摘要
为促进有机物料循环利用、提高稻田土壤硅有效性,设计2季水稻盆栽试验,试验设7个处理:对照(CK)、0.5%秸秆(JG1)、1%秸秆(JG2)、1.5%秸秆(JG3)、0.5%稻糠(DK1)、1%稻糠(DK2)、1.5%稻糠(DK3),研究2种有机物料稻秆和稻糠不同用量对土壤硅形态、水稻植株硅吸收和地上部干物质积累量、土壤肥力的影响。结果显示,2种富硅有机物料显著提高土壤水溶性硅、有效硅、有机结合态硅、无定形硅含量,总体上与用量成正比,以稻糠处理的提高幅度较高。与CK相比,1%、1.5%稻糠施用分别使土壤水溶性硅含量提高18.85%~46.58%,有效硅含量提高11.51%~118.82%,有机结合态硅含量提高21.88%~51.95%,铁锰氧化物结合态硅含量提高3.38%~19.17%,无定形硅含量提高6.41%~22.14%。2种有机物料提高水稻茎叶硅含量和积累量,稻糠施用效果更显著;与CK相比,秸秆和稻糠施用分别使水稻茎叶硅积累量显著提高0.60~2.51倍、1.33~4.08倍。2种有机物料提高水稻地上部干物质积累量,在不同程度上增加土壤有机质和速效氮、磷、钾养分含量。综上,2种有机物料都能增加土壤肥力,提高土壤硅有效性,促进水稻对硅的吸收,其中稻糠的提高幅度更大,但从实践应用的角度来看,秸秆更具有一定的应用前景。
水稻(Oryza sativa L.)是典型的硅高累积植物,其茎叶中二氧化硅的含量可达10%~20%,相对于秸秆,稻糠硅的积累量更
水稻产量不断提升的同时产生了大量的农业废弃物。近年来,我国大力推行秸秆还田技术和机械化,秸秆还田不仅能够促进农业生物质资源的有效利用,还有助于农业生态环境的保
本研究采用水稻盆栽试验,模拟秸秆和稻糠不同用量还田对土壤不同形态硅含量、水稻硅养分吸收和土壤肥力的影响,以期为合理秸秆还田和稻田硅素补充提供科学依据。
试验在广州市天河区北部(113°21ˊE,23°9ˊN)华南农业大学生态系农场进行,该地属亚热带季风湿润气候,光照充足,年平均气温20~22 ℃,年平均降雨量约1 720 mm。
供试土壤取自华南农业大学启林北农场附近的水稻田,其土壤基本理化性质如
项目 Items | 2022年盆栽试验 Pot trial in 2022 | 2023年盆栽试验 Pot trial in 2023 | ||||
---|---|---|---|---|---|---|
土壤Soil | 秸秆Straw | 稻糠Husk | 土壤Soil | 秸秆Straw | 稻糠Husk | |
pH | 6.35 | 6.02 | ||||
有机质/(g/kg) Organic matter | 26.14 | 21.67 | ||||
碱解氮/(mg/kg) Alkali-hydrolyzable nitrogen | 105 | 99.70 | ||||
速效磷/(mg/kg) Available phosphorus | 94.84 | 102.97 | ||||
速效钾/(mg/kg) Available potassium | 34.63 | 47.86 | ||||
有效硅/(mg/kg) Available silicon | 41.33 | 68.89 | ||||
全氮/(mg/g) Total nitrogen | 9.23 | 7.28 | 8.73 | 6.80 | ||
全磷/(mg/g) Total phosphorus | 0.46 | 0.07 | 1.26 | 0.83 | ||
全钾/(mg/g) Total potassium | 28.30 | 5.60 | 21.38 | 6.73 | ||
全硅/(mg/g) Total silicon | 19.90 | 34.86 | 14.52 | 25.99 |
本研究共进行2季盆栽试验,以水稻为研究对象,分别于2022年8月至11月(晚稻)和2023年3月至7月(早稻)在四周通风的大棚内开展试验。设置秸秆用量水平与土壤质量比分别为 0.5%、1%、1.5%,记为JG1、JG2、JG3,稻糠用量水平与土壤质量比分别为0.5%、1%、1.5%,记为DK1、DK2、DK3以及不施用秸秆和稻糠的对照组(CK),共7个处理,每个处理4个重复,在成熟期取样,共28盆。试验用盆为20 cm×28 cm×17 cm(下口径×上口径×高)的黑色塑料盆,每盆装7 kg过孔径2 mm筛的干土(2季的供试土壤不同),将秸秆和稻糠混入土中,加水搅拌均匀浸泡1周。水稻提前在秧田育苗,待其长到3叶1心时移栽,每盆3穴,每穴2株秧苗,随机区组排列。在移栽后7 d和抽穗期前14 d各施6 g复合肥(15-15-15)和3 g尿素。试验期间各处理的病虫害防治等栽培管理措施一致。
在水稻成熟期内,每盆各随机选取长势良好的1穴样株,用镰刀沿其土壤表面将稻株割下,带回实验室。将水稻植株冲洗干净后,分成茎、叶、穗,并将新鲜样品于105 ℃的烘箱内杀青30 min,于75 ℃烘干至恒质量,冷却后称取各部分干质量,相加得出水稻地上部干物质总量。将茎、叶用小型万能粉碎机磨成粉末,测定硅含量,并根据水稻植株硅含量和干质量计算水稻茎叶部硅积累量。硅含量采用高温碱熔解法测
水稻植株取样后,于2穴水稻中间的位置,用土钻从上到下取土柱,3个土柱混合成1个土样,风干后研磨过孔径1 mm筛,用于测定pH、有机质、碱解氮、速效磷、速效钾以及不同形态硅含量。土壤pH用pH计(ST2100,奥豪斯仪器常州有限公司)测定,水土质量比为2.5∶1。土壤有机质用重铬酸钾容量法-稀释热法测定;土壤碱解氮用碱解扩散法分析;土壤速效磷采用NaHCO3提取,钼锑抗比色法测定;速效钾采用NH4OAc浸提,火焰光度法测
双因素方差分析结果显示,富硅有机物料类型对土壤氧化物结合态硅、无定形硅影响极显著(P<0.01),用量对土壤水溶性硅、有效硅、有机结合态硅、铁锰氧化物结合态硅均影响极显著(P<0.01),二者交互作用对铁锰氧化物结合态硅影响显著(P<0.05)。在2季试验中,秸秆和稻糠施用均可以一定程度上提高土壤不同形态硅含量(
年份 Year | 处理 Treatments | 水溶性硅/ (mg/kg) Water-soluble Si | 有效硅/(mg/kg) Available Si | 有机结合态硅/(mg/kg) Organic Si | 铁锰氧化物结合态硅/(mg/kg) Fe/Mn-oxide Si | 无定形硅/ (g/kg) Amorphous Si |
---|---|---|---|---|---|---|
2022 | CK | 6.14±0.37d | 34.48±1.55e | 48.28±2.21e | 133.70±1.57a | 1.31±0.01cd |
JG1 | 6.44±0.53cd | 52.02±5.54d | 56.63±1.11d | 136.55±3.03a | 1.33±0.01cd | |
JG2 | 7.52±0.16b | 54.74±1.36cd | 70.30±5.01bc | 137.68±1.97a | 1.42±0.01d | |
JG3 | 8.50±0.43a | 54.96±0.93cd | 75.53±3.01a | 137.92±2.40a | 1.56±0.03b | |
DK1 | 7.24±0.65bc | 58.97±1.55c | 68.84±2.49c | 133.70±8.81a | 1.39±0.04c | |
DK2 | 8.88±0.33a | 65.02±6.36b | 70.66±0.43bc | 138.22±6.23a | 1.46±0.01c | |
DK3 | 9.00±1.24a | 75.45±3.29a | 73.36±2.36ab | 141.32±6.20a | 1.60±0.02a | |
材料类型 Material type | * | ** | * | ** | ** | |
用量 Addition rate | ** | ** | ** | ** | ** | |
材料类型×用量 Material type×Addition rate | ns | ** | ** | * | ns | |
2023 | CK | 7.16±0.26d | 80.37±3.03cd | 79.86±2.12d | 80.37±0.84b | 2.34±0.06b |
JG1 | 7.80±0.19cd | 79.86±3.40d | 80.88±1.29cd | 89.62±1.78ab | 2.35±0.05b | |
JG2 | 8.76±0.15b | 82.94±0.98bcd | 83.46±3.41cd | 97.33±1.76a | 2.37±0.01b | |
JG3 | 8.37±0.43bc | 92.19±3.69b | 90.65±4.89bc | 90.65±4..67ab | 2.49±0.04ab | |
DK1 | 7.67±0.24cd | 79.34±2.14d | 87.05±2.12cd | 68.04±6.77c | 2.41±0.02b | |
DK2 | 8.51±0.23bc | 89.62±3.61bc | 97.33±1.76ab | 87.0±1.75ab | 2.49±0.03ab | |
DK3 | 9.98±0.27a | 102.98±3.56a | 100.93±4.28a | 95.78±1.97a | 2.59±0.09a | |
材料类型 Material type | ns | ns | ** | ** | ** | |
用量 Addition rate | ** | ** | ** | ** | ns | |
材料类型×用量Material type×Addition rate | ** | ns | ns | ** | ns |
注: 不同小写字母分别表示处理之间差异显著(P<0.05);*和**分别表示在0.05显著和0.01水平极显著,ns表示不显著。下同。Note:Different lowercase letters indicate the significance of the difference between different treatments (P<0.05). * and ** indicate a significant at the 0.05 level and a very significant difference at the 0.01 level, respectively; ns indicates no significant difference.The same as follows.
双因素方差分析结果显示,富硅有机物料类型和用量对水稻茎叶部硅含量(

图1 秸秆和稻糠处理下水稻植株叶(A)和茎(B)硅含量的变化
Fig.1 Silicon content in leaves(A) and stems(B) treated with straw and husk

图2 秸秆和稻糠处理下水稻植株茎叶部硅积累量的变化
Fig.2 Silicon accumulation in stems and leaves treated with straw and husk
双因素方差分析结果显示,富硅有机物料类型和用量对水稻地上部干物质积累量的影响在不同季节呈现不同的效果(

图3 秸秆和稻糠处理下水稻植株地上部干物质积累量的变化
Fig.3 The aboveground dry matter accumulationtreated with straw and husk
双因素方差分析结果显示,富硅有机物料类型对土壤有机质、速效钾含量影响极显著(P<0.01),用量对土壤化学特性影响均极显著(P<0.01),二者间交互作用对土壤速效钾影响极显著(P<0.01)(
年份 Year | 处理 Treatments | pH | 有机质 /(g/kg) Organic matter | 碱解氮/(mg/kg) Alkali-hydrolyzable nitrogen | 速效磷/(mg/kg) Available phosphorus | 速效钾/(mg/kg) Available potassium |
---|---|---|---|---|---|---|
2022 | CK | 6.60±0.03c | 27.11±0.35d | 109.38±1.31c | 88.59±3.29c | 32.84±0.45d |
JG1 | 6.63±0.03c | 30.46±0.21b | 111.00±3.49bc | 90.03±0.71c | 40.93±0.72c | |
JG2 | 6.73±0.04b | 30.89±0.48ab | 114.63±4.40ab | 92.93±1.15bc | 50.86±3.91b | |
JG3 | 6.76±0.02b | 31.80±1.43a | 116.63±3.64a | 97.39±0.98ab | 67.53±6.85a | |
DK1 | 6.72±0.05b | 27.46±0.26d | 110.00±3.34bc | 99.94±4.69a | 33.40±0.46d | |
DK2 | 6.78±0.07b | 28.21±0.79cd | 111.50±1.00bc | 98.78±4.58ab | 33.76±0.88d | |
DK3 | 6.90±0.05a | 28.77±1.10c | 113.13±1.60abc | 96.70±6.45ab | 34.19±0.65d | |
材料类型 Material type | ** | ** | ns | ** | ** | |
用量 Addition rate | ** | ** | ** | ** | ** | |
材料类型×用量 Material type×Addition rate | ** | ** | ns | * | ** | |
2023 | CK | 6.12±0.01ab | 23.39±0.01c | 97.13±1.68d | 96.92±3.35b | 36.26±0.92c |
JG1 | 6.11±0.02bc | 25.45±1.43bc | 99.75±3.03cd | 99.24±2.57a | 52.57±12.70b | |
JG2 | 6.04±0.02cd | 28.55±1.03ab | 110.25±2.26a | 89.69±1.11c | 53.13±10.03b | |
JG3 | 6.11±0.01bc | 30.27±2.03a | 107.63±0.88ab | 90.52±0.90bc | 70.59±8.26a | |
DK1 | 5.98±0.03d | 23.73±1.42c | 105.00±1.43abc | 89.03±0.49c | 34.62±4.49c | |
DK2 | 5.99±0.04d | 24.08±1.32c | 101.75±1.64bcd | 85.13±0.75c | 35.05±1.11c | |
DK3 | 6.19±0.02a | 26.83±0.40abc | 100.63±1.68cd | 96.25±2.49ab | 35.60±2.58c | |
材料类型 Material type | ns | ** | ns | ns | ** | |
用量 Addition rate | ** | ** | ** | ** | ** | |
材料类型×用量 Material type×Addition rate | ** | ns | ** | ** | ** |
相关分析结果显示,土壤有效硅与水溶性硅、有机结合态硅、无定形硅呈极显著正相关(P<0.01)。水稻茎叶硅积累量与土壤pH、土壤有机质、水溶性硅、铁锰氧化物结合态硅含量、地上部干物质总积累量呈极显著正相关(P<0.01)(
项目 Items | 水溶性硅 Water-soluble Si | 有效硅 Available Si | 有机结合态硅 Organic Si | 铁锰氧化物结合态硅 Fe/Mn-oxide Si | 无定形硅 Amorphous Si | 硅积累量 Silicon accumulation | 干物质总量Dry matter weight |
---|---|---|---|---|---|---|---|
pH | -0.137 |
-0.67 |
-0.65 |
0.95 |
-0.91 |
0.66 |
0.57 |
有机质 Organic matter | 0.047 |
-0.34 |
-0.27 |
0.58 |
-0.53 |
0.34 | 0.237 |
水溶性硅 Water-soluble Si | 1 |
0.61 |
0.64 | -0.131 |
0.37 |
0.40 | 0.143 |
有效硅 Available Si | 1 |
0.88 |
-0.67 |
0.85 | -0.039 | -0.248 | |
有机结合态硅 Organic Si | 1 |
-0.65 |
0.83 | -0.057 |
-0.30 | ||
铁锰氧化物结合态硅 Fe/Mn-oxide Si | 1 |
-0.92 | 0.631** |
0.59 | |||
无定形硅 Amorphous Si | 1 |
-0.44 |
-0.49 | ||||
硅积累量 Silicon accumulation | 1 |
0.58 | |||||
干物质总量 Dry matter weight | 1 |
硅是植物生长的有益元素,土壤中硅的形态和有效性对生态系统功能的影响至关重要。水稻从土壤溶液中吸收的溶解硅的形式为单硅
秸秆还田能显著增加土壤有机质含量,同时也能提高土壤中氮、磷等养分的含量,这主要是因为秸秆中的有机物质在分解过程中释放了多种营养元素,从而提高了土壤的肥力,促进作物生
秸秆和稻糠施用在不同程度上增加了土壤pH、有机质和速效养分含量,从而提高了土壤肥力。同时,除了铁锰氧化物结合态硅,富硅有机物料(特别是1.5%稻糠)施用显著增加土壤水溶性硅、有效硅、有机结合态硅及无定形硅含量,总体上这些硅含量随着用量的增加而增加。秸秆和稻糠施用均能显著增加水稻茎叶硅养分吸收和累积,稻糠施用更有利于水稻吸收硅。综合本研究结果,2种富硅有机物料能够丰富土壤不稳定硅库,增加土壤硅有效性,促进水稻对硅素的吸收。从硅的有效性方面来看,稻糠比秸秆提高的幅度更大,但是综合考虑到稻糠的成本问题,从生产实践的角度来看,秸秆更适合回田补充硅养分。
参考文献 References
LIMMER M A,LINAM F A,SEYFFERTH A L.The effect of rice residue management on rice paddy Si,Fe,As,and methane biogeochemistry[J/OL].Science of the total environment,2023,903:166496[2024-04-02].https://doi.org/10.1016/j.scitotenv.2023.166496 . [百度学术]
GUNTZER F,KELLER C,MEUNIER J D.Benefits of plant silicon for crops:a review[J].Agronomy for sustainable development,2012,32(1):201-213. [百度学术]
COSKUN D,DESHMUKH R,SONAH H,et al.The controversies of silicon’s role in plant biology[J].New phytologist,2019,221(1):67-85. [百度学术]
TUBANA B S,BABU T,DATNOFF L E.A review of silicon in soils and plants and its role in US agriculture[J].Soil science,2016,181(9/10):393-411. [百度学术]
YANG X M,SONG Z L,VAN ZWIETEN L,et al.Spatial distribution of plant-available silicon and its controlling factors in paddy fields of China[J/OL].Geoderma,2021,401:115215[2024-04-02].https://doi.org/10.1016/j.geoderma.2021.115215. [百度学术]
YANG X M,SONG Z L,YU C X,et al.Quantification of different silicon fractions in broadleaf and conifer forests of Northern China and consequent implications for biogeochemical Si cycling[J/OL].Geoderma,2020,361:114036[2024-04-02].https://doi.org/10.1016/j.geoderma.2019.114036. [百度学术]
PUPPE D,KACZOREK D,SCHALLER J,et al.Crop straw recycling prevents anthropogenic desilication of agricultural soil-plant systems in the temperate zone:results from a long-term field experiment in NE Germany[J/OL].Geoderma,2021,403:115187[2024-04-02].https://doi.org/10.1016/j.geoderma.2021.115187. [百度学术]
黄巧义,黄建凤,黄旭,等.早稻秸秆还田和减钾对晚稻产量和土壤肥力的影响[J].环境科学,2022,43(10):4706-4715.HUANG Q Y,HUANG J F,HUANG X,et al.Effects of early rice straw returning with reducing potassium fertilizer on late rice yield and soil fertility[J].Environmental science,2022,43(10):4706-4715 (in Chinese with English abstract). [百度学术]
CHE W K,PIAO J L,GAO Q,et al.Response of soil physicochemical properties,soil nutrients,enzyme activity and rice yield to rice straw returning in highly saline-alkali paddy soils[J].Journal of soil science and plant nutrition,2023,23(3):4396-4411. [百度学术]
GUPTA R K,YADVINDER-SINGH,LADHA J K,et al.Yield and phosphorus transformations in a rice-wheat system with crop residue and phosphorus management[J].Soil Science Society of America journal,2007,71(5):1500-1507. [百度学术]
LIU G,YU H Y,MA J,et al.Effects of straw incorporation along with microbial inoculant on methane and nitrous oxide emissions from rice fields[J].Science of the total environment,2015,518:209-216. [百度学术]
高明,魏朝富,谢德体.有机肥对紫色水稻土有效硅的影响[J].西南农业大学学报,1996,18(3):272-275.GAO M,WEI C F,XIE D T.Effects of organic manures on availability of silicon in purple paddy soil[J].Journal of Southwest University (natural science edition),1996,18(3):272-275 (in Chinese with English abstract). [百度学术]
曾研华,吴建富,范呈根,等.化肥减施条件下稻草还田供硅对双季稻产量及硅素养分吸收的影响[J].核农学报,2018,32(2):344-352.ZENG Y H,WU J F,FAN C G,et al.Effects of straw incorporation supplying silicon on grain yield and silicon absorption of double cropping rice under chemical fertilizer reduced[J].Journal of nuclear agricultural sciences,2018,32(2):344-352 (in Chinese with English abstract). [百度学术]
HUGHES H J,HUNG D T,SAUER D.Silicon recycling through rice residue management does not prevent silicon depletion in paddy rice cultivation[J].Nutrient cycling in agroecosystems,2020,118(1):75-89. [百度学术]
RUNKLE B R K,SEYFFERTH A L,REID M C,et al.Socio-technical changes for sustainable rice production:rice husk amendment,conservation irrigation,and system changes[J/OL].Frontiers in agronomy,2021,3:741557[2024-04-02]. https://doi.org/10.3389/fagro.2021.741557 . [百度学术]
戴伟民,张克勤,段彬伍,等.测定水稻硅含量的一种简易方法[J].中国水稻科学,2005,19(5):460-462.DAI W M,ZHANG K Q,DUAN B W,et al.Rapid determination of silicon content in rice(Oryza sativa)[J].Chinese journal of rice science,2005,19(5):460-462 (in Chinese with English abstract). [百度学术]
鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.BAO S D.Soil and agricultural chemistry analysis[M].3rd ed.Beijing:China Agriculture Press,2000(in Chinese). [百度学术]
SONG Z L,WANG H L,STRONG P J,et al.Increase of available soil silicon by Si-rich manure for sustainable rice production[J].Agronomy for sustainable development,2014,34(4):813-819. [百度学术]
GUO F S,SONG Z L,SULLIVAN L,et al.Enhancing phytolith carbon sequestration in rice ecosystems through basalt powder amendment[J].Science bulletin,2015,60(6):591-597. [百度学术]
KLOTZBÜCHER T,MARXEN A,JAHN R,et al.Silicon cycle in rice paddy fields:insights provided by relations between silicon forms in topsoils and plant silicon uptake[J].Nutrient cycling in agroecosystems,2016,105(2):157-168. [百度学术]
SONG A L,LI Z M,LIAO Y L,et al.Soil bacterial communities interact with silicon fraction transformation and promote rice yield after long-term straw return[J].Soil ecology letters,2021,3(4):395-408. [百度学术]
SEYFFERTH A L,KOCAR B D,LEE J A,et al.Seasonal dynamics of dissolved silicon in a rice cropping system after straw incorporation[J].Geochimica et cosmochimica acta,2013,123:120-133. [百度学术]
MEUNIER J D,SANDHYA K,PRAKASH N B,et al.pH as a proxy for estimating plant-available Si:a case study in rice fields in Karnataka (South India)[J].Plant and soil,2018,432(1):143-155. [百度学术]
丁奇,吴建富,李涛,等.稻草全量还田对双季水稻生长和土壤肥力的影响[J].江西农业大学学报,2014,36(1):44-49.DING Q,WU J F,LI T,et al.The effect of total straw incorporation on rice growth and soil fertility[J].Acta Agriculturae Universitatis Jiangxiensis,2014,36(1):44-49 (in Chinese with English abstract). [百度学术]
曹正男,赵振东,张海龙,等.黑龙江省水稻秸秆还田现状及展望[J].中国稻米,2022,28(2):20-23.CAO Z N,ZHAO Z D,ZHANG H L,et al.Status and prospect of returning rice straw to field in Heilongjiang Province[J].China rice,2022,28(2):20-23 (in Chinese with English abstract). [百度学术]
高俊,汪慧泉,顾东祥,等.秸秆还田对土壤生态及农作物生长发育影响的研究进展[J].中国农学通报,2023,39(30):87-93.GAO J,WANG H Q,GU D X,et al.Effects of straw returning on soil ecology and crop growth and development[J].Chinese agricultural science bulletin,2023,39(30):87-93 (in Chinese with English abstract). [百度学术]
KOYAMA S,HAYASHI H. Rice yield and soil carbon dynamics over three years of applying rice husk charcoal to an Andosol paddy field[J]. Plant production science, 2017, 20(2):1-7. [百度学术]
宁东峰,刘战东,肖俊夫,等.水稻土施用钢渣硅钙肥对土壤硅素形态和水稻生长的影响[J].灌溉排水学报,2016,35(8):42-46.NING D F,LIU Z D,XIAO J F,et al.Effects of application of steel slag-based silicon fertilizer on chemical forms of soil silicon and rice growth[J].Journal of irrigation and drainage,2016,35(8):42-46 (in Chinese with English abstract). [百度学术]
潘韬文,陈俣,蔡昆争.硅肥和氮肥配施对优质稻植株养分含量、产量和品质的影响[J].生态与农村环境学报,2021,37(1):120-126.PAN T W,CHEN Y,CAI K Z.Effect of nitrogen and silicon fertilizer on plant nutrient content,yield and quality of high quality rice[J].Journal of ecology and rural environment,2021,37(1):120-126 (in Chinese with English abstract). [百度学术]
YAO D H,WU J F,GAO H W,et al.Changes in soil silicon forms and availability as affected by rice straw and its biochar[J/OL].European journal of soil science,2022,73(6): e13316[2024-04-02]. https://doi.org/10.1111/ejss.13316. [百度学术]