摘要
为探究副猪嗜血杆菌(Haemophilus parasuis,HPS)引起猪渗出性炎症的过程中血管内皮屏障的变化情况,以HPS感染原代猪血管内皮细胞,通过Western blot和荧光定量PCR检测HPS对Wnt/β-catenin通路及其下游靶基因表达的影响,并通过间接免疫荧光和跨内皮电阻测定检测细胞间黏附连接结构的改变。结果显示:HPS感染激活猪内皮细胞中的Wnt/β-catenin信号通路,促使胞质中的β-catenin蛋白发生核转位,导致胞膜处由β-catenin和血管内皮钙黏蛋白(VE-cadherin)构成的黏附连接结构被破坏,细胞通透性增加。抑制Wnt/β-catenin通路下游血管内皮生长因子(VEGF)基因的表达,可以明显抑制β-catenin的核转位,显著恢复内皮细胞间β-catenin和VE-cadherin构成的黏附连接结构,恢复内皮细胞通透性。以上研究结果表明,HPS通过激活猪内皮细胞中Wnt/β-catenin通路,破坏细胞间黏附连接,增加内皮细胞通透性;同时,Wnt/β-catenin通路下游VEGF基因通过正反馈调节效应放大了HPS感染引起的Wnt/β-catenin信号通路的激活效应和细胞结构的损伤。
副猪嗜血杆菌(Haemophilus parasuis, HPS)早期定殖于猪上呼吸道,在猪处于应激、免疫力低下等情况时侵入动物机体,引起以全身性的渗出性纤维素炎为特征的猪格拉泽氏病(Glässer’s disease),严重时死亡率可达 50
Wnt/β-catenin 信号通路的下游靶基因VEGF通过与其受体VEGFR结合,阻断细胞连接中信号的传递,增强血管渗漏。VEGF加强血管通透性的作用强于组织胺约50 000
本研究解析HPS感染过程中Wnt/β-catenin 信号通路对内皮细胞间黏附连接结构变化的调节作用,分析Wnt/β-catenin 信号通路对内皮细胞通透性的影响。初步探究HPS引起渗出性纤维素炎的分子机制,旨在为疫苗设计和药物靶标选择奠定理论基础。
猪血管内皮细胞(porcine aortic endothelial cell,PAEC)为原代分离细胞,根据Beijnum
待细胞长至80%融合时进行siRNA转染或HPS感染。高毒力HPS菌株HPS-SH0165(1
根据说明书使用Omega公司的细胞RNA提取试剂盒及反转录试剂盒提取细胞总RNA并反转录成cDNA,按照SYBR Green Real-time PCR Mix说明书检测细胞中待测基因mRNA水平,程序为:94 ℃预扩增10 min;94 ℃变性15 s,60 ℃退火30 s,72 ℃延伸30 s,40个循环。mRNA相对表达水平的定量采用比较Ct法来计算相对定量,基因的相对mRNA表达水平通过GAPDH来标准化。荧光定量检测引物序列见
基因 Gene | 正向引物(5'-3') Forward (5' to 3') | 反向引物(5'-3') Reverse (5' to 3') |
---|---|---|
VE-cadherin | ACCACGAGATGTGAAGTTCAA | GTGATGTTGGCCGTGTTATCG |
Collagen Ⅲ | GCATTCCTTCGACTTCTCTCTAG | TTCCATGTACGCAATGCTATT |
Fibronectin | GAACCAGCAACCGAGTACACAA | CCCGATCAGAGGCTCACTCT |
VEGF | GCTCTCTTGGGTGCATTGGA | GCAGCCTGGGACCACTTG |
PAI-1 | TGCCGCCCCCTACGA | TGAGCTGAGCGTCCAGAATG |
GAPDH | CCCCAACGTGTCGGTTGT | CCTGCTTCACCACCTTCTTGA |
接种PAEC于细胞爬片上,培养至50%~60%融合后进行siRNA转染、抑制剂预处理或直接进行细菌感染。各组细胞处理方法本文“1.2”所述。HPS(1
在Transwell培养系统的上层小室中接种PAEC细胞,按照说明书使用EVOM2仪器连续监测其TEER值直至数值稳定,接种HPS(1
细胞培养至80%融合后,按脂质体转染试剂盒说明书对各组细胞分别进行siRNA转染,每孔细胞转染40 pmol的siRNA。转染24 h后进行HPS(1
基因 Gene | 正向序列(5'-3') Sense sequence (5' to 3') | 反向序列(5'-3') Anti-sense sequence (5' to 3') |
---|---|---|
siVEGF-1 | GCAGAUUAUGCGGAUCAAATT | UUUGAUCCGCAUAAUCUGCTT |
siVEGF-2 | GCGGAGAAAGCAUUUGUUUTT | AAACAAAUGCUUUCUCCGCTT |
siVEGF-3 | GCGAGGCAGCUUGAGUUAATT | UUAACUCAAGCUGCCUCGCTT |
Negative control | UUCUCCGAACGUGUCACGUTT | ACGUGACACGUUCGGAGAATT |
Western blot检测结果显示,HPS-SH0165感染后PAEC中β-catenin的蛋白水平呈时间依赖性增高,磷酸化β-catenin(p-β-catenin)水平显著降低,表明HPS感染的PAEC中Wnt/β-catenin通路被激活(

图1 HPS感染的PAEC中Wnt/β-catenin通路活性(A)及下游靶基因表达水平(B)变化
Fig.1 Changes in Wnt/β-catenin pathway activity (A) and expression levels of downstream target genes (B) in HPS-infected PAEC
分离提取PAEC不同细胞结构中的蛋白质,经过Western blot检测发现,HPS-SH0165刺激PAEC后,胞膜上的β-catenin含量减少,而胞质和胞核中β- catenin蛋白水平显著增加(

图2 Western blot (A)和间接免疫荧光(B)检测HPS感染的PAEC中β-catenin的核转位效应
Fig.2 Western blot (A) and indirect immunofluorescence (B) detection of nuclear translocation of β-catenin in HPS-infected PAEC
间接免疫荧光检测结果显示,HPS感染的PAEC细胞中β-catenin转位入核,VE-cadherin表达水皮降低,胞膜处构成细胞间黏附连接结构的β-catenin/VE-cadherin复合物减少。在使用Wnt/β-catenin通路特异性抑制剂IWR-1-endo处理后,HPS感染的PAEC中β-catenin的核转位效应减弱,VE-cadherin表达水平升高,β-catenin/VE-cadherin复合物含量明显恢复(

图3 HPS感染的PAEC中黏附连接结构(A)及细胞通透性(B)的变化
Fig.3 Changes in the structure of adherens junctions (A) and cell permeability (B) of HPS-infected PAEC
荧光定量检测结果显示,HPS感染可以引起VEGF基因的显著上调,在抑制Wnt/β-catenin通路活性后,VEGF的表达量明显下降,表明Wnt/β-catenin通路调控HPS感染引起的PAEC中VEGF基因的表达(

图4 HPS感染的PAEC中VEGF对Wnt/β-catenin通路活性的调控作用
Fig.4 Regulatory effect of VEGF on the activity of Wnt/β-catenin pathway in PAECs infected with HPS
A:加入Wnt/β-catenin通路抑制剂后VEGF表达水平的变化;B:siRNA对VEGF表达水平的干扰;C,D:荧光定量PCR(C)和Western blot (D)检测抑制VEGF表达后VE-cadherin表达水平。A: Changes of VEGF expression level after addition of Wnt/β-catenin pathway inhibitors; B: Interference of VEGF expression levels by siRNA; C, D: The expression level of VE-cadherin was detected by fluorescence quantitative PCR (C) and Western blot (D).
间接免疫荧光检测结果显示,抑制VEGF可以明显恢复HPS感染的PAEC胞膜处VE-cadherin的蛋白水平,同时显著减少β-catenin的核转位,增加胞膜处β-catenin/VE-cadherin复合物含量,恢复内皮细胞间黏附连接结构(

图5 干扰VEGF对HPS感染的PAEC中VEGF介导的黏附连接结构(A)及细胞通透性(B)的调控作用
Fig.5 Regulation of VEGF-mediated adhesion structure (A) and cell permeability (B) in PAEC with interference of VEGF in HPS infection
前期研究表明,在HPS感染过程中,猪肺泡巨噬细胞分泌的抵抗素(resistin)可以破坏血管内皮细胞间由Claudin-5和Occludin蛋白构成的紧密连接结构(tight junctions
在HPS感染过程中,Wnt/β-catenin信号通路的作用存在一定的复杂性。在以上皮细胞作为HPS感染模型的研究中发现,HPS激活Wnt/β-catenin信号通路后,可以抑制上皮细胞中E-cadherin的表达,同时促进间质细胞标志性基因N-cadherin的表达,促使上皮细胞表型向间质细胞转变,即发生上皮-间质转换效应(epithelial-mesenchymal transition, EMT),从而破坏上皮细胞屏障的稳定性,促进细菌向宿主全身的扩
综上所述,本研究证明Wnt/β-catenin通路介导HPS感染的猪内皮细胞中黏附连接结构的断裂,促使内皮细胞结构受损、细胞通透性增加。同时,HPS感染上调Wnt/β-catenin通路下游靶基因VEGF的表达,VEGF通过正反馈调节放大HPS感染引起的Wnt/β-catenin通路的激活效应,并抑制PAEC中VE-cadherin的表达。本研究解析了HPS感染过程中Wnt/β-catenin通路对内皮细胞结构完整性的调节作用,明确了VEGF在HPS引起内皮屏障损伤的过程中所发挥的正反馈放大效应。
参考文献References
OLIVEIR S,PIJOAN C.Haemophilus parasuis: new trends on diagnosis,epidemiology and control [J].Veterinary microbiology,2004,99(1): 1-12. [百度学术]
李继强.副猪嗜血杆菌病的诊断和防治[J].中国畜牧业,2022(6):114-115.LI J Q.Diagnosis,prevention and treatment of Haemophilus parasuis disease [J].China animal industry,2022(6): 114-115(in Chinese). [百度学术]
THARAKAN B,HELLMAN J,SAWANT D,et al.β- catenin dynamics in the regulation of microvascular endothelial cell hyperpermeability [J].Shock,2012,37(3): 306-311. [百度学术]
BALUK P,MCDONALD D.Buttons and zippers: endothelial junctions in lymphatic vessels [J/OL].Cold spring harbor perspectives in medicine,2022,12(2):a041178[2023-05-08].https://doi.org/10.1101/cshperspect.a041178. [百度学术]
AKHMETSHINA A,PALUMBO K,DEES C,et al.Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis [J/OL].Nature communication,2012,3:735[2023-05-08].https://doi.org/10.1038/ncomms1734. [百度学术]
MATSUZAKI S,DARCHA C.Involvement of the Wnt/β- catenin signaling pathway in the cellular and molecular mechanisms of fibrosis in endometriosis [J/OL].PLoS One,2013,8: e76808 [2023-05-08].https://doi.org/10.1371/journal.pone. 0076808. [百度学术]
ZHOU D,TAN R,ZHOU L,et al.Kidney tubular β-catenin signaling controls interstitial fibroblast fate via epithelial-mesenchymal communication [J/OL].Scientific reports,2013,3: 1878[2023-05-08].https://doi.org/10.1038/srep01878. [百度学术]
SIMUNOVIC F,FINKENZELLER G.Vascularization strategies in bone tissue engineering[J/OL].Cells,2021,10(7):1749[2023-05-08].https://doi.org/10.3390/cells10071749. [百度学术]
WALLEZ Y,HUBER P.2008.Endothelial adherens and tight junctions in vascular homeostasis,inflammation and angiogenesis [J].Biochimica et biophysica acta (BBA)-biomembranes,2008,1778(3):794-809. [百度学术]
BATES D.Vascular endothelial growth factors and vascular permeability [J].Cardiovascular research,2010,87(2):262-271. [百度学术]
BEIJNUM J,ROUSCH M,CASTERMANS K,et al.Isolation of endothelial cells from fresh tissues [J].Nature protocol,2008,3(6):1085-1091. [百度学术]
HUA K,LI T,HE Y,et al.Resistin secreted by porcine alveolar macrophages leads to endothelial cell dysfunction during Haemophilus parasuis infection [J/OL].Virulence,2023,2171636[2023-05-08].https://doi.org/10.1080/21505594.2023.2171636. [百度学术]
滑坷鑫.抵抗素和p38 MAPK/Wnt信号通路介导副猪嗜血杆菌感染引起细胞损伤的机制研究[D].武汉:华中农业大学,2021.HUA K X.Mechanisms of resistin- and p38 MAPK/Wnt pathway-mediated cell damage caused by Haemophilus parasuis[D].Wuhan:Huazhong Agricultural University,2021(in Chinese with English abstract). [百度学术]
LOH C Y,CHAI J Y,TANG T F,et al.The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition:signaling,therapeutic implications,and challenges[J/OL].Cells,2019,8(10):1118[2023-05-08]. https://doi.org/10.3390/cells8101118. [百度学术]
ONDER T ,GUPTA P,MANI S,et al.Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways [J].Cancer research,2008,68(10): 3645-3654. [百度学术]
NELSON W, NUSSE R. Convergence of Wnt, ß-catenin, and cadherin pathways [J]. Science, 2004, 303(5663): 1483-1487. [百度学术]
CAO J,EHLING M,SEEBACH J,et al.Polarized actin and VE-cadherin dynamics regulate junctional remodelling and cell migration during sprouting angiogenesis [J/OL].Nature communications,2017,8(1): 2210[2023-05-08].https://doi.org/10.1038/s41467-017-02373-8. [百度学术]
BEKES I, FRIEDL T, KOHLER T, et al. Does VEGF facilitate local tumor growth and spread into the abdominal cavity by suppressing endothelial cell adhesion, thus increasing vascular peritoneal permeability followed by ascites production in ovarian cancer?[J]. Molecular cancer, 2016, 15: 1-13. [百度学术]