摘要
为探究不同pH铝环境条件下纳米硅矿化对豌豆根尖及根边缘细胞保护机制的影响,通过聚乙烯亚胺(polyethyleneimine, PEI)诱导硅静电吸附形成纳米硅壳进行仿生矿化的方式,解析不同pH(pH 3.5、4.5、5.5)条件下纳米硅对豌豆根尖及根边缘细胞缓解铝毒的生理调控机制。结果显示,各pH的铝处理都降低了根边缘细胞活性,而加硅处理后细胞应对铝毒环境的细胞活性显著提高,加硅处理细胞内的铝含量和活性氧(reactive oxygen species,ROS)含量低于缺硅处理且加硅后细胞线粒体膜电位上升;铝毒抑制了豌豆根尖伸长,在pH 3.5铝处理条件下加硅缓解根尖抑制作用的效果不明显,但pH 4.5、5.5条件下根尖伸长量显著增加;随着铝处理pH值升高,根尖铝含量降低,且加硅处理后根尖的铝含量都高于缺硅处理;硅使得细胞壁上更多带负电的官能团参与抗铝胁迫,降低了细胞壁各组分(包括果胶、纤维素、半纤维素、蛋白质等)的吸收峰值;pH 4.5和5.5铝环境条件下细胞表面形成纳米硅壳,硅铝在细胞壁上沉积形成铝硅酸盐。结果表明,低pH条件下纳米硅在细胞上的矿化沉积能够缓解铝离子毒害作用。
我国南方土壤酸化严重,酸性土壤(<pH 5.5)中存在多种限制植物生长和作物产量的因素,而铝毒被认为是最主要的限制因
铝毒胁迫影响植物一系列生理响应和代谢水平的变化,最主要的特征是根系伸长受到抑制且根结构被破坏,直接影响根系吸收水分和养
硅(Si)在土壤中通常以二氧化硅和硅酸盐的形式存在,只有单硅酸盐的形式能被植物吸收进入根和植物体
借助聚乙烯亚胺(polyethyleneimine, PEI)诱导硅沉积是仿生硅化的方法之一,PEI大分子链上的大量胺基具有改性作
豌豆在我国湖南、云南、广东等20多个省市均有种植,是我国第一大食用豆类作
取适量豌豆用7.5%次氯酸钠溶液消毒30 min后用超纯水反复冲洗,去除破皮、肿胀和发育不良的种子,冲洗至无刺激性味道。加入1 mmol/L CaCl2溶液浸泡12 h后将豌豆转至雾培箱中均匀铺在雾培网上培养48 h。
1)根边缘细胞的收集。豌豆雾培后,在烧杯中加入少量1 mmol/L CaCl2溶液,剪取0.5~1 cm长的根尖浸泡在溶液中。剪完后轻轻搅拌用移液枪吸取细胞悬液至离心管,离心2 min弃上清,即得到根边缘细胞(RBCs)。根据试验需求进行后续处理。
2 )根边缘细胞预处理。共设6个处理组,缺硅(-Si)和加硅(+Si)处理组各3个,+Si处理组的离心管加入PEI处理液(0.005 g/L ,pH 7.0),-Si处理组加入Hepes缓冲液(50 mmol/L,pH 7.0),分别培养10 min后离心弃上清再用Hepes缓冲液洗涤2遍;+Si处理组的离心管再加入四甲氧基硅烷配制的Si溶液(1 mmol/L,pH 7.0),-Si处理组加入Hepes缓冲液,分别培养20 min后离心弃上清再用Hepes缓冲液洗涤2遍;纳米硅预处理后分别加入pH值 3.5、4.5、5.5 的铝溶液(100 μmol/L)处理1 h。
3)水培处理。雾培后的豌豆幼苗挑出长势良好、根长相对一致的幼苗转移至黑色水培桶中(装有1/4 Hogland营养液,pH 6.0)。幼苗主根长到一定长度后剪去主根并更换营养液,待全部侧根基本长出后做加硅预处理,+Si组先用PEI(0.003 g/L,pH 6.0)处理4 h后换Si溶液(10 mmol/L,pH 6.0)处理8 h,-Si组则用CaCl2溶液(0.5 mmol/L,pH 6.0)处理相应的时间,硅预处理完成换对应pH 值3.5、4.5、5.5铝处理液(100 μmol/L)处理24 h。
铝处理后的细胞洗涤2次、离心后加入适量Hepes缓冲液重悬备用,将细胞液与台盼蓝染液以1∶1染色3 min后吸取1 μ L混合液在玻片上划细线,通过正置显微镜观察、拍照用于后续分析活细胞与死细胞比值,每个处理重复至少5次。
从重悬后的细胞液吸取一部分至1.5 mL离心管,离心后弃上清加入ROS染液染色25 min后离心、弃上清,洗涤2次细胞将染液洗去后加入Hepes缓冲液吸取10 μL至玻片,通过激光共聚焦拍照。
从重悬后的细胞液吸取一部分至1.5 mL离心管离心、弃上清加入JC-1染液染色25 min后离心、弃上清,洗涤2次细胞将染液洗去后加入Hepes缓冲液吸取10 μL至玻片,通过激光共聚焦拍照。
细胞预处理后放入冷冻干燥机真空干燥24 h得到干燥样品,利用傅里叶显微红外光谱仪获得光谱图,光谱扫描范围为 4 000~500 c
取冷冻干燥后的样品在真空条件下用X射线光电子能谱(XPS)测试,背景压力 5×1
由

图1 pH 3.5、4.5、5.5铝溶液环境(100 μmol/L)下豌豆根边缘细胞活性
Fig.1 The viability of pea root border cells under pH 3.5, 4.5, and 5.5 aluminum solution environments (100 μmol/L)
不同小写字母表示同一时期不同处理组间差异显著(P<0.05)。Different lowercase letters indicate significant differences between different treatment groups in the same period (P<0.05).
通过共聚焦激光显微镜对细胞内活性铝含量的相对荧光强度进行半定量测定,以pH 4.5 -Si组(

图2 pH 3.5、4.5、5.5铝溶液环境(100 μmol/L)下豌豆根边缘细胞铝含量
Fig.2 Effect of pH 3.5, 4.5, and 5.5 aluminum solution environments (100 μmol/L) on the aluminum content of pea root border cells
A:pH 3.5 +Si+Al;B:pH 3.5 -Si+Al;C:pH 4.5 +Si+Al;D:pH 4.5 -Si+Al;E:pH 5.5 +Si+Al;F:pH 5.5 -Si+Al;G:Morin染色后各个处理的相对荧光强度,每次独立测试包含大于20个细胞的测试。不同小写字母表示处理间存在显著差异(P < 0.05).Relative fluorescence intensity of individual treatments after Morin staining for each independent test containing greater than twenty cells. Different lowercase letters indicate significant differences between treatments (P < 0.05).
在pH 3.5、4.5、5.5铝环境下-Si组的相对荧光强度分别为114.70%、100%、70.62%,随铝处理pH值上升而减弱,细胞内活性氧(reactive oxygen species,ROS)含量随之减少,+Si组相较于各pH环境下-Si组的相对荧光强度分别下降了40.32、33.53、9.61百分点(

图3 pH 3.5、4.5、5.5铝溶液环境(100 μmol/L)下豌豆根边缘细胞活性氧含量
Fig.3 Effects of pH 3.5, 4.5, and 5.5 aluminum solution environments (100 μmol/L) on the reactive oxygen species content of pea root border cells
A-F同图2;G:ROS染色后各个处理的相对荧光强度。A-F are same as Fig.2;G: Relative fluorescence intensity of each treatment after ROS staining.
在pH 3.5、4.5、5.5铝环境下-Si组的相对荧光强度分别为63.40%、100%、196.63%,随铝处理pH值上升红色荧光变强而绿色荧光减弱,细胞内线粒体电位随之增高;+Si组相较于各pH环境下-Si组的相对荧光强度分别增加了37.20、48.11、43.28百分点,+Si组细胞内线粒体电位都显著高于-Si组(

图4 pH 3.5、4.5、5.5铝溶液环境(100 μmol/L)下豌豆根边缘细胞线粒体膜电位
Fig.4 Effects of pH 3.5, 4.5, and 5.5 aluminum solution environments (100 μmol/L) on mitochondrial membrane potential in pea root marginal cells
A、B、C:pH 3.5 +Si+Al;J、K、L:pH 3.5 -Si+Al;D、E、F:pH 4.5 +Si+Al;M、N、O:pH 4.5 -Si+Al;G、H、I:pH 5.5 +Si+Al;P、Q、R:pH 5.5 -Si+Al;S : JC-1染色后各个处理的相对荧光强度 The ratio of red and green fluorescence of each treatment after JC-1 staining.A、D、G、J、M、F:聚合体通道Polymer channels;B、E、H、K、N、Q:单体通道 Monomeric channels; C、F、J、L、O:复合通道Composite channels.
由

图5 pH 3.5、4.5、5.5铝溶液环境(100 μmol/L)下豌豆侧根相对伸长量
Fig.5 Lateral relative root elongation of pea under pH 3.5, 4.5, and 5.5 aluminum solution environments (100 μmol/L)
根尖活性铝积累情况与细胞不同,pH 3.5条件下-Si组根尖铝含量最高,相对荧光强度为186.31%,+Si组相对荧光相比于-Si组下降了36.05百分点。在pH 4.5和5.5条件下-Si组根尖相对荧光强度分别为100%和58.42%,pH 5.5相对荧光强度下降了41.58百分点;而+Si组相较于-Si组的相对荧光强度分别增加了28.41和23.40百分点,根尖内活性铝含量显著增加(

图6 pH 3.5、4.5、5.5铝溶液环境(100 μmol/L)下豌豆根尖铝含量
Fig.6 Aluminum content in pea root tips under pH 3.5, 4.5, and 5.5 aluminum solution environments (100 μmol/L)
A-F同图2;G:Morin染色后各个处理的相对荧光强度。A-F are same as Fig.2;G:Relative fluorescence intensity of each treatment after Morin staining.
FTIR光谱可以表征羧基、羟基、氨基等可电离基团在金属吸附过程中的作用,FTIR 光谱显示,在 4 000~500 c

图7 pH 3.5、4.5、5.5铝溶液环境(100 μmol/L)下豌豆根边缘细胞硅组分(4 000~500 c
Fig.7 Cellular fractions of pea root border cells (4 000-500 c
利用 XPS 技术分析不同pH铝处理条件下豌豆根边缘细胞壁上铝和硅的元素特征。如

图8 pH 3.5、4.5、5.5铝溶液环境(100 μmol/L)下纳米硅对根边缘细胞壁硅铝结构分析的影响
Fig.8 Silica-aluminum structural analysis of root border cell wall by nanosilica in pH 3.5, 4.5, and 5.5 aluminum solution environments (100 μmol/L)
A:pH 3.5 -Si+Al;B:pH 3.5 +Si+Al;C:pH 4.5 -Si+Al;D:pH 4.5 +Si+Al;E:pH 5.5 -Si+Al;F:pH 5.5 +Si+Al.
根尖是铝毒破坏植物根部的主要位点,铝毒环境下最显著的表现就是根伸长受到抑制,所以阻止铝进入植物内部减少植株体内总铝含量或降低铝的有效毒性对缓解植物应对铝毒胁迫有重要意
本研究结果显示,不同pH铝溶液环境下豌豆根边缘细胞的细胞活性降低(
不同pH铝溶液环境下硅缓解铝毒情况存在差异。在pH 4.5和5.5铝胁迫下加硅处理会维持细胞活性并减轻铝毒引起的根系伸长抑制(
植物面临生物和非生物胁迫时会诱导体内产生过量的ROS,ROS是引发程序性死亡的重要信号分
综上,本研究结果表明,低pH条件下铝处理都降低了根边缘细胞活性和抑制了根系生长,PEI诱导纳米硅沉积后对豌豆根尖和根边缘细胞起到了不同程度的保护作用。具体表现为:(1)低pH条件下铝处理都降低了根边缘细胞活性,而加硅处理后细胞活性显著提高,细胞内的铝含量降低,细胞线粒体膜电位上升和ROS含量降低;(2)铝毒抑制了豌豆根尖伸长,而加硅处理后不同pH条件下表现不同,在pH 3.5铝处理条件下加硅缓解根尖抑制作用的效果不明显,但pH 4.5、5.5条件下根尖伸长量显著增加,另外随着铝处理pH值升高,根尖铝含量降低,且加硅处理后根尖的铝含量都高于缺硅处理;(3)铝胁迫下,纳米硅结合细胞壁中更多带负电的官能团抵抗胁迫,pH 4.5和5.5条件下硅在根边缘细胞壁上形成纳米硅壳,与铝在细胞壁上共沉积形成铝硅酸盐,以此增强耐铝性。后续还需要利用蛋白质组学、代谢组学和转录组学等技术,深入研究纳米硅对铝在细胞或组织分子水平上的信号途径和耐受机制,进一步阐释根尖和根边缘细胞的生物矿化保护机制,以期为植物适应南方酸性土壤提供理论和实践依据。
参考文献References
沈仁芳,赵学强.酸性土壤可持续利用[J].农学学报,2019,9(3):16-20.SHEN R F,ZHAO X Q.The sustainable use of acid soils[J].Journal of agriculture,2019,9(3):16-20 (in Chinese with English abstract). [百度学术]
OFOE R,THOMAS R H,ASIEDU S K,et al.Aluminum in plant:benefits,toxicity and tolerance mechanisms[J/OL].Frontiers in plant science,2023,13:1085998[2024-01-19]. https://doi.org/10.3389/fpls.2022.1085998. [百度学术]
SINGH S,TRIPATHI D K,SINGH S,et al.Toxicity of aluminium on various levels of plant cells and organism:a review[J].Environmental and experimental botany,2017,137:177-193. [百度学术]
RAHMAN M A,LEE S H,JI H C,et al.Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils:current status and opportunities[J/OL].International journal of molecular sciences,2018,19(10):3073[2024-01-19].https://doi.org/10.3390/ijms19103073. [百度学术]
CHAUHAN D K,YADAV V,VACULÍK M,et al.Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants[J].Critical reviews in biotechnology,2021,41(5):715-730. [百度学术]
HAJIBOLAND R,PANDA C K,LASTOCHKINA O,et al.Aluminum toxicity in plants:present and future[J].Journal of plant growth regulation,2023,42(7):3967-3999. [百度学术]
MATSUMOTO H,MOTODA H.Aluminum toxicity recovery processes in root apices:possible association with oxidative stress[J].Plant science,2012,185/186:1-8. [百度学术]
HAWES M,ALLEN C,TURGEON B G,et al.Root border cells and their role in plant defense[J].Annual review of phytopathology,2016,54:143-161. [百度学术]
GUNTZER F,KELLER C,MEUNIER J D.Benefits of plant silicon for crops:a review[J].Agronomy for sustainable development,2012,32(1):201-213. [百度学术]
GUERRIERO G,HAUSMAN J F,LEGAY S.Silicon and the plant extracellular matrix[J/OL].Frontiers in plant science,2016,7:463[2024-01-19].https://doi.org/10.3389/fpls.2016.00463 . [百度学术]
LIANG Y C,SUN W C,ZHU Y G,et al.Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants:a review[J].Environmental pollution,2007,147(2):422-428. [百度学术]
WANG S H,WANG F Y,GAO S C,et al.Heavy metal accumulation in different rice cultivars as influenced by foliar application of nano-silicon[J/OL].Water,air,& soil pollution,2016,227(7):228[2024-01-19].https://doi.org/10.1007/s11270-016-2928-6. [百度学术]
LEI Q,GUO J M,KONG F H,et al.Bioinspired cell silicification:from extracellular to intracellular[J].Journal of the American Chemical Society,2021,143(17):6305-6322. [百度学术]
REID A,BUCHANAN F,JULIUS M,et al.A review on diatom biosilicification and their adaptive ability to uptake other metals into their frustules for potential application in bone repair[J].Journal of materials chemistry.B,2021,9(34):6728-6737. [百度学术]
PATWARDHAN S V, CLARSON S J. Bioinspired silica synthesis[M/OL]//ABD‐EL‐AZIZ A S, CARRAHER C E, PITTMAN C U, et al. Macromolecules containing metal and metal‐like elements. 1st ed. [S.l.]:John Wiley & Sons, Inc., 2005: 203-223. [百度学术]
HYDE E D E,MORENO-ATANASIO R,MILLNER P A,et al.Surface charge control through the reversible adsorption of a biomimetic polymer on silica particles[J].The journal of physical chemistry.B,2015,119(4):1726-1735. [百度学术]
BUCATARIU F,GHIORGHITA C A,ZAHARIA M M,et al.Removal and separation of heavy metal ions from multicomponent simulated waters using silica/polyethyleneimine composite microparticles[J].ACS applied materials & interfaces,2020,12(33):37585-37596. [百度学术]
MA J,ZHANG X Q,ZHANG W J,et al.Multifunctionality of silicified nanoshells at cell interfaces of Oryza sativa[J].ACS sustainable chemistry & engineering,2016,4(12):6792-6799. [百度学术]
HODSON M J,EVANS D E.Aluminium-silicon interactions in higher plants:an update[J].Journal of experimental botany,2020,71(21):6719-6729. [百度学术]
仪登霞,庞永珍.我国豌豆生产和育种的现状与问题[J].中国草地学报,2022,44(1):104-113.YI D X,PANG Y Z.Current situation and problems of pea production and breeding in China[J].Chinese journal of grassland,2022,44(1):104-113 (in Chinese with English abstract). [百度学术]
冯英明,罗功荣,曲梅,等.硼对豌豆根尖细胞壁组分对铝吸附解吸的影响[J].植物营养与肥料学报,2022,28(10):1893-1900.FENG Y M,LUO G R,QU M,et al.Effects of boron on aluminum adsorption and desorption of cell wall components of pea root tips[J].Journal of plant nutrition and fertilizers,2022,28(10):1893-1900 (in Chinese with English abstract). [百度学术]
LI Z G,HUANG F,HU B W,et al.Detoxification of aluminum by Ca and Si is associated to modified root cell wall properties[J].Theoretical and experimental plant physiology,2022,34(2):131-142. [百度学术]
FU X L,CHEN W D,ZHONG S Z,et al.Regulation responses on rice root formation and elongation by low pH and aluminum stress in South China[J].Journal of agricultural science and technology,2013,15(3):135-142. [百度学术]
JASKOWIAK J,TKACZYK O,SLOTA M,et al.Analysis of aluminum toxicity in Hordeum vulgare roots with an emphasis on DNA integrity and cell cycle[J/OL].PLoS One,2018,13(2):e0193156[2024-01-19].https://doi.org/10.1371/journal.pone.0193156. [百度学术]
CAI M Z,WANG F M,LI R F,et al.Response and tolerance of root border cells to aluminum toxicity in soybean seedlings[J].Journal of inorganic biochemistry,2011,105(7):966-971. [百度学术]
XIAO Z X,LIANG Y C.Silicon prevents aluminum from entering root tip by promoting formation of root border cells in rice[J].Plant physiology and biochemistry,2022,175:12-22. [百度学术]
YANG G,QU M,XU G L,et al.pH-dependent mitigation of aluminum toxicity in pea (Pisum sativum) roots by boron[J/OL].Plant science,2022,318:111208[2024-01-19].https://doi.org/10.1016/j.plantsci.2022.111208. [百度学术]
XIAO Z X,YAN G C,YE M J,et al.Silicon relieves aluminum‐induced inhibition of cell elongation in rice root apex by reducing the deposition of aluminum in the cell wall[J].Plant and soil,2021,462(1):189-205. [百度学术]
MÉSZÁROS R,VARGA I,GILÁNYI T.Adsorption of poly(ethyleneimine) on silica surfaces:effect of pH on the reversibility of adsorption[J].Langmuir,2004,20(12):5026-5029. [百度学术]
KOPITTKE P M,GIANONCELLI A,KOUROUSIAS G,et al.Alleviation of Al toxicity by Si is associated with the formation of Al⁃Si complexes in root tissues of sorghum[J/OL].Frontiers in plant science,2017,8:2189[2024-01-19].https://doi.org/10.3389/fpls.2017.02189. [百度学术]
LIU S G,ZHU D Z,CHEN G H,et al.Disrupted actin dynamics trigger an increment in the reactive oxygen species levels in the Arabidopsis root under salt stress[J].Plant cell reports,2012,31(7):1219-1226. [百度学术]
HUANG W J,YANG X D,YAO S C,et al.Reactive oxygen species burst induced by aluminum stress triggers mitochondria-dependent programmed cell death in peanut root tip cells[J].Plant physiology and biochemistry,2014,82:76-84. [百度学术]
BATES G W,RAY P M.pH-dependent interactions between pea cell wall polymers possibly involved in wall deposition and growth[J].Plant physiology,1981,68(1):158-164. [百度学术]
WANG P,CAO H R,QUAN S X,et al.Nitrate improves aluminium resistance through SLAH-mediated citrate exudation from roots[J].Plant,cell & environment,2023,46(11):3518-3541. [百度学术]
WAGNER C D,PASSOJA D E,HILLERY H F,et al.Auger and photoelectron line energy relationships in aluminum-oxygen and silicon-oxygen compounds[J].Journal of vacuum science and technology,1982,21(4):933-944. [百度学术]