摘要
为探索改善土壤质量和提升水稻产量的农艺措施,通过田间小区试验,设置对照(CK)、深翻30 cm(T1)、生物炭15 t/h
近年来,由于世界人口持续增长,粮食供应需求不断增加,尤其是以稻米为主食的亚洲地
生物炭是在氧气限制和不同温度条件下对原料进行热解而产生的富含碳(C)的材
植物根际一般处于缺氧状态,造成有毒物质(如F
基于此,本研究在天津市宁河区实验林场开展田间试验,探究生物炭配合深翻对稻田土壤性质和水稻产量及其构成因素的影响,旨在为提升稻田土壤质量及作物产量提供科学依据和技术支撑。
试验点位于天津市宁河区实验林场(117°42′59.5″E,39°28′34.5″N),属暖温带大陆性季风气候,年平均气温11.1 ℃,平均地面温度2.7~4.9 ℃,平均日照时数2 801.7 h,平均降水量在360~970 mm。供试土壤为粘壤土,碱解氮、速效磷、速效钾含量分别为69.85、40.93、290.50 mg/kg,有机质和全盐含量分别为20.90和2.12 g/kg,pH为8.08。
采用田间小区试验,共设4个处理,分别为:对照(常规,浅翻15~20 cm,CK)、深翻30 cm(T1)、表施15 t/h
供试水稻品种为津原U99。供试水稻生物炭由南京勤丰秸杆科技有限公司提供,为生物炭与硅钙粉按95∶5的质量比复配形成。生物炭中碳、氮、磷、钾含量分别为25.45%、0.70%、0.36%和1.95%,pH 10.87。
试验小区于2021年4月16日建成,4月26日施生物炭和底肥,5月12日插秧,11月5日收获。其他日常管理措施与当地农户相同。
水稻收获期每个小区挑选5穴水稻植株,测定水稻株高、有效穗数、穗粒数、产量、千粒重、生物量;根系样品利用根钻(直径10 cm)选择相同株数(11株)种植穴,采集剖面根系,洗净、烘干称质量得到水稻剖面根质量。
水稻收获期用五点取样法在每个小区采集表层(0~20 cm)土壤样品,混合均匀后送往实验室分析土壤有机质、全氮、碱解氮、速效磷、速效钾、水溶性盐总量和pH值;采集环刀样品,测定土壤容重、渗透系数。土壤有机质采用重铬酸钾外加热法测定;土壤全氮采用半微量凯氏定氮法测定;土壤碱解氮采用碱解扩散法测定;速效磷采用碳酸氢钠浸提-钼锑抗比色法测定;速效钾采用乙酸铵浸提-火焰光度法测定;水溶性盐总量采用烘干质量法测定;全盐量采用烘干质量法测定;pH值采用电极电位法测定;容重采用环刀法测定;渗透系数采用环刀法测定。
由

图1 不同处理下稻田土壤容重(A)、渗透系数(B)、全氮(C)、碱解氮(D)、速效磷(E)、速效钾(F)、有机质(G)、水溶性盐总量(H)和pH值(I)
Fig.1 Paddy soil bulk density (A), permeability coefficient (B), total nitrogen (C), alkaline hydrolysis nitrogen (D), available phosphorus (E), available potassium (F), organic matter (G), water-soluble salts (H) and pH (I) under different treatments
柱上不同小写字母表示不同处理间稻田土壤性质差异显著(P<0.05)。上方为双因素方差分析结果,“*”和“**”分别表示在0.05和0.01水平差异显著和极显著,ns表示不显著。下同。 Different lowercase letters above the bars represent significant differences among paddy soils with different treatments (P<0.05). The top is the result of two-factor analysis of variance, where “ *” and “ **” are associated with differences at 0.05 and 0.01 levels, respectively, while ns is not significant.The same as below.
由双因素方差分析结果可知,生物炭对土壤理化性质影响显著或极显著(
由

图2 不同处理下稻田土壤水稻产量(A)、穗粒数(B)、有效穗数(C)、千粒重(D)、生物量(E)、株高(F)、剖面根质量(G)
Fig.2 Rice yield (A), grain number per spikelet (B), spikelet number (C), 1 000-grain weight (D), biomass (E), plant height (F) and root weight (G) under different treatments
由双因素方差分析结果可知,生物炭对水稻产量及其构成因素影响显著或极显著(
筛选重要的土壤性质指标和水稻产量因素进行皮尔逊相关性分析,由
项目 Item | 渗透系数 Permeability coefficient | 有机质 Organic matter | 穗粒数 Grain number per spike | 生物量 Biomass | 产量 Yield |
---|---|---|---|---|---|
渗透系数 Permeability coefficient | 1 | ||||
有机质 Organic matter |
0.7 | 1 | |||
穗粒数 Grain number per spike |
0.7 | 0.57 | 1 | ||
生物量 Biomass |
0.7 |
0.6 | 0.47 | 1 | |
产量 Yield |
0.7 |
0.6 | 0.51 |
0.9 | 1 |
进一步用结构方程模型(

图3 生物炭、土壤性质与水稻产量及其构成因素的结构方程模型
Fig.3 Structural equation modeling (SEM) between the soil properties and rice index
红色和绿色箭头分别代表正、负关系;将路径系数的大小定义为重要值。Red and green arrows represent positive and negative relationships, respectively. The size of the path coefficient is defined as an important value.
本研究结果显示,深翻对土壤性质均无显著影响(
生物炭高孔隙率等特性可以改善土壤理化性质,为作物生长和根系养分吸收创造更好的环境。本研究中施用生物炭能显著提升土壤渗透系数并显著增加土壤有机质含量(
生物炭配合深翻处理与对照相比仅土壤渗透系数显著增加184.25%(P<0.05),且无交互效应(
在以往研究中深翻被证明是作物增产的重要措施,而在本试验中,深翻对水稻产量及其构成因素无显著影响(
农田应用生物炭的目的在于改善土壤特性与提高作物产量。本研究中施用生物炭使水稻产量、穗粒数和生物量分别提升9.46%、23.90%和6.51%(P<0.05,
本研究中生物炭配合深翻与对照相比,水稻产量显著增加9.93%(P<0.05,
综上,本研究结果表明,深翻对稻田土壤质量及水稻产量无显著影响;生物炭配合深翻使水稻增产的主要原因是添加生物炭;生物炭对土壤质量及作物产量有正向影响,主要是由于生物炭通过改善土壤通透性和提升有机质含量,进而增加水稻产量构成因素中的穗粒数,最终增加产量。因此,施用生物炭是改善土壤质量和提高水稻产量的有效途径。
参考文献References
YAKUBU A,DANSO E O,ARTHUR E,et al.Rice straw biochar and irrigation effect on yield and water productivity of okra[J].Agronomy journal,2020,112(4):3012-3023. [百度学术]
MUHAMMAD N,AZIZ R,BROOKES P C,et al.Impact of wheat straw biochar on yield of rice and some properties of Psammaquent and Plinthudult[J].Journal of soil science and plant nutrition,2017,17(3):808-823. [百度学术]
YANG X,LIU H B,MAO X T,et al.Non-flooding rice yield response to straw biochar and controlled-release fertilizer[J].Agronomy journal,2020,112(6):4799-4809. [百度学术]
ZHANG A F,CUI L Q,PAN G X,et al.Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake Plain,China[J].Agriculture,ecosystems & environment,2010,139(4):469-475. [百度学术]
OLADELE S O,ADEYEMO A J,AWODUN M A.Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils[J].Geoderma,2019,336:1-11. [百度学术]
SRIPHIROM P,CHIDTHAISONG A,YAGI K,et al.Effects of biochar on methane emission,grain yield,and soil in rice cultivation in Thailand[J].Carbon management,2021,12(2):109-121. [百度学术]
WU L P,WEI C B,ZHANG S R,et al.MgO-modified biochar increases phosphate retention and rice yields in saline-alkaline soil[J].Journal of cleaner production,2019,235:901-909. [百度学术]
ALI I,ZHAO Q,WU K,et al.Biochar in combination with nitrogen fertilizer is a technique:to enhance physiological and morphological traits of rice (Oryza sativa L.) by improving soil physio-biochemical properties[J].Journal of plant growth regulation,2022,41(6):2406-2420. [百度学术]
LU H H,WANG Y F,LIU Y X,et al.Effects of water-washed biochar on soil properties,greenhouse gas emissions,and rice yield[J/OL].CLEAN–soil,air,water,2018,46(4):1700143[2024-01-23].https://doi.org/10.1002/clen.201700143. . [百度学术]
JEFFERY S,VERHEIJEN F G A,VAN DER VELDE M,et al.A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis[J].Agriculture,ecosystems & environment,2011,144(1):175-187. [百度学术]
XIE K Z,XU P Z,YANG S H,et al.Effects of supplementary composts on microbial communities and rice productivity in cold water paddy fields[J].Journal of microbiology and biotechnology,2015,25(5):569-578. [百度学术]
DHALIWAL J,KAHLON M S,KUKAL S S.Deep tillage and irrigation impacts on crop performance of direct seeded rice-wheat cropping system in north-west India[J].Paddy and water environment,2021,19(1):113-126. [百度学术]
HU R W,LIU Y J,CHEN T,et al.Responses of soil aggregates,organic carbon,and crop yield to short-term intermittent deep tillage in Southern China[J/OL].Journal of cleaner production,2021,298:126767.https://doi.org/10.1016/j.jclepro.2021.126767. [百度学术]
WU P P,LI L J,WANG X.Shallow plough tillage with straw return increases rice yield by improving nutrient availability and physical properties of compacted subsurface soils[J].Nutrient cycling in agroecosystems,2023,127(1):69-83. [百度学术]
KAHLON M S.Effect of land manag ement practi ces on physical properties of soil and water productivity in wheat - maize system of north west India[J].Applied ecology and environmental research,2017,15(4):1-13. [百度学术]
SUN M,REN A X,GAO Z Q,et al.Long-term evaluation of tillage methods in fallow season for soil water storage,wheat yield and water use efficiency in semiarid southeast of the Loess Plateau[J].Field crops research,2018,218:24-32. [百度学术]
XIAO J M,ZHU S F,HAN S J,et al.Fenlong-ridging deep tillage integrated with biochar and fertilization to improve sugarcane growth and yield[J/OL].Agronomy,2023,13(9):2395[2024-01-23].https://doi.org/10.3390/agronomy13092395. [百度学术]
ARORA V K,JOSHI R,SINGH C B.Irrigation and deep tillage effects on productivity of dry-seeded rice in a subtropical environment[J].Agricultural research,2018,7(4):416-423. [百度学术]
YAO S H,TENG X L,ZHANG B.Effects of rice straw incorporation and tillage depth on soil puddlability and mechanical properties during rice growth period[J].Soil and tillage research,2015,146:125-132. [百度学术]
张雨萌,郭艳杰,张丽娟,等.生物炭配合深松对土壤团聚体及有机碳的影响[J].水土保持通报,2022,42(5):368-375.ZHANG Y M, GUO Y J, ZHANG L J, et al. Effects of biochar combined with subsoiling on soil aggregates and organic carbon[J]. Bulletin of soil and water conservation, 2022, 42(5): 368-375. [百度学术]
WU Q X,DU B,JIANG S C,et al.Side deep fertilizing of machine-transplanted rice to guarantee rice yield in conservation tillage[J/OL].Agriculture,2022,12(4):528[2024-01-23].ttps://doi.org/10.3390/agriculture12040528. [百度学术]
KANG S W,KIM S H,PARK J H,et al.Effect of biochar derived from barley straw on soil physicochemical properties,crop growth,and nitrous oxide emission in an upland field in South Korea[J].Environmental science and pollution research international,2018,25(26):25813-25821. [百度学术]
BURRELL L D, ZEHETNER F, RAMPAZZO N, et al. Long-term effects of biochar on soil physical properties[J]. Geoderma, 2016, 282: 96-102. [百度学术]
SUN J, LI H, WANG Y, et al. Biochar and nitrogen fertilizer promote rice yield by altering soil enzyme activity and microbial community structure[J]. Global change biology bioenergy, 2022, 14(12): 1266-1280. [百度学术]
KALU S, SIMOJOKI A, KARHU K, et al. Long-term effects of softwood biochar on soil physical properties, greenhouse gas emissions and crop nutrient uptake in two contrasting boreal soils[J/OL]. Agriculture, ecosystems & environment, 2021, 316: 107454[2024-01-23].https://doi.org/10.1016/j.agee.2021.107454. [百度学术]
CHEN L, GUO L, DENG X, et al. Effects of biochar on rice yield, grain quality and starch viscosity attributes[J]. Journal of the science of food and agriculture, 2023, 103(12): 5747-5753. [百度学术]
CHEN X, YANG S, DING J, et al. Effects of biochar addition on rice growth and yield under water-saving irrigation[J/OL]. Water, 2021, 13(2): 209[2024-01-23].https://doi.org/10.3390/w13020209. [百度学术]
HUANG M, FAN L, JIANG L G, et al. Continuous applications of biochar to rice: effects on grain yield and yield attributes[J]. Journal of integrative agriculture, 2019, 18(3): 563-570. [百度学术]
ARUNRAT N, KONGSURAKAN P, SEREENONCHAI S, et al. Soil organic carbon in sandy paddy fields of northeast Thailand: a review[J/OL]. Agronomy, 2020, 10(8): 1061[2024-01-23].https://doi.org/10.3390/agronomy10081061. [百度学术]
LIU Y, LI H, HU T, et al. A quantitative review of the effects of biochar application on rice yield and nitrogen use efficiency in paddy fields: a Meta-analysis[J/OL]. Science of the total environment, 2022, 830: 154792[2024-01-23].https://doi.org/10.1016/j.scitotenv.2022.154792. [百度学术]
CHEN W, LI P, LI F, et al. Effects of tillage and biochar on soil physiochemical and microbial properties and its linkage with crop yield[J/OL]. Frontiers in microbiology, 2022, 13: 929725[2024-01-23].https://doi.org/10.3389/fmicb.2022.929725 . [百度学术]
ZHANG X, WANG M, ZHANG D, et al. Increasing soil organic carbon pools and wheat yields by optimising tillage and fertilisation on the Loess Plateau in China[J/OL]. European journal of soil science, 2022, 73(1): e13197[2024-01-23].https://doi.org/10.1111/ejss.13197 . [百度学术]