摘要
为提高直播油菜种子出苗率及壮苗率,以华油杂50油菜种子为试验材料,进行室内筛选与田间种植试验,以评估木醋液引发(wood vinegar priming,PV)和稻秆生物炭(rice straw biochar,BC)丸粒化对油菜萌发出苗、幼苗生长、产量和品质的影响,木醋液引发设7个处理(m/V):0(纯蒸馏水,HP)、1∶200(PV200)、1∶400(PV400)、1∶600(PV600)、1∶800(PV800)、1∶1 000(PV1000)和1∶1 200(PV1200),稻秆生物炭设5个处理(m/m):20%(BC20)、30%(BC30)、40%(BC40)、50%(BC50)和60%(BC60)。结果显示:稀释1 000倍的木醋液(PV1000)引发和30% BC的种衣剂丸粒化是促进萌发和幼苗生长的最佳配比。PV1000引发和PV1000引发+30%生物炭丸粒化(PV1000+BC30)处理显著提高油菜的出苗率,分别提高20.2%和22.1%;PV、BC、PV+BC处理的生物量分别较对照提高13.7%、21.6%、35.3%;油菜产量分别提高达14.4%、13.6%、17.0%;同时,PV+BC处理显著提高了油酸含量,降低了硫苷含量。因此,PV和PV+BC是有效的种子处理方法。
油菜是我国种植面积最大的油料作物。随着我国耕作制度和农业产业结构变化以及农村劳动力向城镇转移,省工节本、轻简高效的高密度直播油菜种植方式正在逐渐代替传统的稀植移栽方
播前采用种子引发和种子丸粒化等种子处理技术,是促进种子快速均匀出苗和提高幼苗质量的有效途
种子丸粒化是通过人工或机械加工制成表面光滑、大小均匀、颗粒增大的种
供试品种为甘蓝型杂交油菜华油杂50,由圣光种业有限责任公司提供。供试杨木木醋液由湖北楚天生物质能源技术开发有限公司提供,pH 3.45。秸秆生物炭(rice straw biochar,BC)为稻草在600 ℃的高温下热解而成,由湖北金智生态能源有限公司提供:pH 9.42,其中含有氮0.74%、碳47.14%、氢1.62%、氧11.85%、磷0.32%、钾18.90%和灰分19.43%。滑石粉、凹凸棒土和种子丸粒化机(型号RH-325),均购于青岛瑞华农业科技有限公司(中国山东省青岛市)。
试验在光照培养箱(HP250GS-C,宁波东南仪器有限公司)中进行,光照12 h/黑暗12 h(13 000 lx),昼夜温度为25 ℃/20 ℃。油菜种子播种在12.0 cm×12.0 cm×6.0 cm的发芽盒中,每盒100粒种子,每处理3盒。
将100颗灭菌种子分别浸泡在加入0(纯蒸馏水,HP)、1∶200(PV200,m/V,下同)、1∶400(PV400)、1∶600(PV600)、1∶800(PV800)、1∶1 000(PV1000)和1∶1 200(PV1200)木醋液的灭菌水中12 h。种子引发处理参照Hussain
在m滑石粉∶m凹凸棒土=1∶1的丸粒化材料配方基础上,设置生物炭含量为20%(BC20)、30%(BC30)、40%(BC40)、50%(BC50)和60%(BC60)(m/m)。种子质量与丸粒化剂质量之比设定为1∶2。在进行丸粒化之前,将干燥的生物炭粉碎过筛至0.60 mm的粒径。种子丸粒化方法参考Zhang
田间试验在华中农业大学试验场进行,前茬为水稻。小区面积为10
在培养箱中进行培养观察,每天记录发芽率,自出苗之日起每天统计出苗率。第7天进行幼苗取样,测定幼苗形态指标,如发芽势(germination potential,GE)、最终发芽率/出苗率(final germination/emergence,FG/FE)、出苗指数(emergence index,EI)、平均出苗时间(mean emergence time,MET
在苗期、蕾薹期、开花期和角果期分别取不同处理5株油菜植株,测量株高、根颈粗、总叶数、绿叶数、鲜质量和干质量。用直尺测量从子叶节到植株顶部的距离来确定植株的高度。根颈粗用游标卡尺测量。在105 ℃时对植株进行杀青,将温度调节至75 ℃烘干至恒质量。对干燥样本称质量,以获得5株油菜的干质量平均值。
在晴朗无云的上午10:00,使用SPAD-502(日本大阪美能达)叶绿素仪测量SPAD值。选择有代表性的5株油菜,对倒4功能叶(自上而下的第4片完全展开叶),避开叶脉在叶片不同部位测量6次,取平均值。
在约2/3的油菜种子为棕色时,每个小区取10株代表性油菜进行相关指标测定,如株高、根颈粗、有效分枝数、有效角果数、每角粒数和千粒重,并在干燥后对植株分部位称质量。对每个小区单独收获并干燥后,在菜籽含水率低于10%时,测产量。
不同质量浓度木醋液引发下油菜种子萌发出苗情况见
处理 Treatments | 出苗率/% Emergence rate | 出苗指数 Emergence index | 平均出苗时间/d Average emergence time | 幼苗活力指数Ⅰ Seedling vitality index Ⅰ | 幼苗活力指数Ⅱ Seedling vitality index Ⅱ |
---|---|---|---|---|---|
CK | 79.3±1.3a | 13.0±0.7b | 6.30±0.11a | 995.4±23.4b | 785.8±26.1b |
HP | 82.0±1.2a | 16.1±0.6a | 6.10±0.05b | 1 016.6±29.3ab | 816.2±10.7ab |
PV200 | 76.7±3.7ab | 14.3±1.1ab | 6.15±0.07b | 994.7±46.7b | 791.9±2.5ab |
PV400 | 70.0±3.5b | 13.1±0.5b | 6.12±0.05b | 1 065.8±21.7ab | 821.0±13.8ab |
PV600 | 76.7±1.2ab | 16.1±0.3a | 6.05±0.04b | 1 054.6±21.7ab | 826.2±16.7ab |
PV800 | 84.0±1.3a | 16.2±0.7a | 6.03±0.06b | 1 100.3±11.9a | 839.8±24.6ab |
PV1000 | 83.3±1.3a | 16.3±0.5a | 6.09±0.06b | 1 095.0±27.4a | 843.9±15.4a |
PV1200 | 82.7±1.3a | 15.1±1.2ab | 6.16±0.13b | 1 050.5±12.6ab | 842.1±5.1a |
注: 每列数据后不同小写字母表示处理间差异显著(P < 0.05)。CK:未处理种子;HP:水引发;PV后的数字表示用于种子引发的PV质量浓度(m/V)。下同。Note:According to the LSD test,different lower case letters after each column of figures in the table represent significant differences(P<0.05) among treatments. CK: Untreated seeds,HP: Water induced. The number after PV represents the concentration of PV induced by seeds.The same as below.
由不同质量浓度下木醋液处理下幼苗素质指标(
处理 Treatments | 苗高/cm Height | 根长/cm Root length | 地上部干质量/(mg/plant) Above ground dry weight | 地下部干质量/(mg/plant) Underground dry weight | 总干质量/(mg/plant) Total dry weight |
---|---|---|---|---|---|
CK | 1.41±0.13a | 9.38±0.37ab | 5.95±0.21a | 2.34±0.06c | 8.30±0.14bc |
HP | 1.17±0.03a | 9.39±0.87ab | 6.13±0.18a | 2.41±0.07bc | 8.54±0.03abc |
PV200 | 1.21±0.09a | 9.01±0.79a | 6.01±0.03a | 2.13±0.04d | 8.14±0.15c |
PV400 | 1.27±0.04a | 9.83±0.13ab | 6.09±0.24a | 2.47±0.10bc | 8.55±0.17abc |
PV600 | 1.19±0.08a | 9.72±0.43ab | 6.13±0.12a | 2.41±0.17bc | 8.55±0.13abc |
PV800 | 1.31±0.11a | 10.00±0.24b | 6.05±0.41a | 2.57±0.09ab | 8.63±0.23ab |
PV1000 | 1.31±0.06a | 10.10±0.23b | 6.14±0.14a | 2.65±0.06a | 8.79±0.10a |
PV1200 | 1.29±0.12a | 9.50±0.33ab | 6.12±0.23a | 2.53±0.07ab | 8.65±0.11ab |

图1 培养箱条件下,不同质量浓度PV处理的油菜幼苗在第7天的生长情况
Fig.1 Growth of rapeseed seedlings treated with different concentrations of PV under incubator conditions on the seventh day
由
处理 Treatments | 出苗率/% Emergence rate | 出苗指数 Emergence index | 平均出苗时间/d Average emergence time | 幼苗活力指数Ⅰ Seedling vitality index Ⅰ | 幼苗活力指数Ⅱ Seedling vitality index Ⅱ |
---|---|---|---|---|---|
CK | 89.3±0.7a | 25.9±0.2a | 5.77±0.01a | 1 334.3±87.1b | 645.7±20.0b |
BC20 | 88.0±2.3ab | 25.5±0.4ab | 5.76±0.01a | 1 513.0±47.2a | 705.7±24.8ab |
BC30 | 86.7±0.7abc | 25.4±0.4ab | 5.74±0.02a | 1 506.3±40.6a | 746.7±8.3a |
BC40 | 84.0±1.2bcd | 23.3±0.4abc | 5.82±0.04a | 1 329.3±30.5b | 715.3±29.1ab |
BC50 | 82.7±1.8cd | 23.1±1.2bc | 5.79±0.04a | 1 342.0±15.8b | 629.3±31.4b |
BC60 | 80.7±1.8d | 21.3±1.5c | 5.85±0.05a | 1 335.7±25.5b | 637.7±21.9b |
从不同含量生物炭丸粒化处理下油菜幼苗素质指标(
处理 Treatments | 苗高/cm Height | 根长/cm Root length | 地上部干质量/(mg/plant) Above ground dry weight | 地下部干质量/(mg/plant) Underground dry weight | 总干质量/(mg/plant) Total dry weight |
---|---|---|---|---|---|
CK | 8.65±0.59b | 6.76±1.11b | 6.33±0.30b | 0.90±0.27d | 7.23±0.23a |
BC20 | 9.13±0.15a | 8.27±0.61a | 7.02±0.17a | 1.00±0.20cd | 8.02±0.59ab |
BC30 | 9.15±0.41a | 7.93±0.83a | 7.14±0.24a | 1.48±0.24a | 8.62±0.21a |
BC40 | 8.28±0.31b | 7.55±0.44ab | 7.19±0.83a | 1.22±0.21b | 8.41±0.33a |
BC50 | 8.66±0.31ab | 7.58±0.66ab | 6.44±0.37b | 1.17±0.24bc | 7.61±0.10ab |
BC60 | 8.31±0.81b | 8.23±0.62a | 6.70±0.13ab | 1.21±0.24bc | 7.91±0.04ab |

图2 培养箱条件下不同含量生物炭(BC)丸粒化的油菜幼苗在第7天的生长情况
Fig.2 Growth of rapeseed seedlings with different contents of biochar (BC) pellets under incubator conditions on the seventh day
对稀释1 000倍木醋液引发(PV)、30%生物炭丸粒化(BC)、以及二者联合使用(PV+BC)等3种方式进行萌发比较试验,结果见
处理 Treatments | 出苗率/% Emergence rate | 出苗指数 Emergence index | 平均出苗时间/d Average emergence time | 幼苗活力指数Ⅰ Seedling vitality index Ⅰ | 幼苗活力指数Ⅱ Seedling vitality index Ⅱ |
---|---|---|---|---|---|
CK | 85.3±2.3b | 15.9±0.6c | 6.17±0.04a | 899.2±6.4c | 353.5±17.6c |
PV | 94.0±3.5a | 21.3±1.1a | 5.97±0.07c | 1 026.0±4.5b | 434.5±12.3b |
BC | 83.7±5.1b | 18.3±1.8b | 6.10±0.03ab | 1 024.7±7.4b | 528.7±3.9a |
PV+BC | 96.7±1.2a | 22.1±0.9a | 6.00±0.08bc | 1 215.9±2.4a | 559.4±6.8a |
不同种子处理方式下幼苗素质指标(
处理 Treatments | 苗高/cm Height | 根长/cm Root length | 地上部干质量/(mg/plant) Above ground dry weight | 地下部干质量(mg/plant) Underground dry weight | 总干质量/(mg/plant) Total dry weight |
---|---|---|---|---|---|
CK | 1.16±0.02b | 7.95±0.02d | 2.63±0.20c | 0.96±0.13c | 3.58±0.21c |
PV | 1.17±0.01b | 9.23±0.02b | 2.98±0.14b | 1.43±0.08b | 4.40±0.07b |
BC | 1.89±0.04a | 8.71±0.07c | 3.94±0.11a | 1.53±0.09b | 5.47±0.07a |
PV+BC | 1.90±0.02a | 10.59±0.18a | 4.00±0.18a | 1.75±0.14a | 5.75±0.33a |

图3 培养箱条件下不同种子处理方式的油菜幼苗在第7天的生长情况
Fig. 3 Growth of rapeseed seedlings under different seed treatment methods on the seventh day under incubator conditions
1)出苗及幼苗形态。由
处理 Treatments | 出苗数/(株/ Emergence rate | 苗高/cm Height | 单株鲜质量/(mg/plant) Fresh weight | 单株干质量/(mg/plant) Dry weight | 幼苗活力指数 Seedling vitality index |
---|---|---|---|---|---|
CK | 99.2±7.7b | 3.7±0.2c | 79.6±4.1c | 5.1±0.4c | 276.9d |
PV | 112.1±3.1a | 3.9±0.2bc | 91.7±2.8b | 5.8±0.3bc | 321.7b |
BC | 95.4±6.1b | 4.2±0.2ab | 102.7±4.8b | 6.2±0.5ab | 321.7c |
PV+BC | 119.2±4.7a | 4.3±0.1a | 111.7±4.4a | 6.9±0.4a | 420.6a |
2)农艺性状。油菜苗期、蕾薹期、开花期和角果期株高和根颈粗测定结果(
处理 Treatments | 株高/cm Plant height | 根颈粗/mm Root collar diameter | ||||||
---|---|---|---|---|---|---|---|---|
苗期 Seedling stage | 蕾薹期 Bolting stage | 花期 Flowering stage | 角果期 Pod stage | 苗期 Seedling stage | 蕾薹期 Bolting stage | 花期 Flowering stage | 角果期 Pod stage | |
CK | 14.0±1.2a | 20.6±2.4a | 152.8±9.8a | 173.0±8.5b | 8.3±0.4b | 11.1±0.3a | 14.1±1.2a | 11.8±0.2d |
PV | 14.6±0.5a | 22.0±1.3a | 166.1±9.3a | 187.8±1.8a | 8.9±0.2b | 12.5±0.5a | 14.2±0.7a | 14.9±0.6b |
BC | 15.9±1.8a | 24.0±2.5a | 158.3±4.6a | 178.8±5.6ab | 8.8±0.5b | 11.6±0.8a | 14.5±0.6a | 13.9±0.1c |
PV+BC | 14.2±2.2a | 22.8±5.0a | 157.6±7.3a | 177.2±7.9ab | 10.1±0.2a | 12.7±0 .3a | 15.5±1.2a | 15.9±0.8a |
木醋液和生物炭处理均可以促进油菜绿叶数和总叶数的增加(
处理 Treatments | 总叶数 Total leaves | 绿叶数 Green leaves | ||||||
---|---|---|---|---|---|---|---|---|
苗期 Seedling stage | 蕾薹期 Bolting stage | 花期 flowering stage | 角果期 Pod stage | 苗期 Seedling stage | 蕾薹期 Bolting stage | 花期 Flowering stage | 角果期 Pod stage | |
CK | 9.7±0.6a | 11.5±0.9b | 19.7±1.4a | 25.7±1.3b | 5.5±0.5b | 3.7±0.8c | 10.5±1.5a | 9.2±0.8b |
PV | 10.0±0.5a | 12.8±1.3ab | 19.8±1.4a | 27.7±0.6a | 5.3±0.3b | 4.2±0.3ab | 9.7±0.8a | 10.0±0.3a |
BC | 9.7±0.3a | 14.0±0.5a | 20.3±1.2a | 26.8±0.8ab | 5.7±0.3b | 3.9±0.3bc | 10.5±0.9a | 10.0±1.3ab |
PV+BC | 10.2±0.6a | 12.3±0.8ab | 22.0±1.0a | 28.3±0.8a | 6.7±0.8a | 4.3±0.3a | 11.7±1.0a | 10.8±0.5ab |
由
处理 Treatments | 鲜质量/(g/plant) Fresh weight | 干质量/(g/plant) Dry weight | ||||||
---|---|---|---|---|---|---|---|---|
苗期 Seedling stage | 蕾薹期 Bolting stage | 花期 Flowering stage | 角果期 Pod stage | 苗期 Seedling stage | 蕾薹期 Bolting stage | 花期 Flowering stage | 角果期 Pod stage | |
CK | 46.7±7.0b | 99.0±7.3b | 216.0±8.3b | 202.5±21.1c | 5.8±0.5a | 8.7±0.7a | 22.6±0.9b | 33.7±3.1b |
PV | 56.8±4.1a | 127.9±8.9a | 235.2±9.3ab | 322.2±35.1ab | 7.4±0.6a | 11.0±1.0a | 25.9±3.0a | 51.7±4.7a |
BC | 53.3±5.1ab | 115.8±6.5ab | 238.6±22.0ab | 291.6±14.4b | 6.4±0.7a | 9.4±0.7a | 26.6±0.8a | 50.5±2.1a |
PV+BC | 58.1±2.9a | 132.7±9.5a | 276.2±17.8a | 348.8±23.0a | 7.6±0.5a | 10.4±1.1a | 24.8±0.8ab | 55.7±5.2a |
由
处理 Treatments | 叶面积/(c | SPAD | ||||
---|---|---|---|---|---|---|
苗期 Seedling stage | 蕾薹期 Bolting stage | 花期 Flowering stage | 角果期 Pod stage | 苗期 Seedling stage | 蕾薹期 Bolting stage | |
CK | 70.9±4.3b | 90.9±5.2b | 216.0±6.2b | 49.1±2.8a | 51.8±3.2b | 51.7±2.1a |
PV | 90.7±8.6a | 111.1±9.5ab | 235.2±10.7ab | 50.7±1.0a | 56.5±1.6a | 50.3±2.6a |
BC | 77.0±5.4b | 102.9±6.3ab | 238.6±5.2ab | 51.0±0.9a | 56.2±0.4a | 51.6±3.2a |
PV+BC | 94.3±5.8a | 123.3±7.9a | 276.2±8.8a | 51.3±0.9a | 58.6±2.0a | 50.8±3.1a |
3)产量及产量构成。在收获期测定了油菜不同处理的产量和产量构成因素性状(
处理 Treatments | 一次分枝数 Branch number per plant | 主茎角果数 Pods number on the main stem | 分枝角果数 Branch pods number per plant | 单株角果数 Pods number per plant | 千粒重/g Seed weight | 每角粒数 Seeds number per pod | 单株产量/g Yield per plant | 实际产量/ (kg/h Actual yield |
---|---|---|---|---|---|---|---|---|
CK | 6.7±0.4a | 74.5±3.2b | 81.1±3.5b | 168.5±11.2c | 3.5±0.1a | 12.4±0.4b | 7.3±0.2b | 1 814.2±34.6c |
PV | 6.4±0.8a | 97.5±7.7a | 176.0±17.2a | 268.0±11.6ab | 3.4±0.2a | 13.6±0.8ab | 12.4±1.0a | 2 075.2±119.6b |
BC | 6.3±0.6a | 78.2±2.8b | 164.2±10.0a | 242.7±13.1b | 3.3±0.1a | 14.6±0.9a | 11.6±0.6a | 2 060.7±119.5b |
PV+BC | 6.8±0.3a | 97.4±7.2a | 190.5±21.8a | 280.1±19.0a | 3.4±0.1a | 13.7±0.7ab | 13.2±1.7a | 2 122.2±94.7a |
4)品质性状。不同种子处理方式下油菜品质性状测定结果(
处理 Treatments | 含油量/% Oil content | 蛋白质含量/% Protein content | 硫苷/(μmol/g) Glucosinolate | 亚麻酸/% Linolenic acid | 亚油酸/% Linoleic acid | 油酸/% Oleic acid |
---|---|---|---|---|---|---|
CK | 44.5±0.9a | 19.5±0.5a | 30.5±1.2a | 6.1±0.8a | 16.0±2.0a | 59.3±2.0b |
PV | 45.8±2.0a | 18.2±2.0a | 29.0±3.0ab | 6.5±0.9a | 17.7±0.5a | 65.6±5.5ab |
BC | 45.5±1.7a | 18.6±1.5a | 30.5±1.6a | 6.5±0.7a | 17.5±0.8a | 64.6±5.4ab |
PV+BC | 45.3±0.4a | 18.8±0.4a | 26.8±1.1b | 6.0±0.1b | 17.3±0.7a | 67.5±2.0a |
合适的种子处理方法可以促进作物生长、提高产量和改善品质。种子引发也可以称为渗透调节物处理,其原理是控制种子的吸水作用至一定水平,即允许种子处在准备发芽的代谢作用下,引发处理可加速种子萌发、整齐出苗、并最终增加产
种子引发处理后具有萌发速度快、出苗整齐和成活率高等特
生物炭是木屑、秸杆、果壳等生物质在无氧或缺氧条件下经高温裂解产生的碱性固体产物,含有40%~60%的炭以及多种植物营养物质,包括40%~70%的碳,以及氮、磷、钾、钙、钠、镁、硅等,并具有较大的孔隙度与比表面积。种子丸粒化可利用其强吸附力、抗氧化力和抗生物分解能力,增强种子对水分和养分的吸收与利用,促进萌发及幼苗生长发育。同时,正因为其孔隙率高、有机碳和营养物质浓度高,可刺激植株根系周围有益微生物的增殖,从而为幼苗的建立创造有利的环
本研究结果表明,20%~30%的生物炭含量对油菜萌发具有积极影响,并且BC30为最适比例。但从发芽盒试验来看,即使在最适生物炭条件下,对油菜种子的出苗率及出苗时间也可能表现出一定的抑制趋势,可能因实际萌发时水分、温度、土壤条件差异而有不同。BC50、BC60处理对种子出苗产生了明显的抑制作用,出苗率下降、出苗时间长。产生抑制作用的原因首先可能是生物炭呈强碱性(pH>9),包裹种子后对油菜种子萌发产生不利影响,生物炭用量超过40%对出苗的阻碍作用更
室内试验和大田试验结果均显示,木醋液引发与生物炭丸粒化2种种子处理方式均具有促进油菜萌发与生长的作用,但两者作用表现不同,适宜质量浓度木醋液引发提高油菜种子的出苗率、加快萌发的作用更显著;而适宜比例生物炭丸粒化增强油菜幼苗素质与生物量的作用更强。
2种种子处理方式对油菜幼苗素质的促进作用在不同生育时期也不同。生物炭丸粒化对油菜幼苗素质的促进要优于木醋液引发,这主要是因为生物质炭丸粒化能够提高种子周围的水分利用率并通过生物质炭丰富的营养元素以及发达的多孔结构促进养分供给,并可为幼苗创造有利的微环境。但在植株进入蕾薹期以后,生物炭丸粒化提供养分的作用逐渐减弱直至消失。木醋液处理种子对植株生长潜在能力的激发作用则一直持续。木醋液引发处理的植株生物量在苗期低于生物炭丸粒化处理、在花期至成熟期高于生物炭。
本研究表明木醋液稀释1 000倍的种子引发和生物炭含量30%的种子丸粒化是促进油菜萌发出苗和幼苗生长的最佳处理。PV处理能提高出苗率和活力指数,缩短平均出苗时间。BC30处理在增强油菜幼苗素质方面的效果要强于PV。此外,PV和BC的联合应用产生了互作效应,对株高、根颈粗、叶面积、生物量积累和角果数产生了显著影响,最终导致油菜籽产量提高且品质得到改善。进一步研究种子处理技术在油菜上的应用,特别是在田间的应用,可以为实现直播油菜齐苗壮苗以及油菜节本增效栽培提供实践指导。
参考文献 References
KUAI J,YANG Y,SUN Y Y,et al.Paclobutrazol increases canola seed yield by enhancing lodging and pod shatter resistance in Brassica napus L.[J].Field crops research,2015,180:10-20. [百度学术]
ZHU K M,GU S C,LIU J H,et al.Wood vinegar as a complex growth regulator promotes the growth,yield,and quality of rapeseed[J/OL].Agronomy,2021,11(3):510[2024-08-15].https://doi.org/10.3390/agronomy11030510 . [百度学术]
刘阳,袁会珠,闫晓静,等.种子引发与引发种子药剂处理研究进展[J].种子,2024,43(1):76-83.LIU Y,YUAN H Z,YAN X J,et al.Advances in seed priming and the primed seeds’ treatment with pesticides[J].Seeds,2024,43(1):76-83 (in Chinese with English abstract). [百度学术]
BIJANZADEH E,NOSRATI K,EGAN T.Influence of seed priming techniques on germination and emergence of rapeseed (Brassica napus L.)[J].Seed science and technology,2010,38(1):242-247. [百度学术]
KAMRAN M,KHAN A L,ALI L,et al.Hydroquinone;a novel bioactive compound from plant-derived smoke can cue seed germination of lettuce[J/OL].Frontiers in chemistry,2017,5:30[2024-08-15].https://doi.org/10.3389/fchem.2017.00030. [百度学术]
SHARMA V,PRASANNA R,HOSSAIN F,et al.Priming maize seeds with cyanobacteria enhances seed vigour and plant growth in elite maize inbreds[J/OL].3 biotech,2020,10(4):154[2024-08-15]. https://doi.org/10.1007/s13205-020-2141-6. [百度学术]
马晔,杨进文,李宁,等.双氧水与PEG协同引发对小麦种子活力的影响[J].农学学报,2022,12(4):6-12.MA Y,YANG J W,LI N,et al.Synergistic initiation effect of hydrogen peroxide and PEG on wheat seed vigor[J].Journal of agriculture,2022,12(4):6-12 (in Chinese with English abstract). [百度学术]
GHASSEMI-GOLEZANI K,JABBARPOUR S,ZEHTAB-SALMASI S,et al.Response of winter rapeseed (Brassica napus L.) cultivars to salt priming of seeds[J].African journal of agricultural research,2010,5(10):1089-1094. [百度学术]
GREWAL A,ABBEY L,GUNUPURU L R.Production,prospects and potential application of pyroligneous acid in agriculture[J].Journal of analytical and applied pyrolysis,2018,135:152-159. [百度学术]
FLEMATTI G R,GHISALBERTI E L,DIXON K W,et al.A compound from smoke that promotes seed germination[J].Science,2004,305(5686):977. [百度学术]
WANG Y Y,QIU L,SONG Q L,et al.Root proteomics reveals the effects of wood vinegar on wheat growth and subsequent tolerance to drought stress[J/OL].International journal of molecular sciences,2019,20(4):943[2024-08-15].https://doi.org/10.3390/ijms20040943. [百度学术]
ZHU K M,LIU J H,LUO T,et al.Wood vinegar impact on the growth and low-temperature tolerance of rapeseed seedlings[J/OL].Agronomy,2022,12(10):2453[2024-08-15].https://doi.org/10.3390/agronomy12102453. [百度学术]
LUO X X,WANG Z Y,MEKI K,et al.Effect of co-application of wood vinegar and biochar on seed germination and seedling growth[J].Journal of soils and sediments,2019,19(12):3934-3944. [百度学术]
常瑛,魏廷邦,臧广鹏,等.种子丸粒化技术在小粒种子中的研究与应用[J].中国种业,2020(11):18-21.CHANG Y,WEI T B,ZANG G P,et al.Research and application of seed pelleting technology in small seed[J].China seed industry,2020(11):18-21 (in Chinese with English abstract). [百度学术]
HOSEINI A,SALEHI A,SAYYED R Z,et al.Efficacy of biological agents and fillers seed coating in improving drought stress in anise[J/OL].Frontiers in plant science,2022,13:955512[2024-08-15].https://doi.org/10.3389/fpls.2022.955512 . [百度学术]
ZHAO X Q,CHEN Y,LI H S,et al.Influence of seed coating with copper,iron and zinc nanoparticles on growth and yield of tomato[J].IET nanobiotechnology,2021,15(8):674-679. [百度学术]
KHAN Z,NAUMAN KHAN M,LUO T,et al.Compensation of high nitrogen toxicity and nitrogen deficiency with biochar amendment through enhancement of soil fertility and nitrogen use efficiency promoted rice growth and yield[J].GCB bioenergy,2021,13(11):1765-1784. [百度学术]
CAO X D,HARRIS W.Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J].Bioresource technology,2010,101(14):5222-5228. [百度学术]
BASHIR A,RIZWAN M,ZIA UR REHMAN M,et al.Application of co-composted farm manure and biochar increased the wheat growth and decreased cadmium accumulation in plants under different water regimes[J/OL].Chemosphere,2020,246:125809[2024-08-15].https://doi.org/10.1016/j.chemosphere.2019.125809. [百度学术]
WANG J Y,ZHANG M,XIONG Z Q,et al.Effects of biochar addition on N2O and CO2 emissions from two paddy soils[J].Biology and fertility of soils,2011,47(8):887-896. [百度学术]
HUSSAIN S,KHAN F,HUSSAIN H A,et al.Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars[J/OL].Frontiers in plant science,2016,7:116[2024-08-15]. https://doi.org/10.3389/fpls.2016.00116 . [百度学术]
ZHANG K K,ZAID K,LIU J H,et al.Germination and growth performance of water-saving and drought-resistant rice enhanced by seed treatment with wood vinegar and biochar under dry direct-seeded system[J/OL].Agronomy,2022,12,1223[2024-08-15].https://doi.org/10.3390/agronomy12051223. [百度学术]
ELLIS R H,ROBERTS E H.The quantification of aging and survival in orthodox seeds [J].Seed science and technology,1981,9(2): 373-409. [百度学术]
ABDUL-BAKI A A,ANDERSON J D.Vigor determination in soybean seed by multiple Criteri
WICKHAM H ,NAVARRO D ,PEDERSEN T L.ggplot2: elegant graphics for data analysis[M].[S.l.]:Springer,2011: 245. [百度学术]
RUAN S,XUE Q.Plant seed priming [J].Plant physiology communications,2002,38(2): 198-202. [百度学术]
WEI Q,MA X H,ZHAO Z,et al.Antioxidant activities and chemical profiles of pyroligneous acids from walnut shell[J].Journal of analytical and applied pyrolysis,2010,88(2):149-154. [百度学术]
KIM J M,TO T K,MATSUI A,et al.Acetate-mediated novel survival strategy against drought in plants[J/OL].Nature plants,2017,3:17097[2024-08-15].https://doi.org/10.1038/nplants.2017.97. [百度学术]
MUNGKUNKAMCHAO T,KESMALA T,PIMRATCH S,et al.Wood vinegar and fermented bioextracts:natural products to enhance growth and yield of tomato (Solanum lycopersicum L.)[J].Scientia horticulturae,2013,154:66-72. [百度学术]
刘金灵,张亚茹,王宇光,等.生物炭对土壤微生物影响的研究进展[J].中国农学通报,2023,39(26):60-66.LIU J L,ZHANG Y R,WANG Y G,et al.Research progress on the effects of biochar on soil microorganisms[J].Chinese agricultural science bulletin,2023,39(26):60-66 (in Chinese with English abstract). [百度学术]
AFZAL I,JAVED T,AMIRKHANI M,et al.Modern seed technology:seed coating delivery systems for enhancing seed and crop performance[J/OL].Agriculture,2020,10(11):526[2024-08-15].https://doi.org/10.3390/agriculture10110526. [百度学术]
SOLAIMAN Z M,MURPHY D V,ABBOTT L K.Biochars influence seed germination and early growth of seedlings[J].Plant and soil,2012,353(1):273-287. [百度学术]