网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

硒阻控作物吸收重金属机制研究进展  PDF

  • 安立进
  • 赵礼鹏
  • 魏奥
  • 郑世学
华中农业大学生命科学技术学院/农业微生物资源发掘与利用全国重点实验室,武汉430070

中图分类号: X53

最近更新:2024-07-25

DOI:10.13300/j.cnki.hnlkxb.2024.04.013

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

重金属污染对粮食安全及人体健康造成巨大威胁,目前已开发出许多农田重金属污染修复方法。硒的补充显著降低作物对重金属的吸收,同时促进作物在重金属污染土壤中的生长,施硒已成为阻控作物吸收重金属的新途径。本文对施硒阻控作物吸收重金属的5种机制即硒改变土壤重金属的生物有效性、硒与重金属竞争植物摄取通道、硒促进植物根系铁膜形成、硒诱导植物根系形态及结构变化、硒调控植物重金属螯合和转运基因表达等研究进展进行了综述,同时对施硒阻控作物吸收重金属潜在风险及未来研究重点进行展望,以期为将来利用硒作为重金属阻控剂提供参考。

矿山的开采、过度使用化肥和杀虫剂以及污水灌溉等人为活动会导致农田土壤严重的重金属及类金属污

1-2,其中,As、Cd、Hg、Sb、Zn、Cu、Cr、Pb等重金属的污染对粮食安全及人体健康造成极大的威3-6。目前已开发出多种重金属污染修复方式,包括利用超富集植物蜈蚣草Pteris vittata L.和东南景天Sedum alfredii Hance等对重金属进行吸收提取、利用生物炭或有机肥对土壤重金属进行吸附和钝化、通过重金属转化微生物对其进行解毒及固定等途7-9。硒(Se)是人体和动物必需的微量元素,作为30多种硒蛋白及硒酶的重要活性中心,在维持人体抗氧化、抗癌及免疫调节中发挥重要作10-11。长期的硒摄入不足可能会引发克山病、大骨节病等疾11-12。膳食中的硒摄入是人体主要的硒补充方式,因此,农作物的硒生物强化受到广泛的关13-14。研究表明,作为一种硒强化措施,叶面施硒或施加含硒肥料等方式不仅能促进作物富硒、提高作物产量和品质,还能显著降低蔬菜和谷物中As、Cd、Pb、Hg、Cr、Sb和Cu等重金属的积累。硒已被广泛认为是一种新型高效的作物吸收重金属阻控15-18。本文主要介绍在土壤-植物系统中由硒介导的重金属的迁移及转化,并阐释硒介导的阻控植物重金属吸收的潜在机制,以期为施用硒肥阻控作物重金属积累提供一定科学依据。

1 硒阻控作物吸收重金属机制

1.1 硒改变土壤重金属的生物有效性

施加到土壤中的硒会与土壤重金属发生复杂的相互作用,从而改变土壤重金属的生物有效

18。硒在土壤中的生物有效性及钝化重金属的效果受到pH值、Eh值、有机质及土壤微生物等土壤特性的影19图1)。土壤pH值的变化直接影响土壤中重金属的溶解性和土壤颗粒对重金属的吸附能力。土壤pH值的增加会提高土壤颗粒表面负电荷含量,从而增加As、Sb、Se等类金属含氧阴离子的流动性,但降低Cd、Pb、Cu、Hg等重金属阳离子的生物有效20-22。研究发现,提高土壤pH值可以增强Se阻控水稻Cd吸收的效23。此外,Huang24报道向稻田土壤中施加1 mg/kg的亚硒酸钠(强碱弱酸盐)可显著增加根际和非根际土壤的pH值,从而降低稻田土壤中Cd的流动性和水稻中Cd的含量。然而,土壤pH类金属的提高同时会导致As、Sb等类金属的活化,因此,在利用硒处理As和Cd等重金属复合污染时需要综合考虑土壤pH对修复效果的影响。

图1  硒改变土壤重金属的生物有效性

Fig.1  Selenium alters the bioavailability of heavy metals in soil

水稻种植涉及淹水及排水2种水分管理方式,稻田土壤的Eh变化对硒及土壤重金属的生物有效性有着重要影

20-21图1)。长期淹水后的土壤Eh降低,当土壤Eh降低至-200 mV以下时,四或六价硫及硒的含氧阴离子被还原为负二价硫或负二价硒,二价镉阳离子会优先与负二价硫形成硫化镉,此外也能与负二价硒形成硒化镉沉淀,从而降低镉的流动性及镉在植物中的含25-26。与之相反,土壤长期淹水不利于硒阻控植物对As等类金属阴离子的吸收。稻田淹水产生的厌氧环境会促进As(Ⅴ)还原为As(Ⅲ)并导致Fe/Mn氧化物的还原从而促进砷的解吸附,最终提高砷的流动性和毒20。同时,淹水厌氧的环境导致Se(Ⅳ)还原为不溶的单质硒沉淀,降低生物有效性硒的含量,从而极大降低硒拮抗植物砷吸收的效1826。Wan27发现,在有氧条件下施加硒可降低水稻对As的吸收,但在淹水条件下施加硒反而促进砷在水稻中的积累。因此,利用施硒阻控作物重金属吸收时应根据土壤污染情况调整土壤淹水状况,以保证最佳的修复效果。

除土壤pH、Eh等理化性质外,土壤微生物可通过对硒及土壤重金属的转化介导形成不溶性硒化物沉淀,最终降低重金属的生物有效性(图1)。Wang

28报道稻田土壤中施加硫酸盐及亚硒酸盐可通过形成HgS或HgSe沉淀,从而降低水稻中甲基汞的含量。由于Se对Hg的结合亲和力大于S,施加亚硒酸盐对汞污染修复效果优于施加硫酸29。He30构建的活性污泥反应器通过微生物介导的HgSe生物矿化,实现Hg与Se的共去除。亚硒酸盐可在土壤微生物转化作用下与Cd反应生成CdSe沉淀,从而降低Cd的流动性和迁移31。土壤中生物有效性Se及Cd的比例直接影响土壤难溶性CdSe的形31-32。Zhang31发现,当土壤中硒和镉的生物有效物质的量比大于0.7时,增加的生物有效性硒才能将酸性土壤中的Se(Ⅳ)还原为Se(-Ⅱ),随后形成难溶性CdSe,最终显著降低玉米中Cd的含量。然而,当硒和镉物质的量比低于0.7时,Se和Cd可能以CdSeO3和CdSeO4的形式更高效地被根部吸收,导致玉米中镉的积31。Guo32在水培试验中发现,外源硒或镉的施加会降低水稻对另一种金属的吸收和转运。当Se/Cd物质的量比大于1时,水稻各部位Cd的浓度和转移因子同时达到最低值,硒与镉的相互拮抗吸收可能与CdSe形成相关。与Cd类似,研究指出Cu可在希瓦氏菌的转化下与硒形成CuSe沉淀进而实现共解33。除了直接介导硒与重金属不溶硒化物的合成外,某些硒氧化细菌可通过对土壤难利用态硒的溶解及低价态硒的氧化作用,将低生物可利用度的低价态硒转化为流动性更高的高价态硒,从而提升土壤硒的生物有效性。An34通过施加硒氧化农杆菌T3F4提高土壤硒的流动性,从而促进小白菜对硒的吸收并降低砷的积累。Guo35报道数株硒氧化细菌可活化土壤中的硒,最终提高小白菜的硒含量同时阻控镉的吸收。

1.2 硒与砷锑等类金属竞争植物摄取通道

除了直接改变土壤重金属的生物有效性之外,硒还可以通过与砷等类金属竞争离子摄取通道从而降低作物中类金属的含

3436图2)。水稻根部通过硅转运蛋白非特异性的摄取As(Ⅲ)离子,它属于水通道蛋白亚家族中的类NOD26膜内在蛋37。由于As(Ⅴ)与磷酸盐结构相似,植物根系可通过磷酸盐转运蛋白对As(Ⅴ)进行吸38。与As(Ⅲ)类似,Se(Ⅳ)也被证实可以通过根系的硅转运通道而被植物非特异性吸39。此外,Zhang40发现水稻的磷酸盐转运蛋白OsPT2参与对亚硒酸盐的主动吸收。已有许多研究报道硒通过与砷竞争植物根系摄取通道从而拮抗砷的吸收。An34在水培体系中加入10 μmol/L Se(Ⅳ)将小白菜对As(Ⅴ)的50%生长抑制浓度提高2倍,有效降低砷对植物的毒性,并显著降低植株地上部分砷的含量。然而,一些研究发现,在As(Ⅲ)暴露的水培水稻体系中加入Se(Ⅳ)仅阻控As从水稻根部向茎的转运,但会促进As在其根中的积3641,说明硒阻控植物吸收砷不仅由竞争摄取通道介导,还存在其他机制。此外,多个研究发现硒的施加降低了锑对植物的毒性和植物中的锑积1542。已有研究报道,Sb(Ⅲ)与Se(Ⅳ)均可以被植物根系的水甘油通道蛋白进行非特异性摄43。因此,竞争植物根部的硅酸盐摄取通道,也可能是硒降低锑毒性和吸收的重要途径。

图2  硒阻控作物吸收重金属的机制(改自文献[

21])

Fig.2  Mechanism of selenium in mitigating heavy metal uptake by crops(modified form reference[

21])

1.3 硒促进植物根表铁膜形成

铁膜是水稻等水生植物根表由铁的氧化物或氢氧化物形成的铁斑块,对As、Cd、Hg、Sb、Zn及Cu等重金属均有较强吸附能力,已被广泛报道作为植物吸收重金属的屏

44-50已有研究报道发现施加一定剂量的硒能改变水稻根表铁膜及其吸附重金属的含量(图2)。Zhou44的研究发现,在水培体系中硒的施加能促进水稻根表铁膜中无机汞的积累进而降低茎中汞的含量。Huang48的研究发现亚硒酸盐的施加刺激了水稻根系径向氧的释放,从而促进根系微环境亚铁离子的氧化,最终提高根表铁膜的含量和Cd的阻控效果。硒对植物根表铁膜的形成受到根系暴露的重金属的价态及其生物有效性浓度等诸多因素的影响。Liu51的研究发现硒的施加仅能促进Sb(Ⅲ)而非Sb(Ⅴ)暴露下的水稻根表铁膜的形成。有研究报道,硒的施加仅在低镉污染土壤中通过促进水稻铁膜形成并阻控镉,而对高浓度镉污染土壤中水稻铁膜的形成无显著影52

除以上因素外,硒的施加剂量、价态及施加时机均会影响硒对植物根表铁膜形成及重金属阻控效果。Chang

45报道低剂量(1.0 mg/kg)的硒能够促进铁膜的形成从而降低水稻中Cd的含量,而高剂量(8.0 mg/kg)的硒抑制水稻根表铁膜的形成,说明硒对铁膜的形成影响具有剂量效应。最近的研究发现,Se(Ⅳ)和Se(Ⅵ)均能有效降低水稻茎叶中砷的积累,但Se(Ⅳ)会促进砷从铁膜中向根中的转运,而Se(Ⅵ)则显著降低铁膜中砷向根部的转49,表明硒的价态对铁膜的砷阻控至关重要,但其作用机制尚不明确。此外,施加硒的时期对铁膜阻控重金属的效果至关重要。Huang50的研究发现,在分蘖期施加Se(Ⅳ)是降低糙米中镉含量的最佳时期,分蘖期施硒能刺激抽穗期的水稻根表产生大量的铁膜,最大程度地抑制了根系对镉的吸收和镉从根系向籽粒的转运。

1.4 硒诱导植物根系形态及结构变化

根系的形态及结构对植物抵御重金属的毒性和胁迫起着重要作

53-54。Huang53研究表明,具有较大的表面积、较长的根长和较多根尖的辣椒品种具有更高Cd积累量,减少根毛、侧根数量和根的长度,有利于植物降低根系对重金属的摄取和吸收。在对水稻的研究中发现,单位根表面积更小、根孔隙度更大的水稻植株,其籽粒中镉积累量更54。已有研究表明,硒能通过诱导植物根系形态及结构发生变化,从而降低植物对重金属的吸收和积55-58图2)。Malheiros55发现,施加Se(Ⅳ)可降低水稻生长素和乙烯的生物合成相关基因的表达量,从而抑制根系主根和侧根的生长。此外,Wu56的研究发现,水培体系中加入0.5 mg/L的Se(Ⅳ)能调控植物生长素的运输及信号转导从而降低根的表面积和根尖数量,进而降低植物根系及地上部分对镉的吸收。Ding57发现,硒能显著降低水稻根系须根的含量而促进主根的发育,从而降低根系对镉的吸收。施加硒可降低水稻植株在Sb(Ⅲ)暴露下的根叉及细根的数量,从而降低植物地上部的锑含17。然而,也有研究发现硒的施加并未影响根系的形态,但小白菜地上部分的镉含量显著降低,说明不同植物存在不同的硒阻控镉吸收的机58

除了诱导植物根系形态或结构的改变外,硒还可通过改变根系细胞壁组成成分介导重金属的阻控。细胞壁主要由纤维素、半纤维素、果胶、木质素等物质组成,可通过与重金属的结合作用降低植物根系对重金属的吸

59-60。施硒可增加细胞壁中半纤维素、木质素和果胶等物质的合成来提高细胞壁的厚度和对重金属的螯合能力,从而有效降低植物根系对重金属的吸1551。Yang61的研究发现,施加Se(Ⅵ)显著提高小白菜根中果胶和半纤维素的含量,并通过提升果胶甲基酯酶活性促进果胶的合成,增强细胞壁对Cd的结合作用,从而降低植物地上部分镉的含量。此外,Wang62的研究发现,除了通过促进植物根细胞壁果胶、半纤维素和木质素的合成降低镉吸收外,硒的施加还可以促进根内皮层和外皮层凯氏带的沉积,从而阻断Cd的转运,并诱导细胞壁中羧基、羰基或酰胺基的释放而与Cd结合,最终阻控根系对镉的吸收。

1.5 硒调控植物重金属螯合和转运基因表达

除上述机制外,硒还可通过调控植物重金属螯合和转运相关基因的表达进而降低重金属的吸收和毒性(图2)。Cui

63的研究发现,Se(Ⅳ)的施加促进水稻参与镉向液泡转运的OsHMA3基因的表达,但降低了参与镉吸收基因OsNramp5和转运基因OsLCT1的表达量,从而将镉更多地固定在液泡中,同时降低根系对镉的摄入和向地上部分的转移。Huang64报道,Se(Ⅳ)诱导水稻根系中液泡镉转运OsNramp1OsMHA3基因上调表达,促进镉在液泡中的隔离;同时,硒刺激水稻植物螯合素(PC)的合成,降低植物根系中镉的毒性和流动性。此外,纳米硒的施加使叶片及花序梗中的OsLCT1OsCCX2OsPCR1镉转运相关基因下调表达,从而降低镉向水稻籽粒的转移和积65。叶面喷施1 mg/L的Se(Ⅳ)可诱导油菜叶片细胞植物螯合素PCS1的合成,从而促进PC-Cd复合物的形成并将镉螯合物隔离在液泡66。Se(Ⅳ)的施加可诱导小麦根系镉摄入转运蛋白TaNramp5的下调表达,同时刺激镉外排蛋白TaTM20和TaHMA3上调表达,从而降低植物对镉的吸收和积67。也有研究发现,Se(Ⅵ)能提高砷暴露条件下水稻根系硝酸盐转运蛋白NRT、磷酸盐转运蛋白PHT、钾通道蛋白KCP的表达,进而促进植物对必需元素的吸收和利用来抵御砷的胁68

2 使用硒阻控作物中重金属吸收的潜在风险

尽管施加硒阻控植物吸收各种重金属的效果得到广泛的验证,以亚硒酸盐为主要成分的重金属叶面阻隔剂也得到一定的应用,但是使用硒修复重金属污染也存在潜在的风

1857。硒的施用剂量、作物的种类、土壤的理化环境及土壤重金属的组成和浓度均可能影响硒对重金属的阻控效18。重金属污染土壤中施加硒在保证阻控效果的前提下,需要尽可能降低硒的使用剂量,以防止土壤出现硒过量甚至硒污染的情况。硒污染会导致硒在植物体内过度积累,如果人体摄入过量的硒,会对人体健康产生危69。不当的硒施加剂量可能起不到阻控重金属的作用,反而促进作物中重金属的积累。Ding57发现,给暴露于12 mg/L Cd(Ⅱ)胁迫下的水稻施加0.2 mg/L Se(Ⅳ)不能使水稻中镉含量降低,反而增强镉在水稻中的积累。此外,也有研究报道Se(Ⅳ)虽能降低小白菜根系对镉的亲和力,但Se(Ⅳ)含氧阴离子同时可通过电荷缓冲,降低Cd(Ⅱ)阳离子转运的电荷屏障,从而显著提高根系对Cd(Ⅱ)吸70。Wan27报道,在淹水条件下施加低剂量的Se(Ⅳ)会增加水稻籽粒砷的浓度,而在有氧条件下硒的施加显著降低水稻的砷积累。因此,施硒修复重金属污染时需控制土壤水分,长期淹水可能影响其修复效果,甚至促进作物对重金属的吸收。

在某些条件下,硒可能改变植物吸收重金属元素的价态,因而影响硒对重金属的修复效果。有研究发现,尽管施加硒显著降低水稻籽粒中总砷的含量,但却提高了稻米中As(Ⅲ)的含量,而As(Ⅲ)的毒性远高于As(Ⅴ

71。此外,某些条件下,硒的施加可能降低植物对其他必需营养元素的吸收。Feng72的研究发现,硒的施加显著降低水稻植株的锑含量,但同时降低了水稻植株地上部钾、锰及镁的含量。Sousa73发现,尽管施加硒显著降低植物中砷的积累,但却降低植物茎和根中的铁锰及锌的含量。因此,在使用硒进行重金属污染修复时,需要对土壤的污染状况和土壤性质进行详细调研,确保修复措施既有效又安全,不会对环境和人体健康造成额外的风74

3 展望

施硒作为一种硒强化手段,不仅能促进作物富硒,提升作物品质,同时也在阻控作物重金属吸收方面展现出良好的应用前景。由于土壤-植物体系的复杂性,不同的作物及土壤的性质、重金属污染程度等因素均会影响硒对重金属的修复效果,硒降低植物重金属吸收机制的研究需要更深入的研究。未来的研究有以下几个重点:(1)需进一步明确土壤中不同形态的Se与重金属的互作机制,阐释多大剂量的Se能阻控作物重金属的积累;(2)进一步探究土壤pH、Eh、有机质等理化因子如何影响硒修复重金属的效果;(3)探究硒的施加量对不同作物吸收重金属的阻控效果,优化出阻控特定作物吸收重金属的安全硒施加剂量;(4)除Se(Ⅳ)及Se(Ⅵ)外,纳米硒毒性更小且容易被植物吸收,需开展更多纳米硒阻控植物吸收重金属的研究;(5)除镉之外,硒如何在基因水平调控植物摄入及转运其他重金属的机制尚不明确,有待进一步的阐释;(6)实际重金属复合污染土壤多为复合污染,硒对复合污染如砷镉共污染的修复效果的研究鲜有报道,需更多的研究;(7)施加硒对土壤微生物群落和重金属转化功能菌株的影响少有研究,硒对土壤生态平衡的影响尚不明确。通过对硒阻控植物吸收重金属机制的阐释,不仅能实现对毒性重金属精准高效阻控,同时能避免硒施加所带来的潜在风险。

参考文献 References

1

LI H S,GU Y G,LIANG R Z,et al.Heavy metals in riverine/estuarine sediments from an aquaculture wetland in metropolitan areas,China:characterization,bioavailability and probabilistic ecological risk[J/OL].Environmental pollution,2023,324:121370[2024-05-28].https://doi.org/10.1016/j.envpol.2022.120370. [百度学术] 

2

ZHANG B,HOU H,HUANG Z,et al.Estimation of heavy metal soil contamination distribution,hazard probability,and population at risk by machine learning prediction modeling in Guangxi,China[J/OL].Environmental pollution,2023,330:121607[2024-05-28].https://doi.org/10.1016/j.envpol.2023.121607. [百度学术] 

3

NIU S,XIA Y,YANG C,et al.Impacts of the steel industry on sediment pollution by heavy metals in urban water system [J/OL].Environmental pollution,2023,335:122364[2024-05-28].https://doi.org/10.1016/j.envpol.2023.122364. [百度学术] 

4

LUO X S,YU S,ZHU Y G,et al.Trace metal contamination in urban soils of China[J/OL].Science of the total environment,2012,421/422:17-30. [百度学术] 

5

WANG P,CHEN H P,KOPITTKE P M,et al.Cadmium contamination in agricultural soils of China and the impact on food safety[J].Environmental pollution,2019,249:1038-1048. [百度学术] 

6

ZHAO F J.Strategies to manage the risk of heavy metal(loid) contamination in agricultural soils[J].Frontiers of agricultural science and engineering,2020,7(3):333-338. [百度学术] 

7

LIU X,FU J W,TANG N,et al.Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata[J].Environmental pollution,2017,226:212-218. [百度学术] 

8

TU C,WEI J,GUAN F,et al.Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil[J/OL].Environment international,2020,137:105576[2024-05-28].https://doi.org/10.1016/j.envint.2020.105576. [百度学术] 

9

XIA X,WU S,ZHOU Z,et al.Microbial Cd(Ⅱ) and Cr(Ⅵ) resistance mechanisms and application in bioremediation [J/OL].Journal of hazardous materials,2020,401:123685[2024-05-28].https://doi.org/10.1016/j.jhazmat.2020.123685. [百度学术] 

10

DINH Q T,CUI Z,HUANG J,et al.Selenium distribution in the Chinese environment and its relationship with human health:a review[J].Environment international,2018,112:294-309. [百度学术] 

11

RAYMAN M P.Selenium and human health[J].The lancet,2012,379(9822):1256-1268. [百度学术] 

12

HUAWEI Z,JAY C,GERALD C.Selenium in bone health:roles in antioxidant protection and cell proliferation[J].Nutrients,2013,5(1):97-110. [百度学术] 

13

MALAGOLI M,SCHIAVON M,DALL’ACQUA S,et al.Effects of selenium biofortification on crop nutritional quality[J/OL].Frontiers in plant science,2015,6:280[2024-05-28].https://doi.org/10.3389/fpls.2015.00280. [百度学术] 

14

ZHANG S,ZHU H,CEN H,et al.Effects of various forms of selenium biofortification on photosynthesis,secondary metabolites,quality,and lignin deposition in alfalfa (Medicago sativa L.)[J/OL].Field crops research,2023,108801[2024-05-28].https://doi.org/10.1016/J.FCR.2022.108801. [百度学术] 

15

DING Y,WANG R,GUO J,et al.The effect of selenium on the subcellular distribution of antimony to regulate the toxicity of antimony in paddy rice[J].Environmental science & pollution research,2015,22(7):5111-5123. [百度学术] 

16

DEBOJYOTI M,CHANDRA S S,DIBAKAR G.Seed priming with Se mitigates As-induced phytotoxicity in rice seedlings by enhancing essential micronutrient uptake and translocation and reducing As translocation[J].Environmental science and pollution research,2018,25:26978-26991. [百度学术] 

17

WU Q,FENG R,GUO J,et al.Interactions between selenite and different forms of antimony and their effects on root morphology of paddy rice[J].Plant and soil,2016,413(1/2):1-12. [百度学术] 

18

FENG R W,ZHAO P P,ZHU Y M,et al.Application of inorganic selenium to reduce accumulation and toxicity of metals and metalloids in plants:the main mechanisms,concerns,and risks[J/OL].Science of the total environment,2021,771(6):144776[2024-05-28].https://doi.org/10.1016/j.scitotenv.2020.144776. [百度学术] 

19

NATASH A,SHAHID M,NIAZI N K,et al.A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health[J].Environmental pollution,2018,234:915-934. [百度学术] 

20

SHEN B,WANG X,ZHANG Y,et al.The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application[J/OL].Science of the total environment,2019,711:135229[2024-05-28].https://doi.org/10.1016/j.scitotenv.2019.135229. [百度学术] 

21

FENG R W,WANG L Z,YANG J G,et al.Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals(metalloids) by selenium via root application in plants[J/OL].Journal of hazardous materials,2021,402:123570[2024-05-28].https://doi.org/10.1016/j.jhazmat.2020.123570. [百度学术] 

22

ZENG F R,ALI S,ZHANG H T,et al.The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J].Environmental pollution,2011,159(1):84-91. [百度学术] 

23

WAN Y,CAMARA A Y,YU Y,et al.Cadmium dynamics in soil pore water and uptake by rice:influences of soil-applied selenite with different water managements[J].Environmental pollution,2018,240:523-533. [百度学术] 

24

HUANG Q Q,XU Y M,Liu Y Y,et al.Selenium application alters soil cadmium bioavailability and reduces its accumulation in rice grown in Cd-contaminated soil[J].Environmental science and pollution research,2018,25:31175-31182. [百度学术] 

25

NAKAMARU Y M,ALTANSUVD J.Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils:a review[J].Chemosphere,2014,111:366-371. [百度学术] 

26

MASSCHELEYN P H,DELAUNE R D,PATRICK W H.Biogeochemical behavior of selenium in anoxic soils and sediments:an equilibrium thermodynamics approach[J].Journal of environmental science & health part A:environmental science & engineering & toxicology,1991,26(4):555-573. [百度学术] 

27

WAN Y,CAMARA A Y,HUANG Q Q,et al.Arsenic uptake and accumulation in rice (Oryza sativa L.) with selenite fertilization and water management[J].Ecotoxicology and environmental safety,2018,156:67-74. [百度学术] 

28

WANG Y J,DANG F,ZHONG H,et al.Effects of sulfate and selenite on mercury methylation in a mercury-contaminated rice paddy soil under anoxic conditions[J].Environmental science and pollution research,2016,23(5):4602-4608. [百度学术] 

29

WANG Y,DANG F,ZHAO J,et al.Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil[J].Environmental pollution,2016,213:232-239. [百度学术] 

30

HE Z F,SHEN J Q,ZHAO Y H,et al.Microbial antagonistic mechanisms of Hg(Ⅱ) and Se(Ⅳ) in efficient wastewater treatment using granular sludge[J/OL].Water research,2024,253:121311[2024-05-28].https://doi.org/10.1016/j.watres.2024.121311. [百度学术] 

31

ZHANG Z Z,YUAN L X,QI S H,et al.The threshold effect between the soil bioavailable molar Se∶Cd ratio and the accumulation of Cd in corn (Zea mays L.) from natural Se-Cd rich soils[J].Science of the total environment,2019,688:1228-1235. [百度学术] 

32

GUO Y K,MAO K,CAO H R,et al.Exogenous selenium (cadmium) inhibits the absorption and transportation of cadmium (selenium) in rice[J/OL].Environmental pollution,2021,268(Pt A):115829[2024-05-28].https://doi.org/10.1016/j.envpol.2020.115829. [百度学术] 

33

WANG X,WANG L,CHEN L,et al.AQDS activates extracellular synergistic biodetoxification of copper and selenite via altering the coordination environment of outer-membrane proteins[J].Environmental science & technology,2022,56(19):13786-13797. [百度学术] 

34

AN L J,ZHOU C Z,ZHAO L P,et al.Selenium-oxidizing Agrobacterium sp.T3F4 decreases arsenic uptake by Brassica rapa L.under a native polluted soil[J].Journal of environmental sciences (China),2024,138(4):506-515. [百度学术] 

35

GUO J Y,LUO X,ZHANG Q Y,et al.Contributions of selenium-oxidizing bacteria to selenium biofortification and cadmium bioremediation in a native seleniferous Cd-polluted sandy loam soil[J/OL].Ecotoxicology and environmental safety,2024,272:116081[2024-05-28].https://doi.org/10.1016/j.ecoenv.2024.116081. [百度学术] 

36

WANG K,WANG Y Q,Wan Y N,et al.The fate of arsenic in rice plants (Oryza sativa L.):influence of different forms of selenium [J/OL].Chemosphere,2021,264(Pt 1):128417[2024-05-28].https://doi.org/10.1016/j.chemosphere.2020.128417. [百度学术] 

37

MA J F,YAMAJI N,MITANI N,et al.Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J].PNAS,2008,105(29):9931-9935. [百度学术] 

38

CAO Y,SUN D,CHEN J,et al.Phosphate transporter PvPht1;2 enhances phosphorus accumulation and plant growth without impacting arsenic uptake in plants[J].Environmental science & technology,2018,52(7):3975-3981. [百度学术] 

39

ZHAO X Q,MITANI N,YAMAJI N,et al.Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice[J].Plant physiology,2010,153(4):1871-1877. [百度学术] 

40

ZHANG L H,HU B,LI W,et al.OsPT2,a phosphate transporter,is involved in the active uptake of selenite in rice[J].New phytologist,2014,201(4):1183-1191. [百度学术] 

41

YOUNOUSSA,WAN A,YU Y N,et al.Effect of selenium on uptake and translocation of arsenic in rice seedlings (Oryza sativa L.)[J].Ecotoxicology and environmental safety,2018,148:869-875. [百度学术] 

42

LU Y Q,WU J X,LI J K.The alleviating effects and underlying mechanisms of exogenous selenium on both Sb(Ⅲ) and Sb(Ⅴ) toxicity in rice seedlings (Oryza sativa L.)[J].Environmental science and pollution research,2023,30(38):89927-89941. [百度学术] 

43

VIDYA C S N,SHETTY R,BOKOR B,et al.Do antimonite and silicon share the same root uptake pathway by lsi1 in Sorghum bicolor L.Moench?[J/OL].Plants (Basel),2023,12(12):2368[2024-05-28].https://doi.org/10.3390/plants12122368. [百度学术] 

44

ZHOU X B,LI Y Y.Effect of iron plaque and selenium on mercury uptake and translocation in rice seedlings grown in solution culture[J].Environmental science and pollution research,2019,26(14):13795-13803. [百度学术] 

45

CHANG H,ZHOU X B,WANG W H,et al.Effects of selenium application in soil on formation of iron Plaque outside roots and cadmium uptake by rice plants[J/OL].Advanced materials research,2013,750-752[2024-05-28].https://doi.org/10.4028/www.scientific.net/AMR.750-752.1573. [百度学术] 

46

ZANDI P,YANG J J,DARMA A,et al.Iron plaque formation,characteristics,and its role as a barrier and/or facilitator to heavy metal uptake in hydrophyte rice(Oryza sativa L.)[J].Environmental geochemistry and health,2023,45(3):525-559. [百度学术] 

47

ZANDI P,YANG J J,XIA X,et al.Do sulfur addition and rhizoplane iron plaque affect chromium uptake by rice (Oryza sativa L.) seedlings in culture solution?[J/OL].Journal of hazardous materials,2020,388:121803[2024-05-28].https://doi.org/10.1016/j.jhazmat.2019.121803. [百度学术] 

48

HUANG G X,DING C F,LI Y S,et al.Selenium enhances iron plaque formation by elevating the radial oxygen loss of roots to reduce cadmium accumulation in rice (Oryza sativa L.)[J/OL].Journal of hazardous materials,2020,398:122860[2024-05-28].https://doi.org/10.1016/j.jhazmat.2020.122860. [百度学术] 

49

WANG K,WANG Y Q,ZHANG C,et al.Selenite and selenate showed contrasting impacts on the fate of arsenic in rice (Oryza sativa L.) regardless of the formation of iron plaque[J/OL].Environmental pollution,2022,312:120039[2024-05-28].https://doi.org/10.1016/j.envpol.2022.120039. [百度学术] 

50

HUANG G X,DING C F,GUO F Y,et al.The optimum Se application time for reducing Cd uptake by rice (Oryza sativa L.) and its mechanism[J].Plant and soil,2018,431(1/2):231-243. [百度学术] 

51

LIU Y,LV H Q,YANG N,et al.Roles of root cell wall components and root plaques in regulating elemental uptake in rice subjected to selenite and different speciation of antimony[J].Environmental and experimental botany,2019,163:36-44. [百度学术] 

52

HUANG G X,DING C F,GUO F Y,et al.Underlying mechanisms and effects of hydrated lime and selenium application on cadmium uptake by rice (Oryza sativa L.) seedlings[J].Environmental science and pollution research,2017,24(23):18926-18935. [百度学术] 

53

HUANG B F,XIN J L,DAI H W,et al.Root morphological responses of three hot pepper cultivars to Cd exposure and their correlations with Cd accumulation[J].Environmental science and pollution research,2015,22(2):1151-1159. [百度学术] 

54

HUANG L,Li W C,TAM N F Y,et al.Effects of root morphology and anatomy on cadmium uptake and translocation in rice ( Oryza sativa L.)[J].Journal of environmental sciences,2019,75:296-306. [百度学术] 

55

MALHEIROS R S P,COSTA L C,AVILA R T,et al.Selenium downregulates auxin and ethylene biosynthesis in rice seedlings to modify primary metabolism and root architecture[J].Planta,2019,250(1):333-345. [百度学术] 

56

WU K Y,WANG L Z,WU Z H,et al.Selenite reduced cadmium uptake,interfered signal transduction of endogenous phytohormones,and stimulated secretion of tartaric acid based on a combined analysis of non-invasive micro-test technique,transcriptome and metabolome[J/OL].Plant physiology and biochemistry,2024,206:108107[2024-05-28].https://doi.org/10.1016/j.plaphy.2023.108107. [百度学术] 

57

DING Y Z,FENG R W,WANG R G,et al.A dual effect of Se on Cd toxicity:evidence from plant growth,root morphology and responses of the antioxidative systems of paddy rice [J].Plant and soil,2014,375(1/2):289-301. [百度学术] 

58

ZHAO Y Y,HU C X,WU Z C,et al.Selenium reduces cadmium accumulation in seed by increasing cadmium retention in root of oilseed rape(Brassica napus L.)[J].Plant physiology and biochemistry,2019,158,161-170. [百度学术] 

59

GALL H L,PHILIPPE F,DOMON J,et al.Cell wall metabolism in response to abiotic stress[J/OL].Plants,2015,4(1):112[2024-05-28].https://doi.org/10.3390/plants4010112. [百度学术] 

60

KRZESLOWSKA M.The cell wall in plant cell response to trace metals:polysaccharide remodeling and its role in defense strategy[J].Acta physiologiae plantarum,2011,33(1):35-51. [百度学术] 

61

YANG L,HUANG S Q,LIU Y,et al.Selenate regulates the activity of cell wall enzymes to influence cell wall component concentration and thereby affects the uptake and translocation of Cd in the roots of Brassica rapa L.[J/OL].Science of the total environment,2022,821:153156[2024-05-28].https://doi.org/10.1016/j.scitotenv.2022.153156. [百度学术] 

62

WANG L Z,WU K Y,LIU Z Q,et al.Selenite reduced uptake/translocation of cadmium via regulation of assembles and interactions of pectins,hemicelluloses,lignins,callose and Casparian strips in rice roots[J/OL].Journal of hazardous materials,2023,448:130812[2024-05-28].https://doi.org/10.1016/j.jhazmat.2023.130812. [百度学术] 

63

CUI J H,LIU T X,LI Y D,et al.Selenium reduces cadmium uptake into rice suspension cells by regulating the expression of lignin synthesis and cadmium-related genes[J].Science of the total environment,2018,644:602-610. [百度学术] 

64

HUANG H L,LI M,RIZWAN M,et al.Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants[J/OL].Journal of hazardous materials,2021,401:123393[2024-05-28].https://doi.org/10.1016/j.jhazmat.2020.123393. [百度学术] 

65

WANG C R,RONG H,ZHANG X B,et al.Effects and mechanisms of foliar application of silicon and selenium composite sols on diminishing cadmium and lead translocation and affiliated physiological and biochemical responses in hybrid rice (Oryza sativa L.) exposed to cadmium and lead[J/OL].Chemosphere,2020,251:126347[2024-05-28].https://doi.org/10.1016/j.chemosphere.2020.126347. [百度学术] 

66

ISMAEL M A,ELYAMINE A M,ZHAO Y Y,et al.Can selenium and molybdenum restrain cadmium toxicity to pollen grains in Brassica napus?[J/OL].International journal of molecular sciences,2018,19(8):2163[2024-05-28].https://doi.org/10.3390/ijms19082163. [百度学术] 

67

ZHOU J,ZHANG C,DU B Y,et al.Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation:comparison of soft vs.durum wheat varieties[J/OL].Journal of hazardous materials,2021,402:123546[2024-05-28].https://doi.org/10.1016/j.jhazmat.2020.123546. [百度学术] 

68

PANDEY C,GUPTA M.Selenium amelioration of arsenic toxicity in rice shows genotypic variation:a transcriptomic and biochemical analysis[J].Journal of plant physiology,2018,231:168-181. [百度学术] 

69

ETTEIEB S,MAGDOULI S,ZOLFAGHARI M,et al.Monitoring and analysis of selenium as an emerging contaminant in mining industry:a critical review[J/OL].Science of the total environment,2020,698:134339[2024-05-28].https://doi.org/10.1016/j.scitotenv.2019.134339. [百度学术] 

70

YU Y,YUAN S L,ZHUANG J,et al.Effect of selenium on the uptake kinetics and accumulation of and oxidative stress induced by cadmium in Brassica chinensis [J].Ecotoxicology and environmental safety,2018,162:571-580. [百度学术] 

71

LV H Q,CHEN W X,ZHU Y M,et al.Efficiency and risks of selenite combined with different water conditions in reducing uptake of arsenic and cadmium in paddy rice[J/OL].Environmental pollution,2020,262:114283[2024-05-28].https://doi.org/10.1016/j.envpol.2020.114283. [百度学术] 

72

FENG R W,WEI C Y,TU S X,et al.Interactive effects of selenium and antimony on the uptake of selenium,antimony and essential elements in paddy-rice[J].Plant and soil,2013,365(1/2):375-386. [百度学术] 

73

SOUSA G V,TELES V L G,PEREIRA E G,et al.Interactions between as and Se upon long exposure time and effects on nutrients translocation in golden flaxseed seedlings[J/OL].Journal of hazardous materials,2021,402:123565[2024-05-28].https://doi.org/10.1016/j.jhazmat.2020.123565. [百度学术] 

74

高婕妤,周小娟,万翔,等.湖北省建始县土壤硒分布特征及影响因素分析[J].华中农业大学学报,2023,42(1):212-218.GAO J Y,ZHOU X J,WAN X,et al.Characteristics and influencing factors of selenium distribution in soil in Jianshi County,Hubei Province[J].Journal of Huazhong Agricultural University,2023,42(1):212-218(in Chinese with English abstract) [百度学术]