摘要
为探究旱地红壤微生物群落与不同施肥制度之间的关系,采用宏基因组测序,比较分析长期定位试验地4种施肥处理:不施肥(CK)、施氮磷钾肥(NPK)、施有机肥(OM)、氮磷钾肥和有机肥混合施用(NPKOM)的土壤微生物群落组成及多样性。结果显示:相比对照,施用有机肥和氮磷钾肥和有机肥混合施用显著增加放线菌门 (Actinobacteria) 和变形菌门 (Proteobacteria) 的丰度,降低了绿弯菌门 (Chloroflexi) 的丰度;施肥显著改变微生物群落结构,施用无机肥降低土壤微生物数量,施用有机肥和无机有机混合施用则增加土壤微生物数量;土壤微生物群落在门水平与pH、全磷 (TP)、土壤有机质 (SOM)、碱解氮 (AN) 和有效磷 (AP )含量显著相关,pH是影响土壤微生物群落结构的关键因素;不同施肥处理下微生物代谢功能差异显著。
氮素是植物生长和发育过程中不可或缺的元素之一。为了增加作物产量,农户施用大量的氮肥到农田土壤中。据报道目前我国的氮肥施用量占全球总用量的33%,但是氮肥的利用率却低于世界平均水
大量研究表明,农田生态系统中肥料的施用对于土壤微生物的数量及群落结构具有显著影
试验地点位于江西省南昌市进贤县红壤研究所(116°24′E, 28°37′N),供试土壤采集于1986年开始的红壤旱地施肥长期定位试验地,总共设置10个施肥处理,包括(1)不施肥处理(CK);(2)施用氮肥(N);(3)施用磷肥(P);(4)施用钾肥(K);(5)施用氮磷肥(NP);(6)施用氮钾肥(NK);(7)施用氮磷钾肥(NPK);(8)施用2倍用量的氮磷钾肥(2NPK);(9)施用氮磷钾肥的同时施新鲜猪粪(NPKOM);(10)施新鲜猪粪(OM)。该地全年平均气温在20 °C左右、无霜期平均为284 d、日照时数1 900~2 000 h、同时年降雨量约为1 500 mm。土壤主要由第四纪红黏土发育而来,形成了肥力水平中等的红壤。土壤pH值5.0左右,全磷含量0.12 g/kg、全钾含量1.35 g/kg、土壤有机质含量15.95 g/kg、土壤有效氮含量90.64 mg/kg、速效磷含量67.34 mg/kg、NO
选用长期定位试验地中4种不同施肥处理的土壤:不施肥处理 (CK)、施氮磷钾肥处理(NPK)、施有机肥处理(OM)、氮磷钾和有机肥混合施用处理(NPKOM)。每个处理进行3次重复,且在田间随机排列,共12个试验小区(每个试验小区面积为22.2
土壤样品采集于2019年7月玉米收获季,每块样地利用五点取样法采集不同施肥处理下0~20 cm土层的土壤。将每块样地采集的土壤过孔径0.18 mm筛网,并去除过筛后土样中石块、细根等杂质。将去除杂质后的土样平均分成3份,用锡纸包好,装入密封袋,写上标签后放入干冰中保存并迅速带回实验室。用于分析pH值和速效氮的土样置于5 ℃冰箱保存;用于微生物宏基因组测序分析的土样置于-80 ℃冰箱保存;用于有机质、全氮等其他土壤理化性质分析的土样自然风干。
土壤样品的理化性质采用常规方法进行分
土壤DNA的提取和宏基因组测序:按照生产商说明书,使用快速DNA提取和纯化试剂盒(MP)从置于-80 ℃冰箱中称取0.3 g冻干土壤提取土壤总DNA。使用Nanodrop ND-1000分光光度计(Nanodrop Technologies,Wilmington,DE,USA)测定DNA的浓度和质量,所有样品进行3次重复,精确测定浓度。最后将提取后的土壤总DNA送到上海美吉生物医药科技有限公司(https://www.majorbio.com/web/www/index)进行宏基因组测序分析。
在宏基因组数据分析的预处理阶段,通过美吉生物云平台采用fastp软件(https://github.com/OpenGene/fastp)对原始序列进行质控,剪切3'端和5'端的adapter序列的同时去除平均质量值低于20且剪切后长度小于50 bp的reads,保留高质量的reads,以获得高质量的质控数据(clean data)。在进行数据分析的准备阶段,若需要从样本中剔除特定宿主的干扰,且该宿主的基因组数据已公开发表,则通过软件BWA将测序得到的reads与宿主DNA序列进行比对,将那些与宿主序列具有高度相似性的污染性reads剔除,确保后续分析的准确性。在数据分析阶段,首先利用Megahit软件(https:// github.com/ voutcn /megahit)快速拼接不同测序深度的序列,拼接过程采用succinct de Bruijn graph方法调整拼接参数;然后使用Prodigal对拼接结果中的contigs进行开放阅读框(ORF)预测,将筛选出的核酸序列翻译为对应的氨基酸序列后,统计基因预测结果并整理成统计表;最后利用CD-HIT(http://www.bioinformatics.org/cd-hit/)软件进行聚类分析(默认参数为:90% identity、90% coverage),构建非冗余基因集。微生物功能代谢通过比对COG(cluster of orthologous groups of proteins)数据库获得基因对应的COG注释概况并进行统计,功能代谢丰度计算方法基于RPKM(reads per kilobase per million mapped reads),采用Circos-0.67-7(http://circos.ca/)制作样本与功能关系可视化圈语言,Circos样本与功能关系图通常用于展示不同样本中存在微生物功能的分布情况。使用SPSS软件(IBM SPSS Statistics 26)分析土壤理化性质在不同物种间的显著性。采用R语言(R. 4.3.3)计算环境因子与不同物种之间的Spearman相关性系数,并将得到的数据信息通过热图展示。采用软件Canoco5对样本进行db-RDA分析,采用R语言(R. 4.3.3)进行Venn图和群落柱状图的制作。
由
施肥处理 Treatments | ACE指数 ACE ndex | Chao1指数 Chao1 index | 香农指数 Shannon index | 辛普森指数 Simpson index |
---|---|---|---|---|
CK | 667.00±9.07b | 667.00±9.07b | 3.70±0.16b | 0.10±0.02a |
NPK | 629.00±14.01b | 629.00±14.01b | 3.83±0.07b | 0.08±0.01b |
OM | 805.33±8.39a | 805.33±8.39a | 4.47±0.04a | 0.04±0.01c |
NPKOM | 817.67±17.90a | 817.67±17.90a | 4.43±0.10a | 0.04±0.01c |
注: CK:不施肥处理;NPK:施氮磷钾肥处理;OM:施有机肥处理;NPKOM:施氮磷钾和有机肥处理;不同小写字母表示不同施肥处理存在显著差异(P<0.05)。下同。Note:CK:No fertilization ; NPK:Apply nitrogen, phosphorus and potassium fertilizers; OM:Apply organic fertilizer; NPKOM:Apply organic fertilizer mixed with nitrogen, phosphorus and potassium fertilizers.Different lowercase letters indicate significant differences among fertilization treatments (P<0.05) .The same as follows.

图1 不同施肥处理下土壤微生物群落维恩图
Fig. 1 Venn diagram of soil microbial community under different fertilization treatments
将群落丰度较小且不同施肥处理下没有显著性差异的菌门合并为其他(others),保留了3个优势菌门。3个优势菌门的平均丰度依次为:放线菌门(Actinobacteria)占37.79%、变形菌门(Proteobacteria)占19.64%、绿弯菌门(Chloroflexi)占16.08%;OM和NPKOM处理下放线菌门(Actinobacteria)和变形菌门(Proteobacteria)的丰度显著高于CK和NPK处理,而绿弯菌门(Chloroflexi)的丰度显著低于CK和NPK处理;有机肥处理下(OM和NPKOM)放线菌门和变形菌门平均丰度比非有机肥处理(CK和NPK)分别高8.57%和9.66%,而非有机肥处理(CK和NPK)下绿弯菌门(Chloroflexi)平均丰度比有机肥处理(OM和NPKOM)高18.11%(

图2 门水平微生物在不同施肥处理下的丰度占比
Fig. 2 Percentage abundance of phylum level microorganisms under different fertilization treatments
db-RDA分析结果显示(

图3 土壤微生物与不同施肥处理和土壤理化性质间的db-RDA分析
Fig. 3 Distance-based redundancy analysis between soil microorganisms and different fertilization treatments with physical and chemical properties of the soil
*:P < 0.05,**:P < 0.01.
如

图4 土壤理化性质与关键门水平物种相对丰度的相关性分析
Fig. 4 An analysis of the correlation comparing physical and chemical properties of the soil with the abundance of key microorganisms at the phylum level
红色代表正相关,蓝色代表负相关。Red represents positive correlation, blue represents negative correlation.*:P < 0.05,**:P < 0.01,***:P < 0.001.
在微生物的COG注释功能分类Circos图(

图5 不同施肥处理下土样微生物功能
Fig. 5 Function of microorganisms of samples under different fertilization treatments
左边半圆(较小圈)表示不同施肥处理下微生物功能丰度组成情况,右边半圆(较大圈)表示在该聚类水平下微生物功能在不同施肥处理中的分布比例情况。条带端点宽度表示不同处理在相应功能中的分布比例,圈外数值表示相应功能的丰度。The left semicircle (smaller circle) indicates the composition of the abundance of functions in different fertilization treatments, and the right semicircle (larger circle) indicates the proportion of distribution of functions in different fertilization treatments at that clustering level. The widths of the endpoints of the bands indicate the proportion of different treatments in the distribution of the corresponding function, and the values outside the circles indicate the abundance values of the corresponding function.
肥料的施用对土壤中微生物群落的活性、多样性和功能有影
已有研究表明土壤pH与酸杆菌门、变形菌门、绿弯菌门和芽单胞菌门极显著相关,是不同处理下细菌丰富度和多样性变化的主要因
参考文献References
彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103.PENG S B,HUANG J L,ZHONG X H,et al.Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J].Scientia agricultura sinica,2002,35(9):1095-1103 (in Chinese with English abstract). [百度学术]
颜晓元,夏龙龙,遆超普.面向作物产量和环境双赢的氮肥施用策略[J].中国科学院院刊,2018,33(2):177-183.YAN X Y,XIA L L,TI C P.Win-win nitrogen management practices for improving crop yield and environmental sustainability[J].Bulletin of Chinese Academy of Sciences,2018,33(2):177-183 (in Chinese with English abstract). [百度学术]
晁赢,付钢锋,阎祥慧,等.有机肥对作物品质、土壤肥力及环境影响的研究进展[J].中国农学通报,2022,38(29):103-107.CHAO Y,FU G F,YAN X H,et al.Effects of organic fertilizer on crop quality,soil fertility and environment:research progress[J].Chinese agricultural science bulletin,2022,38(29):103-107 (in Chinese with English abstract). [百度学术]
GEISSELER D,SCOW K M.Long-term effects of mineral fertilizers on soil microorganisms:a review[J].Soil biology and biochemistry,2014,75:54-63. [百度学术]
张之玄,李军辉,张丽娜,等.硒氮配施对燕麦植株硒氮积累及根际土壤微生物群落与代谢物的影响[J].应用与环境生物学报,2023,29(5):1241-1252.ZHANG Z X,LI J H,ZHANG L N,et al.Effects of combined application of selenium and nitrogen fertilizers on selenium and nitrogen accumulation in oat plants,rhizospheric soil microbial community,and metabolites[J].Chinese journal of applied and environmental biology,2023,29(5):1241-1252 (in Chinese with English abstract). [百度学术]
秦玮玺,斯贵才,雷天柱,等.氮肥添加对土壤微生物生物量及酶活性的影响[J].江苏农业科学,2021,49(1):170-175.QIN W X,SI G C,LEI T Z,et al.Influences of nitrogen fertilizer addition on soil microbial biomass and enzyme activities[J].Jiangsu agricultural sciences,2021,49(1):170-175 (in Chinese with English abstract). [百度学术]
LI B B,ROLEY S S,DUNCAN D S,et al.Long-term excess nitrogen fertilizer increases sensitivity of soil microbial community to seasonal change revealed by ecological network and metagenome analyses[J/OL].Soil biology and biochemistry,2021,160:108349[2024-05-06].https://doi.org/10.1016/j.soilbio.2021.108349. [百度学术]
ZHANG J Z,BEI S K,LI B S,et al.Organic fertilizer,but not heavy liming,enhances banana biomass,increases soil organic carbon and modifies soil microbiota[J].Applied soil ecology,2019,136:67-79. [百度学术]
XIAO M L,ZANG H D,LIU S L,et al.Nitrogen fertilization alters the distribution and fates of photosynthesized carbon in rice–soil systems:a
ZHEN Z,LIU H T,WANG N,et al.Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China[J/OL].PLoS One,2014,9(10):e108555[2024-05-06].https://doi.org/10.1371/journal.pone.0108555. [百度学术]
刘红梅,安克锐,王慧,等.不同施肥措施对华北潮土区玉米田土壤微生物碳源代谢多样性的影响[J].农业环境科学学报,2020,39(10):2336-2344.LIU H M,AN K R,WANG H,et al.Effects of fertilization regimes on the metabolic diversity of microbial carbon sources in a maize field of fluvoaquic soil in North China[J].Journal of agro-environment science,2020,39(10):2336-2344 (in Chinese with English abstract). [百度学术]
汪洋,杨殿林,王丽丽,等.农田管理措施对土壤有机碳周转及微生物的影响[J].农业资源与环境学报,2020,37(3):340-352.WANG Y,YANG D L,WANG L L,et al.Effects of farmland management measures on soil organic carbon turnover and microorganisms[J].Journal of agricultural resources and environment,2020,37(3):340-352 (in Chinese with English abstract). [百度学术]
江晓亮.典型湿地硝化、反硝化微生物的群落特征及构建机制[D].武汉:中国科学院大学中国科学院武汉植物园,2021.JIANG X L.Community characteristics and construction mechanism of nitrification and denitrification microorganisms in typical wetlands[D].Wuhan:Wuhan Botanical Garden, Chinese Academy of SciencesChinese Academy of Sciences,2021 (in Chinese with English abstract). [百度学术]
康辰光,曹伟伟,蔡元锋,等.大于80年自然风干保存土壤中甲烷氧化菌的复苏与富集[J].土壤,2023,55(1):111-121.KANG C G,CAO W W,CAI Y F,et al.Resuscitation and enrichment of methanotrophs in soil after >80 years of desiccation[J].Soils,2023,55(1):111-121 (in Chinese with English abstract). [百度学术]
马涛,邢宝龙,郑敏娜.不同施肥方式对大豆根际土壤细菌群落多样性的影响[J].作物杂志,2023(6):167-173.MA T,XING B L,ZHENG M N.Effects of different fertilization methods on soil bacterial community diversity in soybean rhizosphere[J].Crops,2023(6):167-173 (in Chinese with English abstract). [百度学术]
彭玺,冯凯,厉舒祯,等.宏基因组学技术与微生物群落多样性分析方法[J].科技导报,2022,40(3):99-111.PENG X,FENG K,LI S Z,et al.Analytical methods for metagenomic technology and microbial community diversity[J].Science & technology review,2022,40(3):99-111 (in Chinese with English abstract). [百度学术]
WAN Z W,WANG L,HUANG G Q,et al.nirS and nosZII bacterial denitrifiers as well as fungal denitrifiers are coupled with N2O emissions in long-term fertilized soils[J/OL].Science of the total environment,2023,897:165426[2024-05-06]. https://doi.org/10.1016/j.scitotenv.2023.165426. [百度学术]
鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.BAO S D.Soil and agricultural chemistry analysis[M].3rd ed.Beijing:China Agriculture Press,2000(in Chinese). [百度学术]
SHEN J P,ZHANG L M,GUO J F,et al.Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in Northeast China[J].Applied soil ecology,2010,46(1):119-124. [百度学术]
GOYAL S,CHANDER K,MUNDRA M C,et al.Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions[J].Biology and fertility of soils,1999,29(2):196-200. [百度学术]
陈珊,丁咸庆,祝贞科,等.秸秆还田对外源氮在土壤中转化及其微生物响应的影响[J].环境科学,2017,38(4):1613-1621.CHEN S,DING X Q,ZHU Z K,et al.Effect of straw application on the dynamics of exogenous nitrogen and microbial activity in paddy soil[J].Environmental science,2017,38(4):1613-1621 (in Chinese with English abstract). [百度学术]
BHARDWAJ D,ANSARI M W,SAHOO R K,et al.Biofertilizers function as key player in sustainable agriculture by improving soil fertility,plant tolerance and crop productivity[J/OL].Microbial cell factories,2014,13:66[2024-05-06].https://doi.org/10.1186/1475-2859-13-66. [百度学术]
ZHANG Q C,SHAMSI I H,XU D T,et al.Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure[J].Applied soil ecology,2012,57:1-8. [百度学术]
SIVOJIENE D,KACERGIUS A,BAKSIENE E,et al.The influence of organic fertilizers on the abundance of soil microorganism communities,agrochemical indicators,and yield in East Lithuanian light soils[J/OL].Plants,2021,10(12):2648[2024-05-06].https://doi.org/10.3390/plants10122648. [百度学术]
FRANCIOLI D,SCHULZ E,LENTENDU G,et al.Mineral vs.organic amendments:microbial community structure,activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies[J/OL].Frontiers in microbiology,2016,7:1446[2024-05-06].https://doi.org/10.3389/fmicb.2016.01446 . [百度学术]
WANG J C,SONG Y,MA T F,et al.Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil[J].Applied soil ecology,2017,112:42-50. [百度学术]
LIU Z,GUO Q,FENG Z Y,et al.Long-term organic fertilization improves the productivity of kiwifruit (Actinidia chinensis Planch.) through increasing rhizosphere microbial diversity and network complexity[J/OL].Applied soil ecology,2020,147:103426[2024-05-06].https://doi.org/10.1016/j.apsoil.2019.10342. [百度学术]
VAN DER BOM F,NUNES I,RAYMOND N S,et al.Long-term fertilisation form,level and duration affect the diversity,structure and functioning of soil microbial communities in the field[J].Soil biology and biochemistry,2018,122:91-103. [百度学术]
高媛. 长期定位施肥对旱作农田土壤有机碳激发效应及碳循环功能基因的影响[D]. 西安:西北大学,2022.GAO Y.Effect of long-term fertilization on soil organiccarbon priming effect and carbon cycling-related functional genes in dryland farmingsystem[D].Xi’an:Northwest University,2022 (in Chinese with English abstract). [百度学术]
KONG C C,ZHANG S W,YUAN S J,et al.Soil bacterial community characteristics and its effect on organic carbon under different fertilization treatments[J/OL].Frontiers in microbiology,2024,15:1356171[2024-05-06].https://doi.org/10.3389/fmicb.2024.1356171 . [百度学术]
LI X F,DENG S P,RAUN W R,et al.Bacterial community in soils following century-long application of organic or inorganic fertilizers under continuous winter wheat cultivation[J/OL].Agronomy,2020,10(10):1497[2024-05-06].https://doi.org/10.3390/agronomy10101497. [百度学术]
宁赵,程爱武,唐海明,等.长期施肥下水稻根际和非根际土壤微生物碳源利用特征[J].环境科学,2019,40(3):1475-1482.NING Z,CHENG A W,TANG H M,et al.Microbial carbon source metabolic profile in rice rhizosphere and non-rhizosphere soils with different long-term fertilization management[J].Environmental science,2019,40(3):1475-1482 (in Chinese with English abstract). [百度学术]
ABDUL HAMID N W,NADARAJAH K.Microbe related chemical signalling and its application in agriculture[J/OL].International journal of molecular sciences,2022,23(16):8998[2024-05-06].https://doi.org/10.3390/ijms23168998. [百度学术]
HAN J Q,DONG Y Y,ZHANG M.Chemical fertilizer reduction with organic fertilizer effectively improve soil fertility and microbial community from newly cultivated land in the Loess Plateau of China[J/OL].Applied soil ecology,2021,165:103966[2024-05-06].https://doi.org/10.1016/j.apsoil.2021.103966. [百度学术]