摘要
CFEM (common in fungi extracellular membrane)蛋白是仅存在于真菌的一种细胞外膜蛋白,在真菌中往往起到效应子的作用。本文阐述了不同病原真菌CFEM蛋白的结构、起源、进化及其作用和分子机制,强调了致病性真菌中CFEM蛋白在获取铁元素、维护真菌细胞壁完整性、影响真菌生长发育、侵染结构形成及引发宿主免疫反应等方面的重要作用。同时对扩展青霉的CFEM蛋白进行生物信息学分析,并针对未来CFEM蛋白在侵染致病中的作用及分子机制等研究进行讨论和展望。旨在进一步解析CFEM蛋白在侵染致病中的作用和分子机理,为防控植物病原真菌病害提供理论基础和参考。
关键词
病原真菌侵染植物时,病原真菌孢子或菌丝体首先附着在植物表面或伤口,届时分泌细胞壁降解酶(cell wall degrading enzyme,CWDEs)破坏植物的物理屏障,随后利用植物的营养成分让菌丝进一步在植物内部扩散和生长。此外病原真菌还会分泌一些效应蛋白(效应子),与植物细胞表面相关受体蛋白或植物细胞内相关蛋白互作,干扰植物的正常生理过程或抑制植物的抗病免疫反
病原真菌效应子大多有信号肽,少数没有。后者主要通过囊泡介导的运输途径进入宿主细胞发挥作
CFEM是一种只在真菌中存在、包含60~75个氨基酸、具有8个间隔高度保守的半胱氨酸并含有CFEM结构域的蛋

图1 CFEM蛋白中8个保守的半胱氨
Fig. 1 There are eight highly conserved cysteine residues in the CFEM domain
Bits:每个氨基酸出现的频率,越高代表此氨基酸出现概率越大。 Bits: frequency of each amino acid, where higher values indicate a greater probability of that amino acid appearing.
基因名 Gene name | 基因ID Gene ID | 蛋白质ID Protein ID | 氨基酸数量 No.of amino acids | 半胱氨酸占比 Precents of Cys | 亚细胞定位 Subcellular localization | 信号肽 Sp cleavage(AA) | GPI结合位点 GPI-anchored |
---|---|---|---|---|---|---|---|
PeCFEM1 | PEX2_024290 | XP_016596466.1 | 204 | 4.9 | Extr. | 18~19 | S177/G179 |
PeCFEM2 | PEX2_026860 | XP_016593608.1 | 1330 | 2.71 | Extr. | 20~21 | S1300/S1307 |
PeCFEM3 | PEX2_028320 | XP_016593518.1 | 171 | 4.68 | Extr. | 18~19 | N145/G146 |
PeCFEM4 | PEX2_029630 | XP_016597360.1 | 88 | 7.95 | Extr. | 18~19 | None |
PeCFEM5 | PEX2_029710 | XP_016597368.1 | 217 | 3.69 | Extr. | 18~19 | S190/G195 |
PeCFEM6 | PEX2_035730 | XP_016601140.1 | 646 | 1.55 | Plas. | 23~24 | None |
PeCFEM7 | PEX2_043920 | XP_016603369.1 | 644 | 4.04 | Extr. | 15~16 | N622 |
PeCFEM8 | PEX2_054470 | XP_016600972.1 | 268 | 2.99 | Extr. | 20~21 | G244/A245 |
PeCFEM9 | PEX2_092030 | XP_016600189.1 | 472 | 4.66 | Extr. | 21~22 | None |
注Note:Cys:半胱氨酸 Cysteine; Sp:信号肽Signal peptide; Extr.:胞外Extracellular; Plas.:质膜Plasma membrane.
依据CFEM蛋白是否含有跨膜结构域可以分为2类,含有7个跨膜结构域的类似Pth11型(the Pth11-like type)CFEM蛋白和非Pth11型(non-Pth11-like type)CFEM分泌蛋

图2 P. expansum 中CFEM的结构域
Fig. 2 The structure domain of CFEMs in P. expansum
黑色部分:信号肽;灰色部分:CFEM结构域;浅灰矩形:跨膜结构域;浅灰椭圆:GPI结合位点。其中,S:丝氨酸,N:天冬酰胺,G:甘氨酸,A:丙氨酸。Black areas: Signal peptide; Gray areas: CFEM domain; Shallow gray rectangle: Transmembrane domain; Shallow gray ellipse: GPI-anchoring site. S: Serine, N: Asparagine, G: Glycine, A: Alanine.
已报道的CFEM蛋白中,仅白色念珠菌(C. albicans)中的Csa2蛋白的晶体结构被解析(

图3 Candida albicans 中Csa2的三级结
Fig. 3 The structure of Csa2 in Candida albicans
A: Csa2的整体的三维结构; B: Csa2局部三维结构; C:Csa2中能够结合血红素的Asp80残基。A: The overall three-dimensional structure of Csa2; B:The local three-dimensional structure of Csa2; C:The Asp80 residue in Csa2 is identified as being capable of binding heme.

图4 P. expansum中CFEM蛋白的三维结构
Fig. 4 Three-dimensional structure of the CFEM proteins in P. expansum
C4y7sC:白色念珠菌的Csa2,图中展现了置信度和覆盖度,置信度越高,说明结构越相似。C4y7sC is Csa2 from Candida albicans. The figure displays both confidence and coverage, where higher confidence indicates greater structural similarity.
CFEM蛋白仅存在于真菌中,目前尚未在植物、动物和原核生物中发现。为了研究CFEM蛋白的起源,张真

图5 不同物种的CFEM系统发育树
Fig. 5 The phylogenetic tree of CFEM systems across different species
Pe:扩展青霉 Penicillium expansum;Lt:可可毛色二孢菌 Lasiodiplodia theobromae;Fg:禾谷镰刀菌 Fusarium graminearum;An:构巢曲霉 Aspergillus nidulans;Bc:灰葡萄孢 Botrytis cinerea;Cg:灰盖拟鬼伞 Coprinopsis cinerea;Lb:双色蜡蘑 Laccaria bicolor;Rbt5、Pga10、Pga7、Csa1和Csa2是白色念珠菌(Candida albicans)中的CFEM蛋白 Rbt5, Pga10, Pga7, Csa1, and Csa2 are CFEM proteins from Candida albicans.
CFEM蛋白表达模式在不同真菌中可能有所差异,与其分类无相关性。CFEM_DR1~CFEM_DR6在尖镰孢菌(Fusarium oxysporum)不同侵染时期的表达量存在差异,当Foc1(F. oxysporum f. sp. cubense1)侵染甘蓝时,可以检测到CFEM_DR2、CFEM_DR4、CFEM_DR5、CFEM_DR6基因的转录,但检测不到CFEM_DR1和CFEM_DR3这2个基因的转录,可能是因为此时这2个基因还未被激活,导致表达量较
蛋白质的作用位置与其功能密切相
真菌细胞壁由多种不同分子组成,包括蛋白质、多糖和其他生物分子。CFEM蛋白通常存在于真菌细胞外膜,可能通过参与细胞壁组装和维持影响真菌细胞的形态和结构。例如,Pérez
铁是植物、动物和微生物生长发育所必需
研究表明CFEM蛋白对维持病原真菌细胞内的铁含量发挥着重要的作用,因为铁离子会影响真菌生长发育以及病原真菌与宿主的互作。白色念珠菌(C. albicans )中的CFEM蛋白Rbt5/Rbt51通过O-甘露糖基化GPI锚定在细胞膜上的血红素结合蛋白,对血红素和血红蛋白铁的利用起着重要作用。缺铁条件下Rbt5被强烈激活表达并主导血红素和血红蛋白铁的利用;富铁条件下Rbt51在酿酒酵母(Saccharomyces cerevisiae)中的高表达促进血红蛋白铁的利用;当同时敲除Rbt5基因和Rbt51基因时,Wap1基因也参与血红素结合。研究结果表明,Rbt5/Rbt51可能通过促进血红素进入细胞或与血红素转运体协同作用来维持细胞内的铁平

图6 病原真菌CFEM的功能及分子机
Fig. 6 Schematic of the function and mechanism of CFEM in pathogenic fungi
Fungi cell:病原真菌体内CFEM螯合铁离子所进行的一系列分子机制Molecular mechanisms by which CFEM proteins within pathogenic fungi chelate iron ions; Host cell:CFEM作为信号分子或进入寄主细胞内引起寄主细胞免疫反应的一系列机制Series of mechanisms by which CFEM proteins act as signaling molecules or enter host cells, triggering immune responses.
1)调控生长发育从而影响侵染过程。病原真菌孢子附着在植物表面经萌发后形成附着胞或侵染钉等结构或者通过自然孔口或机械损伤处成功侵入。研究表明病原真菌侵染宿主时会分泌一些CFEM效应子,它们严重影响菌丝形态和色素积累、菌体的生长速率和附着胞的形成,说明它们在侵染致病中行使重要的作用(
2)通过信号转导干扰寄主免疫反应。植物细胞膜或膜外的CFEM蛋白,作为细胞表面受体响应胞外信号,与植物细胞壁或细胞外基质的成分结合,干扰寄主的免疫反应(
真菌效应子通常会引起寄主体的程序性细胞死亡(programmed cell death,PCD)。触发PCD过程通常与DNA损伤、氧化应激(ROS)、激素代谢变化和病原真菌侵染有关。植物经历PCD过程后往往会生成一些次级代谢产物,比如植物激素、酚类化合物、萜类化合物、生物碱
CFEM蛋白在不同真菌的分布、表达和功能有较大差异,说明其生物学功能的进化与差异较大。CFEM蛋白有高度保守的氨基酸序列,且在大多数真菌中结构域长度相近,但致病性真菌中CFEM蛋白数量通常多于非致病性真菌,而不同真菌CFEM蛋白数量及功能多样化是否存在进化关系尚不清楚。CFEM蛋白广泛分布在各种真菌中,但有关其生理功能的研究仅在极少数病原真菌(稻瘟病菌、白色念珠菌、禾谷炭疽菌和镰刀菌等)中有报道,因此还需要进一步扩展和加大CFEM蛋白在其他真菌中的研究。此外,CFEM蛋白除了与细胞壁的形成相关,还参与维持细胞体内铁平衡、真菌生长发育和致病等重要的生命活动。CFEM蛋白作为效应分子与宿主互作促进成功定殖和感染,不同致病真菌中CFEM蛋白的毒性功能及参与侵染致病的分子机制有所差异。目前有关CFEM蛋白在侵染致病中与寄主互作的作用靶标及分子作用机理研究甚少,仍存在较大空白,其分子机制还需进一步解析。解析 CFEM的生物学功能,研究其与寄主互作的分子机理,对解析其蛋白功能具有重要意义。本文将有助于深入理解植物-病原菌互作的分子机理,并为农作物病害的防控提供新的思路。
参考文献 References
DODDS P N,RATHJEN J P.Plant immunity:towards an integrated view of plant-pathogen interactions[J].Nature reviews.genetics,2010,11(8):539-548. [百度学术]
NGEA G L N,QIAN X,YANG Q Y,et al.Securing fruit production:opportunities from the elucidation of the molecular mechanisms of postharvest fungal infections[J].Comprehensive reviews in food science and food safety,2021,20(3):2508-2533. [百度学术]
HACQUARD S,KRACHER B,MAEKAWA T,et al.Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts[J].PNAS,2013,110(24):2219-2228. [百度学术]
NOWARA D,GAY A,LACOMME C,et al.HIGS:host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis[J].The plant cell,2010,22(9):3130-3141. [百度学术]
DOEHLEMANN G,HEMETSBERGER C.Apoplastic immunity and its suppression by filamentous plant pathogens[J].The new phytologist,2013,198(4):1001-1016. [百度学术]
JONES J D,DANGL J L.The plant immune system[J].Nature,2006,444(7117):323-329. [百度学术]
CHEN L H,KRAČUN S K,NISSEN K S,et al.A diverse member of the fungal Avr4 effector family interacts with de-esterified pectin in plant cell walls to disrupt their integrity[J/OL].Science advances,2021,7(19):eabe0809[2024-05-29]. https://10.1126/sciadv.abe0809. [百度学术]
DUHAN D,GAJBHIYE S,JASWAL R,et al.Functional characterization of the Nep1-like protein effectors of the necrotrophic pathogen-Alternaria brassicae[J/OL].Frontiers in microbiology,2021,12:738617[2024-05-29]. https:// 10.3389/fmicb.2021.738617. [百度学术]
ADIE B,CHICO J M,RUBIO-SOMOZA I,et al.Modulation of plant defenses by ethylene[J].Journal of plant growth regulation,2007,26(2):160-177. [百度学术]
MANNING V A,CHU A L,SCOFIELD S R,et al.Intracellular expression of a host-selective toxin,ToxA,in diverse plants phenocopies silencing of a ToxA-interacting protein,ToxABP1[J].The new phytologist,2010,187(4):1034-1047. [百度学术]
KULKARNI R D,KELKAR H S,DEAN R A.An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins[J].Trends in biochemical sciences,2003,28(3):118-121. [百度学术]
LONES G W,PEACOCK C L.Studies of the growth and metabolism of coccidioides immitis[J].Annals of the New York Academy of Sciences,1960,89(1):102-108. [百度学术]
WEISSMAN Z,KORNITZER D.A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization[J].Molecular microbiology,2004,53(4):1209-1220. [百度学术]
RAMANUJAM R,CALVERT M E,SELVARAJ P,et al.The late endosomal HOPS complex anchors active G-protein signaling essential for pathogenesis in magnaporthe oryzae[J/OL].PLoS pathogens,2013,9(8):e1003527[2024-05-29]. https:// doi.org/10.1371/journal.ppat.1003527. [百度学术]
VAKNIN Y,SHADKCHAN Y,LEVDANSKY E,et al.The three Aspergillus fumigatus CFEM-domain GPI-anchored proteins (CfmA-C) affect cell-wall stability but do not play a role in fungal virulence[J].Fungal genetics and biology,2014,63:55-64. [百度学术]
CUEVAS-FERNANDEZ F B, BARONCELLI R, BECERRA-ZAMBRANO S D, et al. A small species-specific effector from Colletotrichum graminicola that targets the host nucleus and aids in virulence at the early stages of infection[J]. Phytopathology, 2021, 111(10): 6-16. [百度学术]
KUO C Y,TAY R J,LIN H C,et al.The nematode-trapping fungus Arthrobotrys oligospora detects prey pheromones via G protein-coupled receptors[J].Nature microbiology,2024,9(7):1738-1751. [百度学术]
ZUO N,BAI W Z,WEI W Q,et al.Fungal CFEM effectors negatively regulate a maize wall-associated kinase by interacting with its alternatively spliced variant to dampen resistance[J/OL].Cell reports,2022,41(13):111877[2024-05-29].https://10.1016/j.celrep.2022.111877. [百度学术]
VLEESHOUWERS V G A A,RAFFAELE S,VOSSEN J H,et al.Understanding and exploiting late blight resistance in the age of effectors[J].Annual review of phytopathology,2011,49:507-531. [百度学术]
CAI N,NONG X Q,LIU R,et al.The conserved cysteine-rich secretory protein MaCFEM85 interacts with MsWAK16 to activate plant defenses[J/OL].International journal of molecular sciences,2023,24(4):4037[2024-05-29]. https://doi.org/10.3390/ijms24044037. [百度学术]
SHANG S P,LIU G L,ZHANG S,et al.A fungal CFEM-containing effector targets NPR1 regulator NIMIN2 to suppress plant immunity[J].Plant biotechnology journal,2024,22(1):82-97. [百度学术]
GIRALDO M C,DAGDAS Y F,GUPTA Y K,et al.Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae[J/OL].Nature communications,2013,4:1996[2024-05-29].https://doi.org/10.1038/ncomms2996. [百度学术]
王丹.大丽轮枝菌CFEM类小分子富含半胱氨酸蛋白家族基因功能研究[D].北京:中国农业科学院,2020.WANG D.Study on the gene function of cysteine-rich protein family of CFEM small molecules in verticillium dahliae[D].Beijing:Chinese Academy of Agricultural Sciences,2020 (in Chinese with English abstract). [百度学术]
PENG Y J,HOU J,ZHANG H,et al.Systematic contributions of CFEM domain-containing proteins to iron acquisition are essential for interspecies interaction of the filamentous pathogenic fungus Beauveria bassiana[J].Environmental microbiology,2022,24(8):3693-3704. [百度学术]
QIU C D,HALTERMAN D,ZHANG H J,et al.Multifunctionality of AsCFEM6 and AsCFEM12 effectors from the potato early blight pathogen Alternaria solani[J/OL].International journal of biological macromolecules,2024,257:128575[2024-05-29]. https://doi.org/10.1016/j.ijbiomac.2023.128575. [百度学术]
DEZWAAN T M,CARROLL A M,VALENT B,et al.Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues[J].The plant cell,1999,11(10):2013-2030. [百度学术]
NASSER L,WEISSMAN Z,PINSKY M,et al.Structural basis of haem-iron acquisition by fungal pathogens[J/OL].Nature microbiology,2016,1(11):16156[2024-05-29]. https:// 10.1038/nmicrobiol.2016.156. [百度学术]
张真娜.CFEM结构域在真菌中的进化研究[D].昆明:云南大学,2012.ZHANG Z N.Evolution of CFEM domain in fungi[D].Kunming:Yunnan University,2012 (in Chinese with English abstract). [百度学术]
JAMES T Y,KAUFF F,SCHOCH C L,et al.Reconstructing the early evolution of fungi using a six-gene phylogeny[J].Nature,2006,443(7113):818-822. [百度学术]
INOKUMA K,KITADA Y,BAMBA T,et al.Improving the functionality of surface-engineered yeast cells by altering the cell wall morphology of the host strain[J].Applied microbiology and biotechnology,2021,105(14/15):5895-5904. [百度学术]
LING J,ZENG F,CAO Y X,et al.Identification of a class of CFEM proteins containing a new conserved motif in Fusarium oxysporum[J].Physiological and molecular plant pathology,2015,89:41-48. [百度学术]
ZHU W J,WEI W,WU Y Y,et al.BcCFEM1,a CFEM domain-containing protein with putative GPI-anchored site,is involved in pathogenicity,conidial production,and stress tolerance in Botrytis cinerea[J/OL].Frontiers in microbiology,2017,8:1807[2024-05-29]. https://doi.org/10.3389/fmicb.2017.01807. [百度学术]
ARYA G C,SRIVASTAVA D A,PANDARANAYAKA E P J,et al.Characterization of the role of a non-GPCR membrane-bound CFEM protein in the pathogenicity and germination of Botrytis cinerea[J/OL].Microorganisms,2020,8(7):1043[2024-05-29]. https://doi.org/10.3390/microorganisms8071043. [百度学术]
PENG J B,WU L N,ZHANG W,et al.Systemic identification and functional characterization of common in fungal extracellular membrane proteins in Lasiodiplodia theobromae[J/OL].Frontiers in plant science,2021,12:804696[2024-05-29]. https://doi.org/10.3389/fpls.2021.804696. [百度学术]
ZHANG Z N,WU Q Y,ZHANG G Z,et al.Systematic analyses reveal uniqueness and origin of the CFEM domain in fungi[J/OL].Scientific reports,2015,5:13032[2024-05-29]. https://doi.org/10.1038/srep13032. [百度学术]
CHEN L Q,WANG H Y,YANG J H,et al.Bioinformatics and transcriptome analysis of CFEM proteins in Fusarium graminearum[J/OL].Journal of fungi,2021,7(10):871[2024-05-29]. https://doi.org/10.3390/jof7100871. [百度学术]
DUBOVSKIY I M,BUTT T.Entomopathogenic fungi in biological plant protection:the machinery of multicomponent system interactions[J/OL].Journal of fungi,2023,9(8):825[2024-05-29]. https://doi.org/10.3390/jof9080825. [百度学术]
BAI X X,PENG H,GOHER F,et al.A candidate effector protein PstCFEM1 contributes to virulence of stripe rust fungus and impairs wheat immunity[J/OL].Stress biology,2022,2(1):21[2024-05-29]. https://doi.org/10.1007/s44154-022-00042-5. [百度学术]
WANG K L,ZHENG X F,ZHANG X Y,et al.Comparative transcriptomic analysis of the interaction between Penicillium expansum and apple fruit (Malus pumila Mill.) during early stages of infection[J/OL].Microorganisms,2019,7(11):495[2024-05-29].https://doi.org/10.3390/microorganisms7110495. [百度学术]
XU M Q,YANG Q Y,SERWAH BOATENG N A,et al.Ultrastructure observation and transcriptome analysis of Penicillium expansum invasion in postharvest pears[J/OL].Postharvest biology and technology,2020,165:111198[2024-05-29]. https://doi.org/10.1016/j.postharvbio.2020.111198. [百度学术]
KIM S,KIM C Y,PARK S Y,et al.Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming[J/OL].Nature communications,2020,11(1):5845[2024-05-29]. https:// 10.1038/s41467-020-19624-w. [百度学术]
QIAN Y L,ZHENG X Y,WANG X Y,et al.Systematic identification and functional characterization of the CFEM proteins in poplar fungus Marssonina brunnea[J/OL].Frontiers in cellular and infection microbiology,2022,12:1045615[2024-05-29]. https:// 10.3389/fcimb.2022.1045615. [百度学术]
WANG J X,LONG F,ZHU H,et al.Bioinformatic analysis and functional characterization of CFEM proteins in Setosphaeria turcica[J].Journal of integrative agriculture,2021,20(9):2438-2449. [百度学术]
付秀霞,李志宇,吴羽佳,等. 植物病原真菌CFEM蛋白研究进展 [J]. 福建农业学报, 2022, 37 (12): 1626-1632. FU X X, LI Z Y, WU Y J, et al. Research progress on CFEM proteins in phytopathogenic pungi [J]. Fujian journal of agricultural sciences,2022, 37(12):1626-1632. [百度学术]
PÉREZ A,RAMAGE G,BLANES R,et al.Some biological features of Candida albicans mutants for genes coding fungal proteins containing the CFEM domain[J].FEMS yeast research,2011,11(3):273-284. [百度学术]
SABNAM N,ROY BARMAN S.WISH,a novel CFEM GPCR is indispensable for surface sensing,asexual and pathogenic differentiation in rice blast fungus[J].Fungal genetics and biology,2017,105:37-51. [百度学术]
MATHIONI S M,PATEL N,RIDDICK B,et al.Transcriptomics of the rice blast fungus Magnaporthe oryzae in response to the bacterial antagonist Lysobacter enzymogenes reveals candidate fungal defense response genes[J/OL].PLoS One,2013,8(10):e76487[2024-05-29]. https:// 10.1371/journal.pone.0076487. [百度学术]
XU M Q,ZHANG X Y,DHANASEKARAN S,et al.Transcriptome analysis of postharvest pear (Pyrus pyrifolia Nakai) in response to Penicillium expansum infection[J/OL].Scientia horticulturae,2021,288:110361[2024-05-29]. https://doi.org/10.1016/j.scienta.2021.110361. [百度学术]
MENTLAK T A,KOMBRINK A,SHINYA T,et al.Effector-mediated suppression of chitin-triggered immunity by magnaporthe oryzae is necessary for rice blast disease[J].The plant cell,2012,24(1):322-335. [百度学术]
皮磊. 希金斯炭疽菌效应分子ChEP011和ChEP113的功能分析[D].广州: 华南农业大学, 2019. PI L. Functional analysis of effectors ChEP011 and ChEP113 of Colletotrichum higginsianum[D]. Guangzhou: South China Agricultural University,2019(in Chinese with English abstract). [百度学术]
XING Y Y,XU N,BHANDARI D D,et al.Bacterial effector targeting of a plant iron sensor facilitates iron acquisition and pathogen colonization[J].The plant cell,2021,33(6):2015-2031. [百度学术]
ALBAROUKI E,DEISING H B.Infection structure-specific reductive iron assimilation is required for cell wall integrity and full virulence of the maize pathogen Colletotrichum graminicola[J].Molecular plant-microbe interactions,2013,26(6):695-708. [百度学术]
SORGO A G,BRUL S,DE KOSTER C G,et al.Iron restriction-induced adaptations in the wall proteome of Candida albicans[J].Microbiology,2013,159(8):1673-1682. [百度学术]
ROY U,YAISH S,WEISSMAN Z,et al.Ferric reductase-related proteins mediate fungal heme acquisition[J/OL].eLife,2022,11:e80604[2024-05-29]. https://10.7554/eLife.80604. [百度学术]
SRIVASTAVA V K,SUNEETHA K J,KAUR R.A systematic analysis reveals an essential role for high-affinity iron uptake system,haemolysin and CFEM domain-containing protein in iron homoeostasis and virulence in Candida glabrata[J].The biochemical journal,2014,463(1):103-114. [百度学术]
WANG D,ZHANG D D,SONG J,et al.Verticillium dahliae CFEM proteins manipulate host immunity and differentially contribute to virulence[J/OL].BMC biology,2022,20(1):55[2024-05-29].https://doi.org/10.1186/s12915-022-01254-x. [百度学术]
ELLIS J G,RAFIQI M,GAN P,et al.Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens[J].Current opinion in plant biology,2009,12(4):399-405. [百度学术]
DENG J X,DEAN R A.Characterization of adenylate cyclase interacting protein ACI1 in the rice blast fungus,Magnaporthe oryzae[J].The open mycology journal,2008,2(1):74-81. [百度学术]
KOU Y J,TAN Y H,RAMANUJAM R,et al.Structure-function analyses of the Pth11 receptor reveal an important role for CFEM motif and redox regulation in rice blast[J].The new phytologist,2017,214(1):330-342. [百度学术]
EL HAJJ ASSAF C,ZETINA-SERRANO C,TAHTAH N,et al.Regulation of secondary metabolism in the Penicillium genus[J].International journal of molecular sciences,2020,21(24):9462-9487. [百度学术]
WANG Y,PRUITT R N,NÜRNBERGER T,et al.Evasion of plant immunity by microbial pathogens[J].Nature reviews microbiology,2022,20(8):449-464. [百度学术]
XING Q K,ZHOU X G,CAO Y,et al.The woody plant-degrading pathogen Lasiodiplodia theobromae effector LtCre1 targets the grapevine sugar-signaling protein VvRHIP1 to suppress host immunity[J].Journal of experimental botany,2023,74(8):2768-2785. [百度学术]
井忠英.玉米炭疽病菌CFEM效应子的系统鉴定与功能分析[D].北京:中国农业科学院,2015.JING Z Y.Systematic identification and functional analysis of CFEM effector of maize anthracnose[D].Beijing:Chinese Academy of Agricultural Sciences,2015 (in Chinese with English abstract). [百度学术]
VÁZQUEZ-AVENDAÑO R,RODRÍGUEZ-HAAS J B,VELÁZQUEZ-DELGADO H,et al.Insights of the Neofusicoccum parvum- Liquidambar styraciflua interaction and identification of new cysteine-rich proteins in both species[J].Journal of fungi,2021,7(12):1027-1047. [百度学术]
SHANG J M,TANG G R,YANG J,et al.Sensing of a spore surface protein by a Drosophila chemosensory protein induces behavioral defense against fungal parasitic infections[J].Current biology,2023,33(2):276-286. [百度学术]