摘要
原核生物Argonautes (pAgos)是参与细胞防御外来DNA入侵的可编程核酸酶。在体外,pAgos可以结合小的单链核酸(ssDNA/ssRNA)向导来识别和切割互补DNA/RNA。在体内,pAgos优先靶向多拷贝遗传元件、噬菌体和质粒,从而抑制入侵核酸的扩增和噬菌体感染。pAgos作为一类新兴的可编程核酸酶,比目前应用最为广泛的CRISPR-Cas系统更具灵活性,在生物技术方面展现出巨大的潜力。早期的研究聚焦于嗜热的pAgo,目前基于嗜热pAgos的主要应用包括分子诊断和体外DNA组装。为了推进基于Ago的体内生物技术,如基因编辑的应用,研究人员的焦点逐渐转移到中温生物来源的pAgos,虽然目前pAgos还未实现基因组编辑,但是随着越来越多的pAgo被发掘以及研究人员对pAgos催化机制的深入研究,有望开发基于pAgos的下一代基因编辑技术。本文总结了已知代表性pAgos和基于pAgos发展的生物技术,并简要分析了pAgos在原核生物和真核生物体内应用面临的挑战和可能的应对策略。
现代生物技术的核心是由多种DNA内切酶推动的,这些酶使我们能够操纵DNA以实现各种应用,包括重组蛋白质的大规模生
为此,人们对细菌和古细菌中的原核生物(pAgos)越来越关注,因为它们具有识别和切割靶RNA和/或DNA的潜
Ago蛋白根据其来源可分为2类:真核生物中的Ago蛋白(eAgos)和原核生物(包括细菌和古细菌)中的Ago蛋白(pAgos

图1 Argonaute的结构特征
Fig.1 The structural features of Argonaute proteins
eAgos和pAgos主要结构域组成的示意图。N:N-端结构域;L1和L2:连接片段1和2;PAZ:PIWI-Argonaute -Zwille结构域;MID:中间结构域;PIWI:PIWI构域域包含催化DEDX四联体(X可以是D、H或K);PIWI*:具有不完整DEDX四联体的PIWI结构域。Schematic representation of the phylogenetic tree and domain composition corresponding to the main clades of eAgos and pAgos. N: N-terminal domain; L1 and L2: Linker segments 1 and 2; PAZ: PIWI-Argonaute-Zwille domain; MID: Middle domain; PIWI: P element-induced wimpy testis domain containing the catalytic DEDX tetrad (where X can be H, D, or K) required for target cleavage. PIWI*: PIWI domain with an incomplete DEDX tetrad.
eAgo通过结合小的单链RNA分子形成RNA诱导的沉默复合物,是RNA干扰(RNAi)过程中的关键组分,参与转录调控和病毒防
TtAgo和PfAgo是目前研究得较为透彻的2种嗜热微生物来源的pAgos。TtAgo通过DNA引导的DNA干扰机制,在体内通常与13~25 nt的小干扰DNA(siDNA)向导分子结合,形成TtAgo-siDNA复合物,能在DNA水平实现外源核酸的切
PfAgo是目前体外应用研究最为广泛的pAgo,比TtAgo具有更高的反应温度(87~99.9 °C)。与其他原核来源的Agos类似,PfAgo同样能降低宿主菌的质粒转化效率,这表明PfAgo也参与抵御外源核酸入
近年来,研究人员陆续报道了其他来源的long pAgos,包括Archaeoglobus fulgidus来源的AfAgo、Aquifex aeolicus来源的AaAgo、Kurthia massiliensis来源的KmAgo、Marinitoga piezophila来源的MpAgo、Mucilaginibacter paludis来源的MbpAgo、Marinitoga hydrogenitolerans来源的MhAgo以及Thermotoga profunda来源的TpAgo。其中,AfAgo倾向于以ssDNA作为向导靶向DNA切割,而AaAgo以ssDNA作为向导靶向RNA切
名称 Name | 宿主 Host | 向导 Guide | 靶标 Target | 二价离子 Divalet ions | 反应温度/°C Temperature | 参考文献 Reference |
---|---|---|---|---|---|---|
CbAgo | Clostridium butyricum | P-DNA | DNA |
M | 30~55 | [38-39] |
CpAgo | Clostridium perfringens | P-DNA | DNA |
M | 37~50 | [46] |
IbAgo | Intestinibacter bartlettii | P-DNA | DNA |
M | 37~70 | [46] |
KmAgo | Kurthia massiliensis | OH-DNA |
DNA RNA |
M | 37~55 | [44] |
P-DNA | ||||||
OH-DNA | ||||||
P-RNA | ||||||
LrAgo | Limnothrix rosea | P-DNA | DNA |
M | 50~54 | [38] |
MbpAgo | Mucilaginibacter paludis | P-DNA | RNA |
M | 30~55 | [45] |
OH-DNA | ||||||
MhAgo | Marinitoga hydrogenitolerans | OH-DNA |
DNA RNA |
M | 30~75 | [43] |
P-DNA | ||||||
P-RNA | ||||||
OH-RNA | ||||||
MfAgo | Methanocaldococcus fervens |
OH-DNA P-RNA | DNA |
M | 80~90 | [47] |
MjAgo | Methanocaldococcus jannaschii |
P-DNA OH-DNA | DNA |
M | 85~95 | [48] |
MpAgo | Marinitoga piezophila |
OH-RNA OH-DNA P-DNA |
DNA RNA |
M | 60 | [42] |
PfAgo | Pyrococcus furiosus | P-DNA | DNA |
M | 90.0~99.9 |
[ |
Tce Ago | Thermobrachium celere |
P-DNA OH-DNA | DNA |
M | 40~60 | [49] |
TtAgo | Thermus thermophilus | P-DNA |
DNA RNA |
M | 50~75 | [22] |
pAgos能够利用短的单链DNA(ssDNA)或RNA作为向导,靶向并在特定位点裂解互补的靶核酸,这一特性为基于pAgos的生物技术发展奠定了基础。近年来,研究人员以pAgos为核心开发了多种新型核酸检测技术和DNA组装技术。
目前,基于pAgos的核酸检测技术主要是基于极端嗜热的PfAgo和嗜热的TtAgo。本文对基于这2种long pAgos的核酸检测技术进行了总结与分析(
检测技术 Diagnosis techniques | Ago | 灵敏度 Sensitivity | 优点 Advantages | 缺点 Shortcomings |
---|---|---|---|---|
NAVAGITER | TtAgo | 0.01%突变 | 多重检测、灵敏度高 | 基因组DNA富集效率低 |
TEAM | TtAgo |
1.0×1 | 多重检测、速度快、灵敏度高 | 开盖操作有污染风险、反应体系复杂、产物量易受模板影响 |
ANCA | TtAgo |
1.44×1 | 无需对靶进行与扩增 | 耗时长、灵敏度偏低 |
PAND | PfAgo | 1拷贝/反应 | 多重检测、单碱基专一性、高灵敏度、qPCR仪利用率高 | 开盖操作有污染风险 |
PLCR | PfAgo |
1.0 ×1 | 多重检测、单碱基专一性、准确度高 | 耗时长、灵敏度偏低 |
USPCRP | PfAgo |
1.0 ×1 | 可检测极短靶、多通道检测、单碱基专一性、准确度高 | 耗时长、灵敏度偏低 |
A-Star | PfAgo | 0.01%突变 | 高效富集突变体、灵敏度高 | 需要专门的仪器和操作人员 |
MULAN | PfAgo | 5拷贝/反应 | 一管法检测、灵敏度高、多重检测 | LAMP扩增易产生气溶胶污染 |
1)基于TtAgo的核酸检测技术。TtAgo是目前催化机制与结构信息最为清晰的pAg

图2 基于TtAgo的核酸检测方法
Fig.2 TtAgo-based nucleic acid detection method
A:NIVIGATE
分析microRNA(miRNA)的表达水平不仅能为癌症的生理和病理研究提供重要的生物学信息,而且能够应用于肿瘤的早期筛查、监测和预后,Lin
Jang
2)基于 PfAgo 的核酸检测方法。PfAgo是另外一种生化性质和结构研究较为明确且被广泛使用的pAgo。He

图3 基于PfAgo的核酸检测方法
Fig.3 PfAgo-based detection of nucleic acids
A:PAN
研究表明,当向导核酸的长度低于14 nt时,无法介导PfAgo对靶核酸进行有效切割,Wang
PfAgo的切割活性受到gDNA与靶核酸配对的影响,gDNA与靶核酸某些位点的错配会导致PfAgo无法对靶核酸进行切割。Liu
3)基于Short Ago的核酸检测方法。目前核酸检测领域应用的TtAgo和PfAgo都属于long pAgo,short Ago也有发展为核酸检测工具的潜力。Koopal

图4 基于short pAgo的核酸检测方法
Fig.4 Nucleic acid detection method based on short pAgo
A: SPART
DNA组装是基础研究、基因工程和合成生物学的基础技

图5 基于PfAgo的PlasmidMaker DNA组装平台
Fig 5 PlasmidMaker DNA assembly platform based on PfAgo
过去10年,基因组编辑已经成为一种变革性的生物技术,广泛应用于包括基因治疗、动植物育种、工业菌株构建等领域,推动了合成生物学的快速发
相比于CRISPR/Cas系统,pAgos在生物技术方面具有巨大的潜力,尤其在目标选择的灵活性、细胞传递效率和知识产权方面具有潜在的竞争优势。这些优势使得嗜热pAgos广泛应用于体外分子诊断和DNA组装领
参考文献 References
DINGERMANN T.Recombinant therapeutic proteins:production platforms and challenges[J].Biotechnology journal,2008,3(1):90-97. [百度学术]
REICHERT J M,ROSENSWEIG C J,FADEN L B,et al.Monoclonal antibody successes in the clinic[J].Nature biotechnology,2005,23(9):1073-1078. [百度学术]
TOENNIESSEN G H,O’TOOLE J C,DEVRIES J.Advances in plant biotechnology and its adoption in developing countries[J].Current opinion in plant biology,2003,6(2):191-198. [百度学术]
LYND L R,LASER M S,BRANSBY D,et al.How biotech can transform biofuels[J].Nature biotechnology,2008,26(2):169-172. [百度学术]
DANNA K,NATHANS D.Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae[J].PNAS,1971,68(12):2913-2917. [百度学术]
ROBERTS R J.How restriction enzymes became the workhorses of molecular biology[J].PNAS,2005,102(17):5905-5908. [百度学术]
LI H Y,YANG Y,HONG W Q,et al.Applications of genome editing technology in the targeted therapy of human diseases:mechanisms,advances and prospects[J/OL].Signal transduction and targeted therapy,2020,5(1):1[2024-06-05] .https://doi.org/10.1038/s41392-019-0089-y. [百度学术]
GUHA T K,WAI A,HAUSNER G.Programmable genome editing tools and their regulation for efficient genome engineering[J].Computational and structural biotechnology journal,2017,15:146-160. [百度学术]
CARROLL D.Genome engineering with zinc-finger nucleases[J].Genetics,2011,188(4):773-782. [百度学术]
NEMUDRYI A A,VALETDINOVA K R,MEDVEDEV S P,et al.TALEN and CRISPR/Cas genome editing systems:tools of discovery[J].Acta naturae,2014,6(3):19-40. [百度学术]
GIMBLE F S,WANG J.Substrate recognition and induced DNA distortion by the PI-SceI endonuclease,an enzyme generated by protein splicing[J].Journal of molecular biology,1996,263(2):163-180. [百度学术]
COLLIAS D,BEISEL C L.CRISPR technologies and the search for the PAM-free nuclease[J/OL].Nature communications,2021,12(1):555[2024-06-05]. https://doi.org/10.1038/s41467-020-20755-1. [百度学术]
LI Y R,LIAO D,KOU J,et al.Comparison of CRISPR/Cas and Argonaute for nucleic acid tests[J].Trends in biotechnology,2023,41(5):595-599. [百度学术]
RYAZANSKY S,KULBACHINSKIY A,ARAVIN A A.The expanded universe of prokaryotic argonaute proteins[J/OL].mBio,2018,9(6):e01935-18[2024-06-05]. https://doi.org/10.1128/mBio.01935-18. [百度学术]
HEGGE J W,SWARTS D C,VAN DER OOST J.Prokaryotic Argonaute proteins:novel genome-editing tools?[J].Nature reviews microbiology,2018,16(1):5-11. [百度学术]
CHEW W L,TABEBORDBAR M,CHENG J K W,et al.A multifunctional AAV-CRISPR-Cas9 and its host response[J].Nature methods,2016,13(10):868-874. [百度学术]
SWARTS D C,MAKAROVA K,WANG Y L,et al.The evolutionary journey of Argonaute proteins[J].Nature structural & molecular biology,2014,21(9):743-753. [百度学术]
MAKAROVA K S,WOLF Y I,VAN DER OOST J,et al.Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements[J/OL].Biology direct,2009,4:29[2024-06-05].https://doi.org/10.1186/1745-6150-4-29. [百度学术]
OZATA D M,GAINETDINOV I,ZOCH A,et al.PIWI-interacting RNAs:small RNAs with big functions[J].Nature reviews genetics,2019,20:89-108. [百度学术]
PARK M S,SIM G,KEHLING A C,et al.Human Argonaute 2 and Argonaute 3 are catalytically activated by different lengths of guide RNA[J].PNAS,2020,117(46):28576-28578. [百度学术]
KOOPAL B,POTOCNIK A,MUTTE S K,et al.Short prokaryotic Argonaute systems trigger cell death upon detection of invading DNA[J].Cell,2022,185(9):1471-1486. [百度学术]
SWARTS D C,JORE M M,WESTRA E R,et al.DNA-guided DNA interference by a prokaryotic Argonaute[J].Nature,2014,507(7491):258-261. [百度学术]
OLOVNIKOV I,CHAN K,SACHIDANANDAM R,et al.Bacterial argonaute samples the transcriptome to identify foreign DNA[J].Molecular cell,2013,51(5):594-605. [百度学术]
WANG Y L,SHENG G,JURANEK S,et al.Structure of the guide-strand-containing argonaute silencing complex[J].Nature,2008,456(7219):209-213. [百度学术]
WANG Y L,JURANEK S,LI H T,et al.Nucleation,propagation and cleavage of target RNAs in Ago silencing complexes[J].Nature,2009,461(7265):754-761. [百度学术]
WANG Y L,JURANEK S,LI H T,et al.Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex[J].Nature,2008,456(7224):921-926. [百度学术]
NAKANISHI K,WEINBERG D E,BARTEL D P,et al.Structure of yeast Argonaute with guide RNA[J].Nature,2012,486(7403):368-374. [百度学术]
SCHIRLE N T,MACRAE I J.The crystal structure of human Argonaute 2[J].Science,2012,336(6084):1037-1040. [百度学术]
ZAREMBA M,DAKINEVICIENE D,GOLOVINAS E,et al.Short prokaryotic Argonautes provide defence against incoming mobile genetic elements through NA
ZENG Z F,CHEN Y,PINILLA-REDONDO R,et al.A short prokaryotic Argonaute activates membrane effector to confer antiviral defense[J].Cell host & microbe,2022,30(7):930-943. [百度学术]
SWARTS D C,HEGGE J W,HINOJO I,et al.Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA[J].Nucleic acids research,2015,43(10):5120-5129. [百度学术]
KUZMENKO A,OGUIENKO A,ESYUNINA D,et al.DNA targeting and interference by a bacterial Argonaute nuclease[J].Nature,2020,587(7835):632-637. [百度学术]
WILSON R C,DOUDNA J A.Molecular mechanisms of RNA interference[J].Annual review of biophysics,2013,42:217-239. [百度学术]
SHENG G,ZHAO H T,WANG J Y,et al.Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage[J].PNAS,2014,111(2):652-657. [百度学术]
KOOPAL B,MUTTE S K,SWARTS D C.A long look at short prokaryotic Argonautes[J].Trends in cell biology,2023,33(7):605-618. [百度学术]
WU J E,YANG J,CHO W C,et al.Argonaute proteins:structural features,functions and emerging roles[J].Journal of advanced research,2020,24:317-324. [百度学术]
YUAN Y R,PEI Y,MA J B,et al.Crystal structure of A.aeolicus argonaute,a site-specific DNA-guided endoribonuclease,provides insights into RISC-mediated mRNA cleavage[J].Molecular cell,2005,19(3):405-419. [百度学术]
KUZMENKO A,YUDIN D,RYAZANSKY S,et al.Programmable DNA cleavage by Ago nucleases from mesophilic bacteria Clostridium butyricum and Limnothrix rosea[J].Nucleic acids research,2019,47(11):5822-5836. [百度学术]
HEGGE J W,SWARTS D C,CHANDRADOSS S D,et al.DNA-guided DNA cleavage at moderate temperatures by Clostridium butyricum Argonaute[J].Nucleic acids research,2019,47(11):5809-5821. [百度学术]
SWARTS D C,KOEHORST J J,WESTRA E R,et al.Effects of argonaute on gene expression in Thermus thermophilus[J/OL].PLoS One,2015,10(4):e0124880[2024-06-05]. https://doi.org/10.1371/journal.pone. 0124880. [百度学术]
ENGHIAD B,ZHAO H M.Programmable DNA-guided artificial restriction enzymes[J].ACS synthetic biology,2017,6(5):752-757. [百度学术]
KAYA E,DOXZEN K W,KNOLL K R,et al.A bacterial Argonaute with noncanonical guide RNA specificity[J].PNAS,2016,113(15):4057-4062. [百度学术]
WANG L Y,XIE X C,LV B,et al.A bacterial Argonaute with efficient DNA and RNA cleavage activity guided by small DNA and RNA[J/OL].Cell reports,2022,41(4):111533[2024-06-05].https://doi.org/ 10.1016/j.celrep.2022.111533. [百度学术]
LIU Y,LI W Q,JIANG X M,et al.A programmable omnipotent Argonaute nuclease from mesophilic bacteria Kurthia massiliensis[J].Nucleic acids research,2021,49(3):1597-1608. [百度学术]
LI W Q,LIU Y,HE R Y,et al.A programmable pAgo nuclease with RNA target preference from the psychrotolerant bacterium Mucilaginibacter paludis[J].Nucleic acids research,2022,50(9):5226-5238. [百度学术]
CAO Y W,SUN W,WANG J F,et al.Argonaute proteins from human gastrointestinal bacteria catalyze DNA-guided cleavage of single- and double-stranded DNA at 37 ℃[J/OL].Cell discovery,2019,5:38[2024-06-05]. https://doi.org/10.1038/s41421-019-0117-1. [百度学术]
CHONG Y S,LIU Q,HUANG F,et al.Characterization of a recombinant thermotolerant argonaute protein as an endonuclease by broad guide utilization[J/OL].Bioresources and bioprocessing,2019,6(1):21[2024-06-05].https://doi.org/10.1186/s40643-019-0242-1. [百度学术]
WILLKOMM S,OELLIG C A,ZANDER A,et al.Structural and mechanistic insights into an archaeal DNA-guided Argonaute protein[J/OL].Nature microbiology,2017,2:17035[2024-06-05]. https://doi.org/10.1038/ nmicrobiol.2017.35. [百度学术]
PANTELEEV V,KROPOCHEVA E,ESYUNINA D,et al.Strong temperature effects on the fidelity of target DNA recognition by a thermophilic PAgo nuclease[J].Biochimie,2023,209:142-149. [百度学术]
SONG J Z,HEGGE J W,MAUK M G,et al.Highly specific enrichment of rare nucleic acid fractions using Thermus thermophilus argonaute with applications in cancer diagnostics[J/OL].Nucleic acids research,2020,48(4):e19[2024-06-05].https://doi.org/10.1093/nar/gkaa127. [百度学术]
LIN Q Y,HAN G B,FANG X E,et al.Programmable analysis of microRNAs by Thermus thermophilus argonaute-assisted exponential isothermal amplification for multiplex detection (TEAM)[J].Analytical chemistry,2022,94(32):11290-11297. [百度学术]
JANG H,SONG J,KIM S,et al.ANCA:artificial nucleic acid circuit with argonaute protein for one-step isothermal detection of antibiotic-resistant bacteria[J/OL].Nature communications,2023,14(1):8033[2024-06-05].https://doi.org/10.1038/s41467-023-08456-1. [百度学术]
HE R Y,WANG L Y,WANG F,et al.Pyrococcus furiosus Argonaute-mediated nucleic acid detection[J].Chemical communications,2019,55(88):13219-13222. [百度学术]
WANG F,YANG J,HE R Y,et al.PfAgo-based detection of SARS-CoV-2[J/OL].Biosensors and bioelectronics,2021,177:112932[2024-06-05]. https://doi.org/10.1016/j.bios.2021.112932. [百度学术]
YE X Y,ZHOU H W,GUO X,et al.Argonaute-integrated isothermal amplification for rapid,portable,multiplex detection of SARS-CoV-2 and influenza viruses[J/OL].Biosensors and bioelectronics,2022,207:114169[2024-06-05].https://doi.org/10.1016/j.bios.2022.114169. [百度学术]
WANG L Y,HE R Y,LV B,et al.Pyrococcus furiosus Argonaute coupled with modified ligase chain reaction for detection of SARS-CoV-2 and HPV[J/OL].Talanta,2021,227:122154[2024-06-05].https:// doi.org/10.1016/j.talanta.2021.122154. [百度学术]
HE R Y,WANG L Y,WANG F,et al.Combination of ultrashort PCR and Pyrococcus furiosus Argonaute for DNA detection[J].The analyst,2021,147(1):35-39. [百度学术]
LIU Q,GUO X,XUN G H,et al.Argonaute integrated single-tube PCR system enables supersensitive detection of rare mutations[J/OL].Nucleic acids research,2021,49(13):e75[2024-06-05].https://doi. org/10.1093/nar/gkab400. [百度学术]
YIN L J,MAN S L,YE S Y,et al.CRISPR-Cas based virus detection:recent advances and perspectives[J/OL].Biosensors and bioelectronics,2021,193:113541[2024-06-05].https://doi.org/10.1016/j.bios.2021. 113541. [百度学术]
LU X L,XIAO J,WANG L F,et al.The nuclease-associated short prokaryotic Argonaute system nonspecifically degrades DNA upon activation by target recognition[J].Nucleic acids research,2024,52(2):844-855. [百度学术]
KEASLING J D.Synthetic biology and the development of tools for metabolic engineering[J].Metabolic engineering,2012,14(3):189-195. [百度学术]
ENGHIAD B,XUE P,SINGH N,et al.PlasmidMaker is a versatile,automated,and high throughput end-to-end platform for plasmid construction[J/OL].Nature communications,2022,13(1):2697[2024-06-05].https://doi.org/10.1038/s41467-022-22892-3. [百度学术]
PACESA M,PELEA O,JINEK M.Past,present,and future of CRISPR genome editing technologies[J].Cell,2024,187(5):1076-1100. [百度学术]
GAO F,SHEN X Z,JIANG F,et al.DNA-guided genome editing using the Natronobacterium gregoryi Argonaute[J].Nature biotechnology,2016,34(7):768-773. [百度学术]
QI J L,DONG Z J,SHI Y W,et al.NgAgo-based fabp11a gene knockdown causes eye developmental defects in zebrafish[J].Cell research,2016,26(12):1349-1352. [百度学术]
WU Z C,TAN S Y,XU L Q,et al.NgAgo-gDNA system efficiently suppresses hepatitis B virus replication through accelerating decay of pregenomic RNA[J].Antiviral research,2017,145:20-23. [百度学术]
FU L,XIE C Y,JIN Z H,et al.The prokaryotic Argonaute proteins enhance homology sequence-directed recombination in bacteria[J].Nucleic acids research,2019,47(7):3568-3579. [百度学术]
QU J Y,XIE Y L,GUO Z Y,et al.Identification of a novel cleavage site and confirmation of the effectiveness of NgAgo gene editing on RNA targets[J].Molecular biotechnology,2021,63(12):1183-1191. [百度学术]
ESYUNINA D,OKHTIENKO A,OLINA A,et al.Specific targeting of plasmids with Argonaute enables genome editing[J].Nucleic acids research,2023,51(8):4086-4099. [百度学术]
刘妍,孙凯,田春雨,等.基于Argonaute的病毒核酸检测技术研究进展[J].病毒学报,2023,39(5):1414-1424.LIU Y,SUN K,TIAN C Y,et al.Research progress on argonaute-based virus nucleic acid detection technology[J].Chinese journal of virology,2023,39(5):1414-1424 (in Chinese with English abstract). [百度学术]
QIN Y Q,LI Y J,HU Y G.Emerging Argonaute-based nucleic acid biosensors[J].Trends in biotechnology,2022,40(8):910-914. [百度学术]
LARSON M H,GILBERT L A,WANG X W,et al.CRISPR interference (CRISPRi) for sequence-specific control of gene expression[J].Nature protocols,2013,8(11):2180-2196. [百度学术]
SCHULTENKÄMPER K,BRITO L F,WENDISCH V F.Impact of CRISPR interference on strain development in biotechnology[J].Biotechnology and applied biochemistry,2020,67(1):7-21. [百度学术]
WU Y K,LI Y,JIN K,et al.CRISPR-dCas12a-mediated genetic circuit cascades for multiplexed pathway optimization[J].Nature chemical biology,2023,19(3):367-377. [百度学术]