摘要
为探究非生物胁迫下欧李(Cerasus humilis)叶片中γ-氨基丁酸(γ-aminobutyric acid,GABA)积累的调控策略及其内在机制,以“晋欧3号”欧李鲜叶为试验材料,采用浸泡、低温以及真空厌氧处理,测定各处理条件下叶片GABA含量、关键酶活性等生理生化指标。结果表明:谷氨酸钠(monosodium glutamate,MSG)、磷酸吡哆醛(pyridoxal phosphate,PLP)、NaCl浸泡处理和真空处理均对欧李叶片中GABA的积累、关键酶活性等生理生化指标有显著影响。MSG处理9 h,欧李叶片中GABA的积累效果最佳,其含量是未经处理(0 h)的2.3倍;真空处理15 h、-20 ℃处理6 h后,GABA含量分别是未经处理(0 h)的1.99倍、1.97倍;谷氨酸脱羧酶(glutamic acid decarboxylase,GAD)、二胺氧化酶(diamine oxidase,DAO)、多胺氧化酶(polyamine oxidase,PAO)活性均显著上升,GABA-T活性则显著降低;Glu、C
γ-氨基丁酸(γ-aminobutyric acid,GABA)是一种对生长发育有重要影响的非蛋白质氨基
迄今为止,关于非生物胁迫促进植物中GABA积累的报道已有很多。盐胁迫可提高番茄果
欧李(Cerasus humilis (Bge.) Sok.)叶片营养价值较高,富含多种功能成分,各种元素含量远高于果实,100 g鲜叶中含有465 mg的钙和7%的粗蛋白质。此外,欧李叶片的抗氧化也非常强。乔羽
1)浸泡处理。将鲜叶分别浸泡在25 ℃的不同溶液中:2%谷氨酸钠(monosodium glutamate,MSG)溶液、0.15 mol/L NaCl溶液、2.0 mmol/L 磷酸吡多醛(pyridoxal phosphate,PLP)溶液、蒸馏水(CK)中分别处理0、3、6、9、15 h,取出后用蒸馏水洗净,沥干表面的水分,液氮中研磨成粉末,-80 ℃保存备用。
2)真空厌氧处理。将欧李新鲜叶片分别经室温0.09 MPa真空处理0、9、12、15、18 h,取出后按上述方法粉碎存放。
3)低温处理。将欧李鲜叶分别置于4、-20 ℃低温环境中0、2、4、6、8 h,取出后按上述方法粉碎存放。
1)GABA及其关键酶活、C
2)类黄酮、总酚含量测定。利用NaNO2-Al(NO3)3-NaOH比色法测定类黄酮含
3)膜脂过氧化、渗透调节物质含量、抗氧化酶活性测定。丙二醛(MDA)含量测定采用硫代巴比妥酸比色
1)浸泡处理对欧李叶片GABA含量的影响。由

图1 浸泡处理下欧李叶片GABA含量变化
Fig. 1 Changes of GABA content in C. humilis leaves under soaking treatment
不同大写字母代表同一时间不同处理间存在显著差异(P<0.05),不同小写字母代表不同时间同一处理下存在显著差异(P<0.05),下同。Different uppercase letters represent significant differences under different treatments at the same time(P<0.05), different lowercase letters represent significant differences under the same treatment at different times (P<0.05), the same as below.
2)浸泡处理对欧李叶片GABA关键酶活性的影响。由

图2 浸泡处理下欧李叶片GABA关键酶活性变化
Fig. 2 Changes of GABA key enzyme activity in C. humilis leaves under soaking treatment
由
由
由
3)浸泡处理对欧李叶片GABA相关生理生化指标的影响。由

图3 浸泡处理下欧李叶片GABA相关生理生化指标的测定
Fig. 3 Determination of GABA-related physiological and biochemical indices in C. humilis leaves under soaking treatment
由
由
4)浸泡处理下欧李叶片GABA含量和相关生理生化指标的相关性分析。由

图4 浸泡处理下GABA含量和相关生理生化指标的相关性分析
Fig. 4 Correlation analysis of GABA content with related physiological and biochemical indices under soaking treatment
*、**、***分别表示在0.05、0.01、0.001水平上显著相关,下同。*, **, *** indicate significant correlation at 0.05,0.01, and 0.001 levels. The same as below.
1)真空厌氧处理对欧李叶片GABA含量的影响。由

图5 真空处理下欧李叶片GABA含量变化
Fig. 5 Changes of GABA content in C. humilis leaves under vacuum treatment
2)真空厌氧处理对欧李叶片GABA关键酶活性的影响。由

图6 真空处理下欧李叶片GABA关键酶活性变化
Fig. 6 Changes of GABA key enzyme activity in C. humilis leaves under vacuum treatment
由
由
由
3) 真空厌氧处理对欧李叶片GABA相关生理生化指标的影响。由

图7 真空处理下欧李叶片GABA相关生理生化指标的测定
Fig. 7 Determination of GABA-related physiological and biochemical indicesin C. humilis leaves under vacuum treatment
由
由
由
4)真空处理下GABA含量和相关生理生化指标的相关性分析。如

图8 真空处理下GABA含量和相关生理生化指标的相关性分析
Fig. 8 Correlation analysis of GABA content with related physiological and biochemical indices under vaccum treatment
1)低温处理对欧李叶片GABA含量的影响。由

图9 低温处理下欧李叶片GABA含量变化
Fig. 9 Changes of GABA content in C. humilis leaves under low temperature treatment
2)低温处理对欧李叶片GABA关键酶活性的影响。由

图10 低温处理下欧李叶片GABA关键酶活性变化
Fig. 10 Changes of GABA key enzyme activity in C. humilis leaves under low temperature treatment
由
由
由
3)低温处理对欧李叶片GABA相关生理生化指标的影响。由

图11 低温处理下欧李叶片GABA相关生理生化指标的测定
Fig. 11 Determination of GABA-related physiological and biochemical indices in C. humilis leaves under low temperature treatment
由
由
4)低温处理下GABA含量和相关生理生化指标的相关性分析。由

图12 低温处理下GABA含量和相关生理生化指标的相关性分析
Fig. 12 Correlation analysis of GABA content with related physiological and biochemical indices under low temperature treatment
在逆境条件下,如高温、低温、低氧、盐胁迫以及机械损伤等,GABA的含量会显著上升,而在这些逆境中,低氧胁迫导致的GABA积累量最为显著。植物受到低氧胁迫后,会抑制三羧酸循环,琥珀酸半醛脱氢酶活性降低,进而抑制GABA-T活性,降低了GABA的降解率,逆向促使GABA累
除此以外,植物在逆境条件下,胞内C
前期研究表明,厌氧条件下黄茶的Glu含量下降,GABA含量增加20多
低温环境可以有效提高GABA含量。本研究发现,随着-20 ℃低温处理时间的延长,GABA含量呈先升后降的趋势,6 h达到峰值,4 ℃低温处理呈缓慢上升趋势,且-20 ℃低温处理后GABA含量增幅显著高于4 ℃低温处理。夏兴莉
当植物遭遇非生物胁迫时会积累大量以总酚、黄酮类为主的次生代谢物质,清除自由基、抗氧化,提高植物的抗逆性。研究表明,银杏体内氧化性物质ROS、NADH、
植物在遭受胁迫时,能激发SOD、POD等抗氧化酶活性,增加Pro等渗透调节物质,增强自身的抗逆性。研究表明,GABA能通过提高抗氧化酶活性、内源脯氨酸、甜菜碱和可溶性糖含量,降低相对电导率来提高抗盐
本研究仅是对非生物胁迫下欧李叶片GABA的富集机制进行初探,并未从欧李植株整个生长发育过程的角度探索其GABA在逆境条件下的富集机制。除此以外,本研究只是从生理生化角度阐释欧李叶片GABA在非生物胁迫下的富集机制,对于各种非生物胁迫条件下GABA的合成,以及其与抗氧化酶等物质的相互作用,有待从分子水平进行深入探究。
参考文献 References
NIKMARAM N,DAR B,ROOHINEJAD S,et al.Recent advances in γ-aminobutyric acid (GABA) properties in pulses:an overview[J].Journal of the science of food and agriculture,2017,97(9):2681-2689. [百度学术]
SHELP B J,BOZZO G G,TROBACHER C P,et al.Hypothesis/review:contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress[J].Plant science,2012,193/194:130-135. [百度学术]
GUO Y X,YANG R Q,CHEN H,et al.Accumulation of γ-aminobutyric acid in germinated soybean (Glycine max L.) in relation to glutamate decarboxylase and diamine oxidase activity induced by additives under hypoxia[J].European food research and technology,2012,234(4):679-687. [百度学术]
SHELP B J,MULLEN R T,WALLER J C.Compartmentation of GABA metabolism raises intriguing questions[J].Trends in plant science,2012,17(2):57-59. [百度学术]
韩济生.中枢神经介质概论[M].北京:科学出版社,1980.HAN J S.Introduction to central nervous medium[M].Beijing:Science Press,1980 (in Chinese). [百度学术]
ZUSHI K,MATSUZOE N.Salt stress-enhanced γ-aminobutyric acid (GABA) in tomato fruit[J].Acta horticulturae,2007(761):431-435. [百度学术]
AKÇAY N,BOR M,KARABUDAK T,et al.Contribution of Gamma amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and wild type plants[J].Journal of plant physiology,2012,169(5):452-458. [百度学术]
周沫霖, 胡卓炎, 赵雷, 等. 不同低温贮藏对荔枝γ-氨基丁酸富集及贮藏品质的影响[J]. 现代食品科技, 2016, 32(3): 189-196.ZHOU M L, HU Z Y, ZHAO L, et al. Effect of different low-temperature storage methods on γ-aminobutyric acid accu-mulation and storage quality of litchi[J]. Modern food science and technology, 2016, 32(3): 189-196. [百度学术]
夏兴莉,廖界仁,任太钰,等.低温处理对茶树叶片中γ-氨基丁酸和其他活性成分含量的影响[J].植物资源与环境学报,2020,29(5):75-77.XIA X L,LIAO J R,REN T Y,et al.Effect of low temperature treatment on contents of γ-aminobutyric acid and other active components in leaf of Camellia sinensis[J].Journal of plant resources and environment,2020,29(5):75-77 (in Chinese with English abstract). [百度学术]
陈庆.桑叶主要内含成分年动态变化及提高桑叶中γ-氨基丁酸工艺研究[D].长沙:湖南农业大学,2011.CHEN Q.Study on the annual dynamic changes of main components in mulberry leaves and the technology of improving γ-aminobutyric acid in mulberry leaves[D].Changsha:Hunan Agricultural University,2011 (in Chinese with English abstract). [百度学术]
LIAO J R,WU X Y,XING Z Q,et al.γ-Aminobutyric acid (GABA) accumulation in tea (Camellia sinensis L.) through the GABA shunt and polyamine degradation pathways under Anoxia[J].Journal of agricultural and food chemistry,2017,65(14):3013-3018. [百度学术]
李敬蕊, 杨丽文, 王春燕. γ-氨基丁酸对低氧胁迫下甜瓜幼苗抗氧化酶活性及表达的影响[J].东北农业大学学报, 2014, 45(11): 28-4. LI J R, YANG L W, WANG C Y. Effects of γ-aminobutyric acid on the activity and expression of antioxidant enzymes in muskmelon seedlings under hypoxia stress[J]. Journal of Northeast Agricultural University, 2014, 45(11): 28-42 (in Chinese with English abstract). [百度学术]
高洪波, 郭世荣. 外源γ-氨基丁酸对营养液低氧胁迫下网纹甜瓜幼苗抗氧化酶活性和活性氧含量的影响[J]. 植物生理与分子生物学学报, 2004, 30(6): 651-659. GAO H B, GUO S R. Effects of exogenous γ-aminobutyric acid on antioxidant enzyme activity and reactive oxygen content of muskmelon seedlings under hypoxia stress of nutrient solution[J]. Journal of plant physiology & molecular biology, 2004, 30(6): 651-659 (in Chinese with English abstract). [百度学术]
乔羽佳.欧李种质类黄酮和多酚含量分析及器官年动态变化研究[D].太谷:山西农业大学,2019.QIAO Y J.Analysis of flavonoids and polyphenols in Prunus humilis germplasm and study on annual dynamic changes of organs[D].Taigu:Shanxi Agricultural University,2019 (in Chinese with English abstract). [百度学术]
董姊怡,王安萁,李卫东.高效液相色谱法测定欧李不同部位γ-氨基丁酸的含量[J].东北农业科学,2017,42(2):60-64.DONG Z Y,WANG A Q,LI W D.Determination of the content of γ-aminobutyric acid in dfferent oarts of Cerasus humilis by high performance liquid chromatograhy method[J].Journal of northeast agricultural sciences,2017,42(2):60-64 (in Chinese with English abstract). [百度学术]
乔羽佳,王鹏飞,张建成,等.光照强度对欧李果实成熟期及品质的影响[J].山西农业科学,2019,47(5):865-869.QIAO Y J,WANG P F,ZHANG J C,et al.Effects of light intensity on fruit mature period and quality of Chinese dwarf cherry[J].Journal of Shanxi agricultural sciences,2019,47(5):865-869 (in Chinese with English abstract). [百度学术]
汪晓谦.红肉苹果酚类代谢及其对逆境的响应研究[D].杨凌:西北农林科技大学,2015.WANG X Q.Phenolic metabolism of red-fleshed apple and its response to adversity[D].Yangling:Northwest A & F University,2015 (in Chinese with English abstract). [百度学术]
赵世杰,许长成,邹琦,等.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994,30(3):207-210.ZHAO S J,XU C C,ZOU Q,et al.Improvement of determination method of malondialdehyde in plant tissues[J].Plant physiology communications,1994,30(3):207-210 (in Chinese). [百度学术]
高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006.GAO J F.Experimental guidance for plant physiology[M].Beijing:Higher Education Press,2006 (in Chinese). [百度学术]
曹建康,姜微波,赵玉梅.果蔬采后生理生化实验指导[M].北京:中国轻工业出版社,2007:54-76.CAO J K,JIANG W B,ZHAO Y M.Guidance on postharvest physiological and biochemical experiments of fruits and vegetables[M].Beijing:China Light Industry Press,2007:54-76(in Chinese). [百度学术]
郑国琦,许兴,徐兆桢,等.盐胁迫对枸杞光合作用的气孔与非气孔限制[J].西北农业学报,2002,11(3):87-90.ZHENG G Q,XU X,XU Z Z,et al.The effect of salt stress on the stomatal and non-stomatal limitation of photosynthesis of wolf berry[J].Acta agriculturae boreali-occidentalis sinica,2002,11(3):87-90 (in Chinese with English abstract). [百度学术]
SCOTT-TAGGART C P,VAN CAUWENBERGHE O R,MCLEAN M D,et al.Regulation of γ-aminobutyric acid synthesis in situ by glutamate availability[J].Physiologia plantarum,1999,106(4):363-369. [百度学术]
CRAWFORD L A,BOWN A W,BREITKREUZ K E,et al.The synthesis of γ-aminobutyric acid in response to treatments reducing cytosolic pH[J].Plant physiology,1994,104(3):865-871. [百度学术]
毛清黎,代小梅,杨新河,等.真空及外源谷氨酸钠处理对茶叶中γ-氨基丁酸富集作用研究[J].食品与机械,2009,25(4):49-51.MAO Q L,DAI X M,YANG X H,et al.Enrichment of γ-aminobutyric acid in tea by vacuum treatment and extrogenous sodium glutamate[J].Food & machinery,2009,25(4):49-51 (in Chinese with English abstract). [百度学术]
PANDEY S,TIWARI S B,UPADHYAYA K C,et al.Calcium signaling:linking environmental signals to cellular functions[J].Critical reviews in plant sciences,2000,19(4):291-318. [百度学术]
白青云.低氧胁迫和盐胁迫下发芽粟谷γ-氨基丁酸富集机理及抗氧化性研究[D].南京:南京农业大学,2009.BAI Q Y.Study on enrichment mechanism and antioxidant activity of γ-aminobutyric acid in germinated millet under hypoxia stress and salt stress[D].Nanjing:Nanjing Agricultural University,2009 (in Chinese with English abstract). [百度学术]
章垚琪,潜卫东,傅玲琳,等.厌氧处理对黄茶生物活性的影响及γ-氨基丁酸富集的代谢组学分析[J].食品科学,2023,44(6):65-73.ZHANG Y Q,QIAN W D,FU L L,et al.Effect of anaerobic treatment on bioactive properties of yellow tea and metabolomic analysis of its promoting effect on γ-aminobutyric acid enrichment[J].Food science,2023,44(6):65-73 (in Chinese with English abstract). [百度学术]
DEEWATTHANAWONG R,ROWELL P,WATKINS C B.γ-Aminobutyric acid (GABA) metabolism in CO2 treated tomatoes[J].Postharvest biology and technology,2010,57(2):97-105. [百度学术]
WANG L,SHI H,WU J S,et al.Alternative partial root-zone irrigation enhances leaf flavonoid accumulation and water use efficiency of Ginkgo biloba[J].New forests,2016,47(3):377-391. [百度学术]
REDDY V S,REDDY A S N.Proteomics of calcium-signaling components in plants[J].Phytochemistry,2004,65(12):1745-1776. [百度学术]
KAO C. Physiological significance of stress-induced changes in polyamines in plants[J]. Botanical bulletin of academia sinica, 1997, 38(3): 141-144. [百度学术]