摘要
为探讨根际细菌和葡萄耐涝性的关系,采用盆栽淹水法,对1年生巨峰葡萄扦插苗进行淹水胁迫 21 d以及淹水后恢复7 d的处理,运用16S rRNA高通量测序技术对土壤细菌进行测序,分析其细菌群落组成和结构,探究淹水胁迫对巨峰葡萄根际细菌群落结构组成的影响。结果显示:淹水21 d巨峰葡萄根际细菌的丰度最高,淹水14 d巨峰葡萄的根际细菌多样性最高;胁迫后恢复期间,硫杆菌属(Thiobacillus)相对丰度显著增加;根系细菌功能预测分析显示脂质、萜类和聚酮类化合物代谢有显著变化。结果表明,短期淹水胁迫促进植物产生代谢物改变细菌群落以应对逆境胁迫,但长时间淹水使植物代谢发生紊乱,导致潜在有害细菌类群的丰度增加,植物有益菌群减少。
葡萄(Vitis L.)是世界上最重要的果树之一,栽培历史悠
我国地处亚洲东部,夏季高温多雨,近几年暴雨肆虐东亚,洪涝灾害已经是农业生产上不可小视的灾害之一。2021年我国多地遭遇罕见暴雨暴风,加上部分葡萄园区的排灌系统不良,造成了不可估量的经济损
微生物根据形态和结构可分为细菌、放线菌、真菌、藻类和原生动物5种。淹水胁迫导致土壤处于缺氧或无氧的环境中,影响了土壤中的微生物群落,使得细菌成为主要的优势种
许多细菌都具备参与调控植物耐涝性的可能,本研究以巨峰葡萄为试材,通过盆栽试验法模拟淹水情况,运用16S rRNA高通量测序分析淹水胁迫下巨峰葡萄根际细菌群落结构和组成的差异,探讨巨峰葡萄根际细菌和耐涝性的关系,旨在为根际细菌在农业生产实践中的应用和推广提供理论依据。
以四川省乐山市夹江县新生村葡小萄农场的4年生巨峰葡萄为供试材料。试验地点位于四川省乐山市乐山师范学院(103°44′58″E,29°33′34″N)致远楼附近的大棚内,海拔344.6 m。土壤类型为紫色冲积土,pH 6.0,有机质含量15.12 g/kg,速效氮含量125.38 g/kg,有效磷含量36.65 g/kg,速效钾含量160.82 g/kg。
于2020年12月,收集巨峰葡萄生长健壮的1年生枝条沙藏,2021年3月修剪成长约为15 cm的插穗,仅保留1个顶芽。将土壤平均分装到各个24 cm×22 cm的塑料培养盆,把巨峰葡萄枝条扦插移栽到盆中,根系处于距土表10~15 cm处,进行正常栽培管理。选择12盆正常生长到8片展开叶、长势良好、生长旺盛的巨峰葡萄为试验材料,随机选择3盆做正常浇水的对照组,剩余9盆分别放入3个70 cm×49 cm×38 cm的塑料水箱中进行为期21 d的淹水胁迫,淹水期间保证水面位于盆沿之上3 cm,定期补水到线。分别在第0、14、21天和恢复7 d后的第28天进行根际土采样,采样方法参照云
采用Omega Bio-tek公司(Norcross,GA,U.S.)的E.Z.N.A.® Soil DNA Kit试剂盒提取巨峰葡萄根际细菌的总DNA。随后,通过1%的琼脂糖凝胶电泳和Nanodrop 2000分光光度计对提取的DNA进行浓度和纯度的测
如

图 1 巨峰葡萄对淹水胁迫的响应
Fig.1 Response of Kyoho to waterlogging stress
A:淹水第21 天;B:排水恢复第7 天.盆中材料从左至右分别为‘巨峰’-对照和‘巨峰’-淹水。A:21st day after flooding; B:7th day after drainage restoration. From left to right of the plant material are Kyoho- control and Kyoho - flooding.
4个处理中,K21R的OTU数最多(

图2 淹水胁迫下巨峰葡萄根际细菌群落维恩图(A)、淹水14 d根际和根外细菌群落维恩图(B)
Fig.2 Venn diagram of rhizosphere bacterial community in Kyoho under flooding stress (A),Venn diagram of rhizosphere and extracellular rhizosphere bacterial communities at 14 days of flooding (B)
由
处理 Treatments | ACE指数 ACE index | Chao1指数 Chao1 index | 辛普森指数 Simpson index | 香农指数 Shannon index | 覆盖度/% Coverage |
---|---|---|---|---|---|
K0R | 2 067.2179±8.631 9B | 2 085.5837±9.650 1B | 0.997 3±0.000 1b | 9.696 5±0.054 5bA | 99.73 |
K14R | 2 103.0179±27.430 6AB | 2 113.5445±25.582 7AB | 0.997 7±0.000 1a | 9.877 6±0.002 9aA | 99.75 |
K21R | 2 142.4575±8.469 1A | 2 158.4000±10.717 1A | 0.992 5±0.003 6abc | 9.386 1±0.357 8abA | 99.67 |
K28R | 2 133.8618±1.748 1A | 2 145.6191±2.888 8A | 0.993 5±0.001 2c | 9.354 2±0.079 0c | 99.69 |
注: K0R:对照;K14R:淹水14 d;K21R:淹水21d;K28R:淹水胁迫后人为去除积水,正常浇水。同列不同大、小写字母表示不同处理分别在 0.01和 0.05水平差异显著。Note: K0R: Control, K14R: Flooded for 14 days, K21R: Flooded for 21 days; K28R: Artificially remove stagnant water after flooding stress and water normally. Different uppercase or lowercase letters in the same column shows a significant difference at 0.01 or 0.05 levels.
恢复处理对巨峰葡萄根系细菌群落结构也有显著的影响(

图3 巨峰葡萄根际细菌群落(A)、淹水胁迫下巨峰葡萄根际和根外细菌群落PCoA分析(B)
Fig.3 PCoA analysis of rhizosphere bacterial community in Kyoho grape(A),PCoA analysis of rhizosphere and extra-root bacterial communities in Kyoho grape under waterlogging stress(B)
由

图4 巨峰葡萄根际细菌门水平群落结构
Fig.4 Horizontal community structure of rhizosphere bacterial phylum in Kyoho grape
LEfse分析(LDA>4.0)结果显示,从门到属水平,共有10个物种间存在显著差异,共有2纲、2目、2科、2属、2种(

图5 淹水胁迫和恢复期间,差异物种的进化分枝图(A)和LDA分布情况(B)
Fig.5 Evolutionary branching diagram (A) and LDA distribution (B) of different species in each group during waterlogging stress and recovery
K0R和K14R根际细菌的糖代谢功能基因差异显著(P<0.05),K14R根际细菌的糖代谢水平显著上升(

图6 巨峰葡萄细菌群落功能差异分析
Fig.6 Functional difference analysis of rhizosphere bacterial community in Kyoho grape
A:K0R与K14R根际细菌基因功能差异分析Functional difference analysis of bacterial community of K0R and K14R rhizosphere bacteria genes;B:K0R与K28R根际细菌基因功能差异分析 Functional difference analysis of bacterial community of K0R and K28R rhizosphere bacteria genes;C:K14R与K28R根际细菌基因功能差异分析 Functional difference analysis of bacterial community of K14R and K28R rhizosphere bacteria genes.
高彦婷
高敏敏
植物主要通过地下碳沉积促进根系相关的微生物繁衍并募集特定微生物类群,而这些被招募的微生物会通过共生或致病的方式影响植物生
本研究表明淹水胁迫影响了巨峰葡萄根际细菌的群落结构,短期淹水胁迫使根际细菌代谢物发生改变以应对逆境胁迫;但长时间淹水使植物代谢发生紊乱,导致潜在有害细菌类群的丰度增加,植物有益菌群减少。在淹水胁迫恢复后,硫杆菌属细菌显著增加,其分泌产物对植物响应淹水胁迫有不利影响。淹水胁迫导致根际细菌糖代谢物显著增加,胁迫后恢复根际细菌糖类、脂质、萜类和聚酮类等化合物显著减少。脂质、萜类和聚酮类等化合物可能与植物抗氧化、抗渗透等功能显著相关。
参考文献References
温鹏飞.葡萄的起源与传播[J].农产品加工,2008(10):12-14.WEN P F.The origin and spread of grape[J].Farm products processing,2008(10):12-14 (in Chinese). [百度学术]
刘俊,晁无疾,亓桂梅,等.蓬勃发展的中国葡萄产业[J].中外葡萄与葡萄酒,2020(1):1-8.LIU J,CHAO W J,QI G M,et al.Booming development of Chinese grape industry[J].Sino-overseas grapevine & wine,2020(1):1-8 (in Chinese with English abstract). [百度学术]
施平丽.配方施肥对巨峰葡萄园土壤理化性质及果实品质的影响研究[D].雅安:四川农业大学,2017.SHI P L.Effects of formulated fertilization on soil physical and chemical properties and fruit quality in jufeng grape orchard[D].Yaan:Sichuan Agricultural University,2017 (in Chinese with English abstract). [百度学术]
胡禧熙,王迪,徐慧春,等.葡萄园暴风、洪涝灾害防御及减灾措施[J].果农之友,2021(9):15-16.HU X X,WANG D,XU H C,et al.Prevention and mitigation measures of storm and flood disasters in vineyards[J].Fruit growers’ friend,2021(9):15-16 (in Chinese). [百度学术]
崔东阳,贺亮亮,刘崇怀,等.淹水胁迫对夏黑葡萄生理特性和品质的影响[J].生态学杂志,2022,41(12):2344-2351.CUI D Y,HE L L,LIU C H,et al.Effect of waterlogging stress on physiological characteristics and berry quality of Summer Black grape[J].Chinese journal of ecology,2022,41(12):2344-2351 (in Chinese with English abstract). [百度学术]
李艳.葡萄砧木的耐涝性研究[D].泰安:山东农业大学,2013.LI Y.Study on waterlogging tolerance of grape rootstock[D].Taian:Shandong Agricultural University,2013 (in Chinese with English abstract). [百度学术]
武绍龙.水淹胁迫下马缨杜鹃根系代谢物与微生物群落间互作关系[D].贵阳:贵州师范大学,2022.WU S L.Interaction between root metabolites and microbial communityof Rhododendron delavayi under waterlogging stress[D].Guiyang:Guizhou Normal University,2022 (in Chinese with English abstract). [百度学术]
HAICHAR F Z,MAROL C,BERGE O,et al.Plant host habitat and root exudates shape soil bacterial community structure[J].The ISME journal,2008,2(12):1221-1230. [百度学术]
朱金滔.根际促生菌Serratia marcescens LJL-11缓解紫花苜蓿盐碱胁迫作用的分子机制研究[D].哈尔滨:哈尔滨师范大学,2020.ZHU J T.Molecular mechanism of plantrhizosphere promotingbacteria Serratia marcescens LJL-11 to alleviate the salinealkali stress of alfalfa [D].Harbin:Harbin Normal University,2020 (in Chinese with English abstract). [百度学术]
BADRI D V,VIVANCO J M.Regulation and function of root exudates[J].Plant,cell & environment,2009,32(6):666-681. [百度学术]
云鹏,高翔,陈磊,等.冬小麦-夏玉米轮作体系中不同施氮水平对玉米生长及其根际土壤氮的影响[J].植物营养与肥料学报,2010,16(3):567-574.YUN P,GAO X,CHEN L,et al.Plant nitrogen utilization and soil nitrogen status in rhizosphere of maize as affected by various nitrogen rates in wheat-maize rotation system[J].Plant nutrition and fertilizer science,2010,16(3):567-574 (in Chinese with English abstract). [百度学术]
MAGOČ T,SALZBERG S L.FLASH:fast length adjustment of short reads to improve genome assemblies[J].Bioinformatics,2011,27(21):2957-2963. [百度学术]
CAPORASO J G,KUCZYNSKI J,STOMBAUGH J,et al.QIIME allows analysis of high-throughput community sequencing data[J].Nature methods,2010,7(5):335-336. [百度学术]
CHAO A,SHEN T J.Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample[J].Environmental and ecological statistics,2003,10(4):429-443. [百度学术]
BAI Y,MÜLLER D B,SRINIVAS G,et al.Functional overlap of the Arabidopsis leaf and root microbiota[J].Nature,2015,528(7582):364-369. [百度学术]
高彦婷,黄珍,张芮,等.单生育期水分胁迫对温室葡萄根际土壤酶活性及微生物群落的影响[J].干旱地区农业研究,2021,39(3):59-68.GAO Y T,HUANG Z,ZHANG R,et al.Effects of water stress during single growth period on soil enzyme activities and microbial communities in the rhizosphere of greenhouse grape[J].Agricultural research in the arid areas,2021,39(3):59-68 (in Chinese with English abstract). [百度学术]
高敏敏. 模拟水淹胁迫下灰化薹草和虉草分解过程及细菌群落动态研究[D]. 南昌:南昌大学.GAO M M.The simulation of the decomposition processes of Carex cinerascens and Phalaris arundinacea and the dynamics of bacterial communityunder flooding stress [D]. Nanchang:Nanchang University(in Chinese with English abstract). [百度学术]
刘璐,祝贵兵,夏超,等.青藏高原不同海拔梯度厌氧氨氧化细菌丰度及其生物多样性空间分布[J].环境科学学报,2016,36(4):1298-1308.LIU L,ZHU G B,XIA C,et al.Spatial distribution of anammox bacteria abundance and biodiversity along altitude gradient in Qinghai-Tibet Plateau[J].Acta scientiae circumstantiae,2016,36(4):1298-1308 (in Chinese with English abstract). [百度学术]
王志远,阮彦楠,王伟,等.不同梯度氮磷钾施用量对云南植烟土壤细菌群落结构与多样性的影响[J].西南农业学报,2022,35(4):764-771.WANG Z Y,RUAN Y N,WANG W,et al.Effects of different gradient application amounts of nitrogen,phosphorus and potassium on bacterial community structure and diversity in tobacco-growing soil of Yunnan Province[J].Southwest China journal of agricultural sciences,2022,35(4):764-771 (in Chinese with English abstract). [百度学术]
魏玉洁,邹弯,马文瑞,等.应用高通量测序技术研究新疆产区葡萄果实、叶片及果园土壤微生物多样性[J].食品科学,2018,39(6):162-170.WEI Y J,ZOU W,MA W R,et al.Microbial diversity of berries,leaves and soil of grapevine plants grown in Xinjiang analyzed by high-throughput sequencing[J].Food science,2018,39(6):162-170 (in Chinese with English abstract). [百度学术]
赵忠,滕飞,李卫平,等.包头南海湖不同湖区春季沉积物细菌群落结构[J].灌溉排水学报,2019,38(6):99-104.ZHAO Z,TENG F,LI W P,et al.Spatial variation of the sediment microbial communities in Baotou Nanhai Lake in spring[J].Journal of irrigation and drainage,2019,38(6):99-104 (in Chinese with English abstract). [百度学术]
JACOBY R P,KOPRIVOVA A,KOPRIVA S.Pinpointing secondary metabolites that shape the composition and function of the plant microbiome[J].Journal of experimental botany,2021,72(1):57-69. [百度学术]
鲁守平,隋新霞,孙群,等.药用植物次生代谢的生物学作用及生态环境因子的影响[J].天然产物研究与开发,2006,18(6):1027-1032.LU S P,SUI X X,SUN Q,et al.Biological functions of secondary metabolism of medicinal plants and influences of ecological environment[J].Natural product research and development,2006,18(6):1027-1032 (in Chinese with English abstract). [百度学术]