muscle of Procambarus clarkii ( % )

氨基酸

Amino acid

餐厨剩余物发酵产物添加比例 Adding level
03%6%9%
天冬氨酸Asp# 12.11±0.30ab 12.18±0.09a 11.95±0.16ab 11.83±0.22b
谷氨酸Glu# 18.56±0.28 18.84±0.49 18.63±0.11 18.89±0.20
丝氨酸Ser 7.45±0.16 7.44±0.20 7.33±0.26 7.61±0.23
苏氨酸Thr* 4.51±0.08 4.51±0.06 4.33±0.21 4.59±0.25
甘氨酸Gly# 9.62±0.65a 9.31±0.55ab 9.03±0.54ab 8.29±0.95b
丙氨酸Ala# 10.13±0.39 10.02±0.17 9.91±0.24 9.60±0.43
胱氨酸Cys 0.46±0.07 0.21±0.28 0.45±0.03 0.32±0.21
缬氨酸Val* 3.53±0.29 3.62±0.13 3.45±0.17 3.73±0.23
蛋氨酸Met* 2.06±0.28ab 1.69±0.28b 2.52±0.34a 2.32±0.54a
异亮氨酸Ile* 2.54±0.25 2.50±0.19 2.66±0.25 2.83±0.33
亮氨酸Leu* 6.73±0.20 6.76±0.29 6.80±0.10 6.68±0.40
酪氨酸Tyr 2.21±0.25 2.16±0.28 2.38±0.05 2.25±0.23
苯丙氨酸Phe* 3.03±0.10 3.07±0.12 3.02±0.09 3.03±0.06
组氨酸His* 2.26±0.19 2.37±0.24 2.31±0.10 2.43±0.18
赖氨酸Lys* 7.60±0.07bc 7.85±0.23a 7.54±0.07c 7.79±0.08ab
精氨酸Arg* 3.14±0.13b 3.41±0.13a 3.38±0.08a 3.47±0.18a
脯氨酸Pro 4.05±0.19 4.16±0.54 4.31±0.19 4.49±0.38
ΣEAA 35.42±0.69 35.79±0.94 36.01±0.62 36.87±1.39
ΣDAA 50.42±0.99a 50.35±0.45a 49.52±0.59ab 48.61±1.69b
ΣNEAA 64.58±0.69 64.21±0.94 63.99±0.62 63.13±1.39
ΣEAA/ΣNEAA 54.85±1.67 55.76±2.29 56.28±1.52 58.46±3.42

注:  ΣEAA为必需氨基酸总量,ΣNEAA为非必需氨基酸总量,ΣDAA为鲜味氨基酸总量, *表示必需氨基酸,#表示鲜味氨基酸。Note: ΣEAA is the sum of essential amino acids. ΣNEAA is the sum of non-essential amino acids. ΣDAA is the sum of delicious amino acids. * represents essential amino acid,and # represents delicious amino acid.

2.4 克氏原螯虾的肌肉质构

表6所示,投喂餐厨剩余物发酵产物30 d后,各组虾肌肉硬度、内聚力、胶黏性、咀嚼性和回复性均无显著差异(P>0.05)。餐厨剩余物发酵产物添加组虾的肌肉弹性显著比对照组大(P<0.05),且随着餐厨剩余物发酵产物比例的增加而呈递增趋势。

表6  克氏原螯虾肌肉质构指标
Table 6  Muscle texture indexes of Procambarus clarkii
指标 Index餐厨剩余物发酵产物添加比例 Adding level
03%6%9%
硬度/g Hardness 1 403.83±312.46 1 319.05±670.23 1 474.59±262.05 1 551.19±455.99
弹性/mm Springiness 0.68±0.08b 0.81±0.12a 0.83±0.10a 0.88±0.05a
内聚力 Cohesiveness 0.36±0.05 0.43±0.03 0.39±0.06 0.40±0.04
胶黏性/g Gumminess 514.33±161.83 561.66±290.05 572.01±130.89 613.77±197.71
咀嚼性/g Chewiness 354.36±152.34 429.59±145.48 473.48±120.26 534.18±158.13
回复性 Resilience 0.30±0.07 0.38±0.04 0.33±0.06 0.34±0.06

2.5 克氏原螯虾的血清免疫酶活性

图1所示,投喂餐厨剩余物发酵产物后,15 d时,克氏原螯虾AKP和ACP活性均在6%和9%添加组显著升高(P<0.05),LZM活性为6%添加组显著高于对照组(P<0.05)。30 d时,3%和6%添加组AKP活性显著比对照组高74.22%和76.56%(P<0.05),餐厨剩余物发酵产物添加组的ACP和LZM活性均显著高于对照组(P<0.05),其中6%添加组ACP和LZM活性比对照组高65.28%和172.42%,且LZM活性显著高于3%和9%添加组(P<0.05)。试验期间,各组AKP和ACP活性均呈现上升或较稳定的状态;而对照组的LZM活性呈现出较明显的下降趋势,6%和9%添加组呈现上升趋势。

图1  克氏原螯虾血清免疫酶活性

Fig.1  Serum immune enzyme activities of Procambarus clarkii

图中同一时间不同字母表示组间具有显著差异(P<0.05); 下图同。Different letters at the same time indicate significant differences (P<0.05). The same as below.

2.6 克氏原螯虾的肝胰腺消化酶活性

图2所示,15 d时,投喂餐厨剩余物发酵产物3%和6%添加组的克氏原螯虾肝胰腺LPS活性显著高于对照组(P<0.05),餐厨剩余物发酵产物添加组的AMS和胰蛋白酶活性与对照组相比均无显著差异(P>0.05)。30 d时,3%添加组LPS活性显著高于其他3组(P<0.05),餐厨剩余物发酵产物添加组AMS活性均显著高于对照组(P<0.05),各组胰蛋白酶活性无显著差异(P>0.05)。试验期间,6%添加组LPS活性下降,各组AMS和胰蛋白酶活性变化趋势相似。

图2  克氏原螯虾肝胰腺消化酶活性

Fig.2  Hepatopancreas digestive enzyme activities of Procambarus clarkii

2.7 克氏原螯虾的肝胰腺组织结构

图3所示,投喂餐厨剩余物发酵产物30 d时,各组克氏原螯虾肝胰腺肝小管排列紧密。其中,对照组、6%添加组肝小管形态较好,细胞结构正常,且6%添加组含有更丰富的R、E、F细胞。3%添加组的肝小管界限变得模糊,内部细胞结构不清晰。9%添加组的管腔内壁结构出现破损、褶皱减少,管腔增大。3%、9%添加组B细胞及其内部转运泡比对照组、6%添加组多。各组R细胞均含有丰富的脂滴,各组均可观察到F细胞中有被液泡包裹的棕色颗粒,并且对照组、3%添加组中的棕色颗粒更多。

图3  投喂饲料30 d时克氏原螯虾肝胰腺组织结构

Fig.3  Hepatopancreas structure of Procambarus clarkii after 30 days of feeding

L: 管腔 Lumen; BC: B细胞 B cell; RC: R细胞 R cell; FC: F细胞 F cell; EC: E细胞 E cell; LD: 脂滴 Lipid drop.

3 讨论

3.1 餐厨剩余物发酵产物对克氏原螯虾生长性能的影响

本研究中餐厨剩余物发酵产物的添加未对克氏原螯虾的末均质量和增重率产生影响,这与Mo

9在宝石鲈和尼罗罗非鱼上的研究结果一致。而与Mo9的研究不同的是,本研究中餐厨剩余物发酵产物添加组的饲料系数均显著降低,说明虾对餐厨剩余物发酵产物的利用率较好。各组增重率虽无显著差异,但有下降趋势,而本研究中饲料添加餐厨剩余物发酵产物导致饲料制粒时粉状料增加(9%添加组碎料粉料增加明显),饲料在水中稳定性不如对照组,影响了虾摄食,饲料系数增加。另有研究表明,在尼罗罗非鱼饲料中添加30%餐厨剩余物发酵产物时,可获得最低的饲料系数和最高的存活8; 在异育银鲫饲料中添加小于12%餐厨剩余物发酵产物,能够有效提高鲫的增重率和特定生长率,降低饲料系11。而本研究表明餐厨剩余物发酵产物的添加可使克氏原螯虾的存活率、总产出和总增重率大幅提高,且6%添加组效果最佳。上述结果说明,餐厨剩余物发酵产物对动物的生长效果可能因添加比例、养殖品种、饲料组成不同而异,并且不同地区和来源产生的餐厨剩余物,其营养成分差异大、不稳15,这也会导致饲喂效果不同。

3.2 餐厨剩余物发酵产物对克氏原螯虾肌肉品质的影响

水产品的质量是由肌肉的营养价值(如蛋白质、氨基酸、脂肪酸等)和感官品质(如滋味、风味、质构等)组合决定的,而这2种特征又与饲料成分息息相关,主要体现在饲料蛋白、脂肪来源及其水平高低等方

16。蛋白质含量是评价肌肉营养价值的主要依17,本研究发现各组虾肉粗蛋白含量差异不显著,表明餐厨剩余物发酵产物的添加对虾肉营养价值基本无影响。添加餐厨剩余物发酵产物后,虾肉粗脂肪含量均出现不同程度的下降,且3%和6%添加组较对照组显著降低,这可能是因为餐厨剩余物发酵产物中含有不同的蛋白源和脂肪源,影响了虾的糖脂代谢,导致脂质蓄积量减16

肌肉氨基酸组成结果表明餐厨剩余物发酵产物添加组ΣEAA和ΣEAA/ΣNEAA均高于对照组,其中9%添加组的ΣEAA和ΣEAA/ΣNEAA最大,分别为36.87%和58.46%,最接近FAO/WHO提出的理想值标

18,说明虾肉蛋白质质量较好,具有较高的食用营养价值。各组肌肉中4种主要鲜味氨基酸(DAA)含量约为氨基酸总量的一半,其中9%添加组的ΣDAA显著低于对照组,表明克氏原螯虾的鲜美度下降。特别的,我们发现投喂餐厨剩余物发酵产物后,精氨酸的含量显著增高。精氨酸虽然是苦味氨基酸,但却可以表现出一种特殊的令人愉悦的鲜甜19,有提升口感浓厚度的作用,能够增加部分风味。

硬度和弹性是反映肌肉感官品质的2个重要指

20。本试验结果表明,虾肉弹性随着餐厨剩余物发酵产物比例增加而增大,说明其对虾的肌肉感官品质有提升作用,肉质口感更爽21。对照组和3%添加组肌肉硬度较低,这可能是因为这2组的虾生长速度较快,导致其拥有较粗的肌纤维,最终使肌肉软22; 而6%和9%添加组肌肉硬度高、肉质较紧实,口感较好。质构特性结果还表明餐厨剩余物发酵产物添加组有着较好的内聚力和咀嚼性,这使得虾肉品质更加细腻有嚼劲,口感更优。总的来说,添加6%餐厨剩余物发酵产物可使虾肉具有较大的硬度和弹性及低含量的脂肪,肌肉品质得到了改23,同时鲜美程度和食用营养价值亦未受影响。

3.3 餐厨剩余物发酵产物对克氏原螯虾免疫酶活性的影响

甲壳动物缺乏特异性免疫球蛋白,其免疫主要依赖于自身的多种细胞和体液免疫因

24。其中AKP、ACP、LZM是重要的非特异性免疫酶,广泛参与甲壳动物的体液免疫和抗病过25-26。已有研究表明,餐厨剩余物发酵产物的添加未对宝石鲈和尼罗罗非鱼血清LZM活性产生显著影9。蒋加10也发现在异育银鲫饲料中添加9%以下的餐厨剩余物发酵产物对血清AKP活性无显著影响。而本研究中,餐厨剩余物发酵产物添加组的血清免疫酶活性在试验期间总体处于上升趋势,其中6%添加组投喂30 d时克氏原螯虾血清的AKP、ACP和LZM活性较对照组显著提高了76.56%、65.28%和172.42%,且LZM活性显著高于3%和9%添加组。这表明餐厨剩余物发酵产物能够增强克氏原螯虾非特异性免疫功能,有利于减少发病几率,这也可能是餐厨剩余物发酵产物添加组克氏原螯虾存活率较高的原因。

3.4 餐厨剩余物发酵产物对克氏原螯虾消化功能的影响

消化酶活性可直接反映动物对营养的消化吸收能力。Ao

11发现在饲料中添加小于12%的餐厨剩余物发酵产物对异育银鲫肝胰腺蛋白酶、淀粉酶和脂肪酶活性无显著影响; 当添加比例达30%时,淀粉酶活性显著降低,同时脂肪酶活性显著升高。而本研究发现,投喂餐厨剩余物发酵产物30 d时,3%添加组的肝胰腺脂肪酶活性显著高于对照组,餐厨剩余物发酵产物添加组淀粉酶活性较对照组均显著升高,并且随着餐厨剩余物发酵产物比例的增加,胰蛋白酶活性呈现上升趋势,说明餐厨剩余物发酵产物可以提高克氏原螯虾的消化功能。研究表明甲壳类动物消化酶活性受膳食营养调27,因此各试验结果的变化和饲料本身的性质有关,其中餐厨剩余物发酵产物中蛋白质来源的多样性以及饲料中植物蛋白与动物蛋白的比值变化很大程度影响着消化酶活11。同时,消化酶活性的升高也可能是发酵过程中产生的外源性消化酶和由于刺激(益生菌、有机酸等)产生的虾内源性消化酶共同作用的结28

肝胰腺在甲壳动物中发挥着类似于脊椎动物肝、肠和胰脏的作

29,是一个集消化、吸收、代谢于一体的重要器官。它由许多肝小管构成,而肝小管又由单层上皮细胞组成,主要包含B、R、E、F 4种细胞类30。本研究结果表明6%添加组的肝胰腺形态结构较好,且富含R、E、F细胞,说明添加6%餐厨剩余物发酵产物有利于维持肝胰腺的正常消化功能。R细胞具有储存脂质等营养物质的功能,本研究发现各组R细胞均含有丰富的脂滴,表明4组饲料均能够满足虾的营养需求。B细胞被认为是消化酶分泌和营养消化吸收的主要场31,本研究中B细胞及其内部转运泡为3%和9%添加组较多,说明这2组虾的肝胰腺消化吸收能力较强,这与消化酶的结果基本一致。F细胞可以对物质进行吸收转运,也能合成消化酶和血蓝蛋白,并具有解毒功32。本研究发现6%和9%添加组F细胞中的棕色颗粒物质较少,推测可能是随着餐厨剩余物发酵产物比例的增加,F细胞的物质转运功能越强,导致包裹的棕色颗粒越少。

综上,在本试验条件下,餐厨剩余物发酵产物可以应用于克氏原螯虾饲料中,适宜添加量为6%,此时克氏原螯虾的存活率提高、饲料系数下降,可获得较好的总产出和总增重率,且肌肉品质、免疫力、消化功能整体提升,综合效益最好。

参考文献References

1

张宁宁,李雪,吕新业,等.百年变局、世纪疫情背景下世界及中国粮食安全面临的风险挑战及应对策略[J].农业经济问题,2022,43(12):136-141.ZHANG N N,LI X,LÜ X Y,et al.Risks,challenges and strategies faced by the global and China’s food security under the unseen century changes and the pandemic[J].Issues in agricultural economy,2022,43(12):136-141 (in Chinese with English abstract). [百度学术] 

2

胡新军,张敏,余俊锋,等.中国餐厨垃圾处理的现状、问题和对策[J].生态学报,2012,32(14):4575-4584.HU X J,ZHANG M,YU J F,et al.Food waste management in China:status,problems and solutions[J].Acta ecologica sinica,2012,32(14):4575-4584 (in Chinese with English abstract). [百度学术] 

3

MO W Y,MAN Y B,WONG M H.Use of food waste,fish waste and food processing waste for China’s aquaculture industry:needs and challenge[J].The science of the total environment,2018,613/614:635-643. [百度学术] 

4

孙学军,宋琳,肖凯,等.餐桌剩余食物饲料化应用[J].养殖与饲料,2021,20(11):93-96.SUN X J,SONG L,XIAO K,et al.Application of surplus food in table as feed[J].Animals breeding and feed,2021,20(11):93-96 (in Chinese). [百度学术] 

5

崔艺燕,邓盾,田志梅,等.餐厨废弃物饲料化技术及其在动物生产中的应用[J].中国畜牧兽医,2021,48(12):4478-4487.CUI Y Y,DENG D,TIAN Z M,et al.Feed technology of food waste and its application in animal production[J].China animal husbandry & veterinary medicine,2021,48(12):4478-4487 (in Chinese with English abstract). [百度学术] 

6

郑珂.餐厨垃圾发酵生产肉鸡生物活性蛋白饲料的研究[D].西安:西北大学,2014.ZHENG K.Research on the bioactive protein feed of food waste for chickens[D].Xi’an:Northwest University,2014 (in Chinese with English abstract). [百度学术] 

7

潘冬梅,杨丹丹,刘圣鹏,等.餐厨垃圾发酵生产的生物饲料对猪生长性能及粪便中微生物的影响[J].中国农学通报,2017,33(14):117-120.PAN D M,YANG D D,LIU S P,et al.Bioactive-feed fermented by food waste affecting growth performance and fecal microorganism of pigs[J].Chinese agricultural science bulletin,2017,33(14):117-120 (in Chinese with English abstract). [百度学术] 

8

ANDRIANI Y,WIYATNA M F,LILI W,et al.Effect of addition of fermented restaurant waste meal in artificial feed on the growth of Nile tilapia (Oreochromis niloticus)[J/OL].IOP conference series:earth and environmental science,2021,674(1):012073[2023-06-30].https://doi.org/10.1088/1755-1315/674/1/012073. [百度学术] 

9

MO W Y,MAN Y B,ZHANG F,et al.Fermented food waste for culturing jade perch and nile tilapia:growth performance and health risk assessment based on metal/loids[J].Journal of environmental management,2019,236:236-244. [百度学术] 

10

蒋加鹏.餐厨垃圾好氧发酵产物的品质评价及其在鲫鱼饲料中的应用[D].武汉:武汉轻工大学,2019.JIANG J P.Quality evaluation of aerobic fermentation products of kitchen waste and its application in the diet for Carassius auratus[D].Wuhan:Wuhan Polytechnic University,2019 (in Chinese with English abstract). [百度学术] 

11

AO H L,JIANG J P,LIU L H,et al.Effects of dietary fermentation products of kitchen waste on growth,apparent digestibility,digestive enzyme activities and serum biochemistry in juvenile allogynogenetic gibel carp (Carassius auratus gibelio) var.CAS Ⅲ[J].Journal of the world aquaculture society,2021,52(4):895-912. [百度学术] 

12

张海涛,张坤琳,黄金昌,等.新型厨余发酵蛋白饲料替代鱼粉对泥鳅生长性能、肠道消化酶和菌群的影响[J].畜牧与兽医,2021,53(11):31-36.ZHANG H T,ZHANG K L,HUANG J C,et al.Effects of new food waste fermentation protein feed replacing fish meal on the growth performance,intestinal digestive enzymes and intestinal flora of Misgurnus anguillicaudatus[J].Animal husbandry & veterinary medicine,2021,53(11):31-36 (in Chinese with English abstract). [百度学术] 

13

于秀娟,郝向举,党子乔,等.中国小龙虾产业发展报告(2022)[J].中国水产,2022(6):47-54.YU X J,HAO X J,DANG Z Q,et al.China crayfish industry development report (2022)[J].China fisheries,2022(6):47-54 (in Chinese). [百度学术] 

14

彭迪,陈效儒,文华,等.饲料脂肪水平对克氏原螯虾亲虾生长性能、肌肉成分、繁殖性能以及血淋巴生化指标的影响[J].水产学报,2019,43(10):2175-2185.PENG D,CHEN X R,WEN H,et al.Effects of dietary lipid levels on growth performance,muscle composition,reproductive performance and hemolymph biochemical indices of Procambarus clarkii broodstock[J].Journal of fisheries of China,2019,43(10):2175-2185 (in Chinese with English abstract). [百度学术] 

15

黄林丽.公共餐厨垃圾饲料化利用技术研究[D].深圳:深圳大学,2020.HUANG L L.Research on utilization technology of public kitchen waste[D].Shenzhen:Shenzhen University,2020 (in Chinese with English abstract). [百度学术] 

16

马睿.营养与养殖大黄鱼品质之间关系的初步研究[D].青岛:中国海洋大学,2014.MA R.Preliminary study on relationship between nutrition and fish quality of farmed large yellow croaker(Pseudosciaena crocea)[D].Qingdao:Ocean University of China,2014 (in Chinese with English abstract). [百度学术] 

17

周剑,赵仲孟,黄志鹏,等.池塘和稻田养殖模式下克氏原螯虾肌肉和肝脏营养成分比较[J].渔业科学进展,2021,42(2):162-169.ZHOU J,ZHAO Z M,HUANG Z P,et al.Comparison of nutrient components in muscles and hepatopancreas of pond-and paddy field-cultured Procambarus clarkii[J].Progress in fishery sciences,2021,42(2):162-169 (in Chinese with English abstract). [百度学术] 

18

XU G F,WANG Y Y,BAI Q L,et al. Analysis on nutrient compositions and nutritional quality of Lota lota (Linnaeus) muscle [J]. Animal husbandry and feed science,2014,6(4): 197-200. [百度学术] 

19

CHEN D W,ZHANG M.Non-volatile taste active compounds in the meat of Chinese mitten crab (Eriocheir sinensis)[J].Food chemistry,2007,104(3):1200-1205. [百度学术] 

20

LIU H P,XU Y Y,ZU S Y,et al.Effects of high hydrostatic pressure on the conformational structure and gel properties of myofibrillar protein and meat quality:a review[J/OL].Foods,2021,10(8):1872[2023-06-30].https://doi.org/10.3390/foods10081872. [百度学术] 

21

胡盼,高乔,韩雨哲,等.野生与池塘、工厂化养殖牙鲆肌肉理化品质及质构特性比较研究[J].水生生物学报,2015,39(4):723-729.HU P,GAO Q,HAN Y Z,et al.Comparison of the physicochemical qualities and the muscle textural characteristics between the wild,pond- and factory-cultured Paralichthys olivaceus[J].Acta hydrobiologica sinica,2015,39(4):723-729 (in Chinese with English abstract). [百度学术] 

22

FOLKESTAD A,RØRVIK K A,KOLSTAD K,et al.Growth rates of individual farmed Atlantic salmon Salmo salar L.influence the texture of raw and smoked fillets[J].Aquaculture research,2008,39(3):329-332. [百度学术] 

23

VIDELER J J.An opinion paper:emphasis on white muscle development and growth to improve farmed fish flesh quality[J].Fish physiology and biochemistry,2011,37(2):337-343. [百度学术] 

24

BOUALLEGUI Y.A comprehensive review on crustaceans’ immune system with a focus on freshwater crayfish in relation to crayfish plague disease[J/OL].Frontiers in immunology,2021,12:667787[2023-06-30]. https://doi.org/10.3389/fimmu.2021.667787. [百度学术] 

25

ZHANG Y Y,MI K H,XUE W,et al.Acute BPA exposure-induced oxidative stress,depressed immune genes expression and damage of hepatopancreas in red swamp crayfish Procambarus clarkii[J].Fish & shellfish immunology,2020,103:95-102. [百度学术] 

26

常杰,牛化欣,张文兵.刺参免疫系统及其免疫增强剂评价指标的研究进展[J].中国饲料,2011(6):8-12.CHANG J,NIU H X,ZHANG W B.Research advance in immune system of Apostichopus japonicuss selenk and its immunostimulants[J].China feed,2011(6):8-12 (in Chinese with English abstract). [百度学术] 

27

WU F,GU Z M,CHEN X R,et al.Effect of lipid sources on growth performance,muscle composition,haemolymph biochemical indices and digestive enzyme activities of red swamp crayfish (Procambarus clarkii)[J].Aquaculture nutrition,2021,27(6):1996-2006. [百度学术] 

28

张来荣,万金娟,刘天骥,等.生物发酵饲料对克氏原螯虾生长、肌肉营养成分及消化酶活性的影响[J].中国饲料,2022(10):80-84.ZHANG L R,WAN J J,LIU T J,et al.Effects of bio-fermented feeds on growth,muscle nutrient composition and digestive enzymatic activity in intestine of Procambarus clarkii[J].China feed,2022(10):80-84 (in Chinese with English abstract). [百度学术] 

29

WANG C L,WANG X D,XIAO S S,et al.T-2 toxin in the diet suppresses growth and induces immunotoxicity in juvenile Chinese mitten crab (Eriocheir sinensis)[J].Fish & shellfish immunology,2020,97:593-601. [百度学术] 

30

CACECI T,NECK K F,LEWIS D D H,et al.Ultrastructure of the hepatopancreas of the Pacific white shrimp,Penaeus vannamei (Crustacea:Decapoda)[J].Journal of the marine biological association of the United Kingdom,1988,68(2):323-337. [百度学术] 

31

HU K J,LEUNG P C.Food digestion by cathepsin L and digestion-related rapid cell differentiation in shrimp hepatopancreas[J].Comparative biochemistry and physiology,2007,146(1):69-80. [百度学术] 

32

VOGT G.Functional cytology of the hepatopancreas of decapod crustaceans[J].Journal of morphology,2019,280(9):1405-1444. [百度学术]