摘要
随着视觉传感器和计算机视觉等领域的科技进步,无接触式猪体体尺检测相关的硬件设备和技术方法都发生了巨大的变化。视觉感知升级为三维立体视角,相应的设备也从黑白相机更新为深度设备。设备类型通常决定了基本的实施方案和技术方法,然而目前该领域的研究大多聚焦具体的算法细节,难以满足实际的工程需求。本文以视觉传感器类型为核心,概述了无接触式猪体体尺测量方面不同的工程部署方法,总结了设备使用方法、采集数据的环境条件和方式等,同时对猪体体尺测量的5个三维点云技术任务进行分析,并归纳了目前研究的优缺点、提升空间以及与实际工程应用相结合的方案,最后展望了深度学习与三维点云技术相结合的研究难点。通过对比发现,深度设备和三维点云技术是未来工程应用的方向,基于深度学习的点云分割、点云补全、关键点检测等技术具有良好的应用前景,为无接触式猪体体尺测量技术的后续研究提供了参考。
肉类中的蛋白质是人类必需的营养成分之一,也是人类膳食结构的重要部
合理的猪体生理信息监测是确保猪肉安全的关键环节之一。通过监测猪体生理信息,可以实现猪的生长发育状况监
传统的猪体体尺测量通常是通过皮尺、卷尺和测量杖等工具进行人工测
为减少牲畜的应激影响,无接触式的牲畜体尺测量方法已开始研究和推
近年来,随着无接触式猪体体尺测量技术的发展,对该技术在实际生产中应用的需求越来越旺盛。目前,针对无接触式体尺测量的研究主要聚焦于算法细节,例如数据的预处理、获取目标数据、体尺计算方式
无接触式体尺测量主要利用视觉传感器进行视频图像数据采集。视觉传感器一般分为两大类:RGB设备和深度设
基于三角测量的3D表面成像技术本质上是一种几何计算,通过测量三角形的角度和基线,计算确定目标的距离。三角测量的计算原理用
Z= | (1) |
基于飞行时间的3D表面成像技术,顾名思义,是通过计算光的飞行时间来测量深度。光源发射出已知速度的光束,经由测量物体的表面反射回传感器上,根据来回时间t来计算深度
Z=f (t) | (2) |
基于干涉法的3D表面成像技术一般通过干涉仪将相干光束一分为二,其中1条射向参考镜,另1条射向样品,再将2条光束反射回分束器,通过波的相位信息来确定深度,其精度在纳米范
无接触式的猪体体尺测量技术的发展已有30多年,从最早的黑白相机到深度相机,从单个设备到多个设备,从灰度图到三维点云图,从机器学习到深度学习,视觉传感器的转型升级和算法技术的发展促使工程实施方案发生了明显的变化,不同阶段的工程实施方案具有显著的特

图1 无接触体尺测量技术发展脉络
Fig. 1 Non-contact pig body size measurement technology and its development thread
1)单RGB相机。在早期的研究中,无接触式猪体体尺测量并没有构成一项独立的研究。研究者将单个相机安装在进食站处,在饲养环境下对猪进行日常监测、计数
直至VIA系统(visual image analysis system,VIA system
2)双RGB相机。为了获取更多的猪体体尺数据,部分研究改为使用双RGB相机。这种双相机的组合方式主要有2种。
第1种组合方式是在食槽顶部拍摄的基础上再增加一个侧面进行拍摄。Chen
第2种组合方式是双目视觉系统,即类似人眼结构,将2个相机放置在有一定间距的同一个视角,左右相机参数相同。双目视觉系统通过立体匹配算法对2个RGB相机的图像进行匹配,基于三角原理把双相机视差转换为深度,最后将深度信息重新映射到原始图像中以得到3D点云图像。李卓
3)多个RGB相机。为了得到更加完整的猪体三维图像,可以将多对RGB相机应用在多个视角分别获取视差图像,进而构建猪体三维图像。Wu
1)单深度相机。面向消费者的3D深度相机在问世后受到了业界的广泛关注,研究者将其应用于无接触式的猪体体尺测量和猪活体质量预测中。Condotta
2)双深度相机。为了获取更完整的猪体点云数据,有研究使用了2个深度相机。Pezzuolo
除了这种常规的基于双深度相机的研究,Wang
3)3个深度相机。为了能够基本完整地采集到目标猪体的表面点云数据,需使用3个深度相机。常见的方式是先将3个深度相机分别放置于一个通道的两侧和顶部,然后进行配准,测量时让猪逐头通过该通道,当行至最佳位置时捕获点云数据,再利用随机样本一致性算法等技术提取猪的点云,最后根据关键点计算体长、体高、体宽和腹围的体尺数
从视觉传感器角度看,不同的工程部署方法所使用的设备数量、设备类型大有不同;从算法技术角度看,随着设备的更新,新技术和更高效的算法逐渐替代了传统方法。总的来说,不同的工程部署方法不仅与视觉传感器设备和测量算法技术紧密相连,还决定了测量环境、采集数据类型、可测量体尺数据。
设备类型和数量 Types and quantity of device | 采集视角 Collection angle | 数据类型 Data format | 可测量的体尺参数 Measurable body size parameters | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|---|---|
单RGB | 俯视 | RGB图像 | 体长、体宽 | 是一种简易有效的采集方式 | 获取的体尺数据十分有限;依赖手工方式的图像处理 |
双RGB | 俯视、侧视 | RGB图像 | 体长、体宽、体高 | 与一个RGB设备相比,可获取体高的体尺数据 | 无法计算三围的体尺数据;依赖人工方式的图像处理 |
双RGB | 俯视 | 三维点云 | 体长、体宽、体高 | 获得的背部图像更清晰,可获取体高的体尺数据 | 依赖良好的双目匹配算法;无法计算三围的体尺数据 |
多RGB | 俯视、侧视、前视 | 三维点云 | 体长、体宽、体高、胸围、臀围、腹围 | 可较为完整地对猪体表面进行建模 | 需要双目匹配算法;设备多;场地复杂;难以实际应用 |
单深度 | 俯视 | 三维点云 | 体长、体宽、体高 | 可对猪背表面部分进行建模,计算的体尺更准确 | 无法计算三围体尺数据 |
双深度 | 俯视、侧视 | 三维点云 | 体长、体宽、体高、胸围、臀围、腹围 | 通过更多的点云数据对三围数据进行拟合估算 | 估算的三围体尺数据存在一定的误差 |
三深度 | 俯视、左视、右视图 | 三维点云 | 体长、体宽、体高、胸围、臀围、腹围 | 可较为完整地对猪体表面进行建模 | 需要固定的测试环境和数据采集通道 |
设备类型 Device types | 设备数量 Device quantity | 体尺指标测量结 | 文献 References | |||||
---|---|---|---|---|---|---|---|---|
体长/% Body length | 体宽/% Body width | 体高/% Body height | 胸围/% Thoracic circumference | 臀围/% Rump circumference | 腹围/% Abdominal circumference | |||
RGB设备 | 1 | 0.92 |
前:2.75 中:1.39 后:3.03 | - | - | - | - |
[ |
RGB设备 | 2 | 2.48 |
前:1.11 后:1.09 |
前:2.45 后:2.69 | - | - | - |
[ |
RGB设备 | 2 | 1.89 |
前:3.05 后:2.25 |
前:2.58 后:2.09 | - | - | - |
[ |
深度设备 | 1 | 0.70 | 1.80 | 3.30 | - | - | - |
[ |
深度设备 | 2 | 2.40 |
前:5.8 后:4.7 |
前:7.40 后:4.80 | - | - | - |
[ |
深度设备 | 2 | - |
前:10.30 后:5.87 | 7.01 | - | - | - |
[ |
深度设备 | 3 | 2.57 |
前:4.56 中:5.19 后:5.26 |
前:2.18 后:2.28 | 2.85 | 2.50 | 3.14 |
[ |
深度设备 | 3 | 2.97 | 4.13 | 3.35 | - | - | 4.67 |
[ |
注: 表中数值表示为相对误差。体宽和体高一项结果中的“前”“中”“后”分别表示前体宽(体高)、中体宽(体高)和后体宽(体高)。Note: The values in the table are relative errors. The "front", "middle" and "back" in the result of body width and body height represent the front body width (body height), middle body width (body height) and back body width (body height), respectively.
基于深度设备的部署方法使用以点云为基础的三维体尺测量技术,其可测量的数据丰富,精度较高,具有更为广泛的应用前

图2 基于点云的三维体尺测量技术步骤
Fig. 2 Technical steps of 3D body size measurement based on point cloud
在数据采集的过程中,原始点云数据不仅包括目标猪体,还包括地面、栏杆、屋内天花板等现场环境的其他物体,如果测量位置位于饲养区等猪的日常活动区域,点云数据还可能包括非测量对象猪
点云数据本身是稀疏的,且受被测对象特性、处理方法和环境的影响,采集的点云数据存在缺失。当前研究的猪体数据缺失一般是数据采集方式导致的。单深度相机或双深度相机的拍摄方式难以兼顾所有的角度,只能获得局部的猪体点云。三维视角的深度相机一般需要狭长的拍摄通道,该通道可由绳子、铁链或木板等材料围成,以尽量使通道不遮挡猪体的关键部位,因此这种拍摄方式下,猪体点云会呈现条纹状的缺失。除此之外,反射、透射、分辨率和角度等原因也会导致点云数据的缺失。李孟飞
当完成猪的点云数据采集后,为了更好地利用计算机视觉技术实现点云测量关键点的自动提取,提高测量体尺的自动化程度,需要对猪体进行姿态的归一化,即对点云进行三维旋转和三维平移,使得猪体在点云坐标系中呈现的姿态统一,便于后续处理。目前,传统的姿态归一化方法主要有三
猪体体尺测量实质上是基于体尺的几何定义,对测量关键点的位置和距离进行度量。因此,在完成目标猪体提取、数据补全和姿态归一化后,需要先检测猪体的测量关键点,才能进行猪体体尺的计算。以体长测量为例,Hu
综上所述,使用视觉传感器和先进的计算机视觉技术进行无接触式猪体体尺测量,可以有效解决传统猪体体尺测量中费时费力、精度低和存在接触风险等问题。设备是工程实施方案的主要核心,工程实施方案会随着设备的更新而升级。使用三维视角深度相机的部署方法能够获取更丰富且准确的猪体体尺数据。但目前无接触式猪体体尺测量领域应用的相关技术与前沿的深度学习方法结合尚不够深入。而深度学习方法凭借神经网络强大的特征提取和学习能力,使计算机能更好地处理各种点云任务。在未来的研究中,结合点云数据处理相关领域的深度学习方法,有望能提升无接触式猪体体尺测量技术的成熟度、准确度和便利性。
1)点云分割。与规则刚体目标相比,猪体点云存在无序性和密度不均匀等特点,传统方法提取的特征较为简单,难以处理复杂的点云数据以提取目标猪体。在实际工程的应用上,还需要算法具备较强的泛化能力和迁移能力,即能够适用于不同周龄、品种的猪及各种环境等。此外,深度学习的点云分割方法还存在分割模型复杂导致计算成本高、标注大量的点云样本十分耗时等问题。尽管面临以上挑战,深度学习方法由于其高效的特征学习能力,在点云语义分割领域展现出优良的效果,可以感知更深层的点云语义信息,因此由传统方法转向深度学习方法是猪体点云分割的未来主流方向。除了猪体点云提取,点云分割还可应用于猪体不同部位的分割,即部件分割任务,以辅助猪体体尺测量。
2)点云补全。点云补全是通过局部点云对整体点云进行生成和估计,可以有效地提高猪体点云数据质量。目前主要面临两大挑战:一是结构特征的挑战,点云补全任务需要网络学习局部点云的结构特征,但点云数据具有无序性和非结构性,这使得点云补全任务更难完成。二是点云细粒度的挑战,即网络需要学习点云的几何对称性、规则排列和表面光滑度等细粒度细节。点云数据补全在近几年已经取得了重大的进展,将该技术应用到猪体体尺测量中是该领域未来的重点之一。
3)点云姿态归一化。为了实现猪体体尺测量的自动化,猪体姿态归一化是必要的步骤。在无接触式猪体体尺测量中,猪体是一种复杂的非刚体,感知其姿态需要大量的特征信息,且实际养殖中同个栏位的数量较多、养殖密度较大,目标个体容易被遮挡,难以进行姿态归一化。因此,使用考虑遮挡的端到端网络对猪体进行姿态归一化成为了该领域的趋势。
4)关键点检测。传统的猪体测量关键点检测方法具有严格的定义,解释性强,其准确测量的前提是需要准确的猪体点云数据,因此,这种方法严重依赖于上游任务的准确完成,诸如猪体点云提取、猪体表面点云去噪等。深度学习在点云关键点检测任务中展现了更为优异的检测性能,可以解决传统方法的缺点。猪体测量关键点检测可视为点云分类任务,即构建函数将点云数据映射为猪体的各个关键点,还可以视为点云的兴趣点检测任务,辅助研究人员进行关键点检测结果的判断。
目前在猪体体尺测量领域中,深度设备的应用更加广泛且效果良好,以深度学习为核心的算法正逐渐占据主导地位。在未来的研究中,深度设备与深度学习算法相结合的无接触式猪体体尺测量方式将有更大的发展和提升空间。
参考文献References
罗洁霞.居民膳食蛋白质供需平衡分析[D].北京:中国农业科学院,2018.LUO J X.A supply and demand analysis of Chinese resisdents' dietary protein[D].Beijing:Chinese Academy of Agricultural Sciences Dissertation,2018(in Chinese with English abstract). [百度学术]
FAO.World food and agriculture:statistical yearbook 2022[M].Rome:FAO,2022. [百度学术]
王贵荣.粮食生产再获丰收 畜牧业稳定发展[EB/OL].WANG G R.Grain production again bumper harvest animal husbandry stable development[EB/OL].(2023-01-18)[2023-08-01].https://www.stats.gov.cn/xxgk/jd/sjjd2020/202301/t20230118_1892279.html(in Chinese) . [百度学术]
梁晓云.动物检疫现状与猪肉安全问题[J].畜牧兽医科学(电子版),2019(20):155-156.LIANG X Y.Current situation of animal quarantine and safety issues of pork[J].Graziery veterinary sciences(electronic version),2019(20):155-156(in Chinese). [百度学术]
王建华,白俊艳,张云飞.杜洛克猪生长发育性能的影响因素分析[J].当代畜禽养殖业,2022(5):8-11.WANG J H,BAI J Y,ZHANG Y F.Analysis of influencing factors on growth and development performance of Duroc pigs[J].Modern animal husbandry,2022(5):8-11 (in Chinese). [百度学术]
谢超.常见的猪疾病的预防及治疗措施[J].中国畜牧业,2023(6):79-80.XIE C.Prevention and treatment of common pig diseases[J].China animal industry,2023 (6):79-80 (in Chinese). [百度学术]
马再兴.基于动态贝叶斯网络的生猪价格与产量预测[D].武汉:华中农业大学,2019.MA Z X.Prediction of hog price and produce based on dynamic Bayesian network[D].Wuhan:Huazhong Agricultural University,2019 (in Chinese with English abstract). [百度学术]
刘同海,滕光辉,付为森,等.基于机器视觉的猪体体尺测点提取算法与应用[J].农业工程学报,2013,29(2):161-168.LIU T H,TENG G H,FU W S,et al.Extraction algorithms and applications of pig body size measurement points based on computer vision[J].Transactions of the CSAE,2013,29(2):161-168(in Chinese with English abstract). [百度学术]
DOESCHL-WILSON A,WHITTEMORE C,KNAP P,et al.Using visual image analysis to describe pig growth in terms of size and shape[J].Animal science,2004,79(3):415-427. [百度学术]
何凡.人工培育藏猪种群SLA⁃DRB和POU1F1基因SNP与生长发育性状的关联分析[D].成都:四川农业大学,2013.HE F.Polymorphisms of SLA⁃DRB and POU1F1 genes and its associations with several growth traits in artificial populations of Tibetan Pigs[D].Chengdu:Sichuan Agricultural University,2013 (in Chinese with English abstract). [百度学术]
孟庆利,张军,王志云,等.不同品种的后备种猪体尺预测体重校正公式的研究[J].养猪,2020(4):33-35.MENG Q L,ZHANG J,WANG Z Y,et al.A study on the correction formula for predicting body weight of reserve pigs of different breeds[J].Swine production,2020(4):33-35 (in Chinese). [百度学术]
王晨阳.猪非接触式体尺测定和发情鉴定的应用研究[D].杨凌:西北农林科技大学,2022.WANG C Y.Application of non-contact body size measurement and estrus identification in pigs[D].Yangling:Northwest A&F University,2022(in Chinese with English abstract). [百度学术]
张文燕.猪痢疾的传播途径及影响因素[J].当代畜牧,2023(1):77-78.ZHANG W Y.The transmission routes and influencing factors of swine dysentery[J].Contemporary animal husbandry,2023(1):77-78 (in Chinese without English abstract). [百度学术]
秦昊.基于双Kinect的三维测量装置研究[D].长春:长春工业大学,2020.QIN H.Research of three dimensional measuring device based on dual Kinect camera [D].Changchun:Changchun University of Technology,2020 (in Chinese with English abstract). [百度学术]
尹令,蔡更元,田绪红,等.多视角深度相机的猪体三维点云重构及体尺测量[J].农业工程学报,2019,35(23):201-208.YIN L,CAI G Y,TIAN X H,et al.Three dimensional point cloud reconstruction and body size measurement of pigs based on multi-view depth camera[J].Transactions of the CSAE,2019,35(23):201-208 (in Chinese with English abstract). [百度学术]
司永胜,安露露,刘刚,等.基于Kinect相机的猪体理想姿态检测与体尺测量[J].农业机械学报,2019,50(1):58-65.SI Y S,AN L L,LIU G,et al.Ideal posture detection and body size measurement of pig based on Kinect[J].Transactions of the CSAM,2019,50(1):58-65(in Chinese with English abstract). [百度学术]
石炜,张显宇,杨晶安,等.基于A-Unet的牛体尺测量方法研究[J].畜牧与饲料科学,2023,44(4):76-84.SHI W,ZHANG X Y,YANG J A,et al.Establishment of an A-Unet based cattle body size measurement method[J].Animal husbandry and feed science,2023,44(4):76-84 (in Chinese with English abstract). [百度学术]
陆明洲,光二颖,陈子康,等.基于双视角图像的山羊体尺自动测量方法[J].农业机械学报,2023,54(8):286-295.LU M Z,GUANG E Y,CHEN Z K,et al.Automatic measurement method of goat body size based on double vision angle camera image[J].Transactions of the CSAM,2023,54(8):286-295 (in Chinese with English abstract). [百度学术]
初梦苑,司永胜,李前,等.家畜体尺自动测量技术研究进展[J].农业工程学报,2022,38(13):228-240.CHU M Y,SI Y S,LI Q,et al.Research advances in the automatic measurement technology for livestock body size[J].Transactions of the CSAE,2022,38(13):228-240(in Chinese with English abstract). [百度学术]
谢秋菊,周红,包军,等.基于机器视觉的畜禽体质量评估研究进展[J].农业机械学报,2022,53(10):1-15.XIE Q J,ZHOU H,BAO J,et al.Review on machine vision-based weight assessment for livestock and poultry[J].Transactions of the CSAM,2022,53(10):1-15 (in Chinese with English abstract). [百度学术]
苏艳琼,陆昆婕,肖威,等.基于智能手机的光学传感器的研究进展[J].中国医学工程,2022,30(6):42-47.SU Y Q,LU K J,XIAO W,et al.Research progress of smartphone-based optical sensor[J].China medical engineering,2022,30(6):42-47 (in Chinese with English abstract). [百度学术]
李敏.三维激光点云数据的去噪算法研究[J].信息技术与信息化,2022(9):47-50.LI M.Research on denoising algorithms for 3D laser point cloud data[J].Information technology and informatization,2022 (9):47-50 (in Chinese without English abstract). [百度学术]
VAZQUEZ-ARELLANO M,GRIEPENTROG H W,REISER D,et al.3D imaging systems for agricultural applications:a review[J/OL].Sensors,2016,16(5):618[2023-08-01].https://doi.org/10.3390/s16050618. [百度学术]
DAVIES E.The application of machine vision to food and agriculture:a review[J].The imaging science journal,2009,57(4):197-217. [百度学术]
CONDOTTA I C,BROWN-BRANDL T M,PITLA S K,et al.Evaluation of low-cost depth cameras for agricultural applications[J/OL].Computers and electronics in agriculture,2020,173:105394[2023-08-01].https://doi.org/10.1016/j.compag.2020.105394. [百度学术]
THILAKARATHNE B L S,RAJAGOPALAN U M,KADONO H,et al.An optical interferometric technique for assessing ozone induced damage and recovery under cumulative exposures for a Japanese rice cultivar[J].Springer plus,2014,3(1):1-12. [百度学术]
TIAN H,WANG T,LIU Y,et al.Computer vision technology in agricultural automation:a review[J].Information processing in agriculture,2020,7(1):1-19. [百度学术]
WANG T,CHEN B,ZHANG Z,et al.Applications of machine vision in agricultural robot navigation:a review[J/OL].Computers and electronics in agriculture,2022,198:107085[2023-08-01].https://doi.org/10.1016/j.compag.2022.107085. [百度学术]
SCHOFIELD C.Evaluation of image analysis as a means of estimating the weight of pigs[J].Journal of agricultural engineering research,1990,47:287-296. [百度学术]
VAN DER STUYFT E,SCHOFIELD C,RANDALL J M,et al.Development and application of computer vision systems for use in livestock production[J].Computers and electronics in agriculture,1991,6(3):243-265. [百度学术]
SCHOFIELD C,MARCHANT J,WHITE R,et al.Monitoring pig growth using a prototype imaging system[J].Journal of agricultural engineering research,1999,72(3):205-210. [百度学术]
FROST A,SCHOFIELD C,BEAULAH S,et al.A review of livestock monitoring and the need for integrated systems[J].Computers and electronics in agriculture,1997,17(2):139-159. [百度学术]
MARCHANT J,SCHOFIELD C,WHITE R.Pig growth and conformation monitoring using image analysis[J].Animal science,1999,68(1):141-150. [百度学术]
DOESCHL A,GREEN D,WHITTEMORE C,et al.The relationship between the body shape of living pigs and their carcass morphology and composition[J].Animal science,2004,79(1):73-83. [百度学术]
CHEN J,PENG Y,TIAN F,et al.An imaging system for monitoring livestock growth based on optical vision technology[C]//American Society of Agricultural and Biological Engineers Annual International Meeting 2013.July 21-24,2013,Kansas City,Missouri,USA.Michigan:ASABE,2013:444-449. [百度学术]
TIAN F,PENG Y,CHEN J,et al.Development of machine vision system to detect meat mass of pig prior to slaughtering[C]//American Society of Agricultural and Biological Engineers Annual International Meeting 2014.July 13-16,2014,Quebec,Canada.Michigan:ASABE,2014:2244-2249. [百度学术]
李卓,杜晓冬,毛涛涛,等.基于深度图像的猪体尺检测系统[J].农业机械学报,2016,47(3):311-318.LI Z,DU X D,MAO T T,et al.Pig dimension detection system based on depth image[J].Transactions of the CSAM,2016,47(3):311-318(in Chinese with English abstract). [百度学术]
SHI C,TENG G,LI Z.An approach of pig weight estimation using binocular stereo system based on LabVIEW[J].Computers and electronics in agriculture,2016,129:37-43. [百度学术]
SHI C,ZHANG J,TENG G.Division of pig growth stages according to body component variation using computer vision[J].Pakistan journal of zoology,2020,52(3):1071-1078. [百度学术]
SHI C,ZHANG J,TENG G.Mobile measuring system based on LabVIEW for pig body components estimation in a large-scale farm[J].Computers and electronics in agriculture,2019,156:399-405. [百度学术]
WU J,TILLETT R,MCFARLANE N,et al.Extracting the three-dimensional shape of live pigs using stereo photogrammetry[J].Computers and electronics in agriculture,2004,44(3):203-222. [百度学术]
CONDOTTA I C,BROWN-BRANDL T M,SILVA-MIRANDA K O,et al.Evaluation of a depth sensor for mass estimation of growing and finishing pigs[J].Biosystems engineering,2018,173:11-18. [百度学术]
OKAYAMA T,KUBOTA Y,TOYODA A,et al.Estimating body weight of pigs from posture analysis using a depth camera[J/OL].Animal science journal,2021,92(1):e13626[2023-08-01].https://doi.org/10.1111/asj.13626. [百度学术]
LI G,LIU X,MA Y,et al.Body size measurement and live body weight estimation for pigs based on back surface point clouds[J].Biosystems engineering,2022,218:10-22. [百度学术]
PEZZUOLO A,GUARINO M,SARTORI L,et al.On-barn pig weight estimation based on body measurements by a Kinect v1 depth camera[J].Computers and electronics in agriculture,2018,148:29-36. [百度学术]
WANG K,GUO H,MA Q,et al.A portable and automatic Xtion-based measurement system for pig body size[J].Computers and electronics in agriculture,2018,148:291-298. [百度学术]
SHI S,YIN L,LIANG S,et al.Research on 3D surface reconstruction and body size measurement of pigs based on multi-view RGB-D cameras[J/OL].Computers and electronics in agriculture,2020,175:105543[2023-08-01].https://doi.org/10.1016/j.compag.2020.105543. [百度学术]
HU H,YU J,YIN L,et al.An improved PointNet++ point cloud segmentation model applied to automatic measurement method of pig body size[J/OL].Computers and electronics in agriculture,2023,205:107560[2023-08-01].https://doi.org/10.1016/j.compag.2022.107560. [百度学术]
GUO H,MA X,MA Q,et al.LSSA_CAU:an interactive 3D point clouds analysis software for body measurement of livestock with similar forms of cows or pigs[J].Computers and electronics in agriculture,2017,138:60-68. [百度学术]
LI K,TENG G.Study on body size measurement method of goat and cattle under different background based on deep learning[J/OL].Electronics,2022,11(7):993[2023-08-01].https://doi.org/10.3390/electronics11070993. [百度学术]
NARVAEZ F Y,REINA G,TORRES-TORRITI M,et al.A survey of ranging and imaging techniques for precision agriculture phenotyping[J].Transactions on mechatronics,2017,22(6):2428-2439. [百度学术]
李孟飞,康熙,王彦超,等.基于阈值分析的曲线拟合和边缘检测生猪侧视点云补全[J].农业机械学报,2021,52(S1):81-88.LI M F,KANG X,WANG Y C,et al.Side-view point cloud completion method combining cubic B-spline curve fitting and edge detection based on threshold analysis [J].Transactions of the CSAM,2021,52(S1):81-88(in Chinese with English abstract). [百度学术]
VRANIC D V,SAUPE D,RICHTER J.Tools for 3D-object retrieval:Karhunen-Loeve transform and spherical harmonics[C].2001 IEEE Fourth Workshop on Multimedia Signal Processing(Cat.No.01TH8564).Cannes,France.New York:IEEE,2002:293-298. [百度学术]
PAPADAKIS P,PRATIKAKIS I,PERANTONIS S,et al.Efficient 3D shape matching and retrieval using a concrete radialized spherical projection representation[J].Pattern recognition,2007,40(9):2437-2452. [百度学术]
SFIKAS K,THEOHARIS T,PRATIKAKIS I.ROSy+:3D object pose normalization based on PCA and reflective object symmetry with application in 3D object retrieval[J].International journal of computer vision,2011,91(3):262-279. [百度学术]
BEVILACQUA V,ANDRIANI F,MASTRONARDI G.3D head pose normalization with face geometry analysis,genetic algorithms and PCA[J].Journal of circuits,systems,and computers,2009,18(8):1425-1439. [百度学术]
SFIKAS K,THEOHARIS T,PRATIKAKIS I.Pose normalization of 3D models via reflective symmetry on panoramic views[J].The visual computer,2014,30:1261-1274. [百度学术]
HEJRATI M,RAMANAN D.Categorizing cubes:revisiting pose normalization[C]//2016 IEEE winter conference on applications of computer vision(WACV).March 7-10,2016,Lake Placid,NY,USA.New York:IEEE,2016:1-9. [百度学术]
ZHANG M,ZHANG L,MATHIOPOULOS P T,et al.Perception-based shape retrieval for 3D building models[J].ISPRS journal of photogrammetry and remote sensing,2013,75:76-91. [百度学术]
FARRUGIA T,BARBARAR J.Pose normalisation for 3D vehicles[C]//AZZOPARDI G, PETKOV N.International conference on computer analysis of images and patterns.Cham:Springer International Publishing,2015:235-245. [百度学术]
王可,郭浩,刘威林,等.基于点云旋转归一化的猪体体尺测点提取方法[J].农业工程学报,2017,33(S1):253-259.WANG K,GUO H,LIU W L,et al.Extraction method of pig body size measurement points based on rotation normalization of point cloud[J].Transactions of the CSAE,2017,33(S1):253-259(in Chinese with English abstract). [百度学术]
GUO H,LI Z,MA Q,et al.A bilateral symmetry based pose normalization framework applied to livestock body measurement in point clouds[J].Computers and electronics in agriculture,2019,160:59-70. [百度学术]
RUCHAY A,KOBER V,DOROFEEV K,et al.Accurate body measurement of live cattle using three depth cameras and non-rigid 3D shape recovery[J/OL].Computers and electronics in agriculture,2020,179:105821[2023-08-01].https://doi.org/10.1016/j.compag.2020.105821. [百度学术]