摘要
为研发抗动物源性病毒感染的新型广谱纳米材料,将氧化石墨烯(GO)与二氧化锰纳米片(MnO2 NSs)通过π-π堆叠作用制备合成二维复合纳米片材料(GO-MnO2 NSs),分别通过TEM、XRD、XPS对GO-MnO2 NSs的形貌、结构、结晶度和元素价态进行表征,并采用MTT法对GO-MnO2 NSs的细胞毒性进行测试。结果显示,625 μg/mL GO-MnO2 NSs的细胞存活率超过85%;以猪流行性腹泻病毒(PEDV)作为冠状病毒的模式病毒,EC50、间接免疫荧光和Western blot试验结果证实GO-MnO2 NSs对PEDV感染具有显著的抗病毒活性。研究结果表明,GO-MnO2 NSs能够清除由病毒感染引起的活性氧过表达并抑制细胞凋亡,同时还能上调细胞内干扰素和干扰素刺激基因(ISGs)等抗病毒因子的表达,从而有效抑制病毒感染。
猪流行性腹泻(porcine epidemic diarrhea,PED)是一种由猪流行性腹泻病毒(porcine epidemic diarrhea virus,PEDV)感染引起的接触性肠道传染病,该病具有高发病率、高死亡率、能感染任何年龄及生产阶段的猪等特
氧化石墨烯(graphene oxide,GO)是由石墨烯氧化剥离得
二氧化锰纳米片(MnO2 nanosheets,MnO2 NSs)是一种二维片状的功能性纳米材料,具有稳定性好、光学性质优异、比表面积大、生物相容性好等特
氯化锰(AR)、无水乙醇(AR)、甲醇(AR),购于天津市百世化工有限公司;单层氧化石墨烯粉末,购于南京先丰纳米材料科技有限公司,4%多聚甲醛(AR),购于国药集团化学试剂有限公司;噻唑蓝(MTT,BR)、牛血清白蛋白(BSA,BR)、脱脂奶粉、总RNA提取试剂、RIPA组织/细胞裂解液、JC-1试剂盒,购于北京索莱宝科技有限公司;四甲基氢氧化铵(AR)、二甲基亚砜(DMSO,AR),购于美国Aladdin公司;FITC-羊抗鼠二抗、HRP-羊抗鼠二抗,购于武汉艾美捷科技有限公司;DMEM培养基(BR),购于美国赛默飞世尔科技公司。
1) 二氧化锰纳米片(MnO2 NSs)的制备。在剧烈搅拌下,15 s内将10 mL 0.3 mol/L氯化锰(MnCl2·4H2O)溶液注入到20 mL含有0.6 mol/L四甲基氢氧化铵和3% H2O2的混合水溶液中,溶液立即变成深棕色,表明M
2)GO-MnO2 NSs的制备。参照文献[
在上述2种溶液中,快速搅拌下滴加0.55 mL的30% H2O2溶液,搅拌30 min后,离心、洗涤,将最终产物烘干,常温放置,备用。
将Vero细胞接种到96孔板中,培养至单层后弃去上清液。使用0.22 μm一次性无菌滤膜将GO-MnO2 NSs过滤除菌,将细胞与不同质量浓度(1 250、625、313、156 μg/mL)的GO-MnO2 NSs分别培养24、48 h,每孔加入20 μL MTT试剂(5.0 mg/mL),继续培养4 h后弃去上清,加入二甲基亚砜(DMSO)轻轻振荡使甲瓒完全溶解。用酶标仪测定OD490 nm的吸光值,根据
CSR=[(As-Ab)/(Ac-Ab)] × 100% | (1) |
EC50是能够抑制50%病毒感染引起的细胞病变的药物有效浓度。将Vero细胞接种到96孔板中,培养至单层后弃去上清液,向100TCID50的PEDV中分别加入625、313、156、78、39 μg/mLGO-MnO2 NSs,同时设置细胞对照组和病毒对照组。置于37 ℃ 5%的CO2培养箱中分别培养至侵染后12、24、36、48 h,在倒置显微镜下观察细胞病变情况,直至细胞病变不再进展,记录并按照Reed-Muench
将Vero细胞接到24孔板中,培养至单层,将病毒PEDV与625 μg/mL GO⁃MnO2 NSs在4 ℃预混1 h后加入24孔板中于37 ℃下培养1 h,同时设置阳性对照组及阴性对照组,PBS冲洗后,用DMEM(补充10 μg/mL胰蛋白酶)分别培养至侵染后12、24、36、48 h。参照文献[
将Vero细胞接种到6孔板中,培养至单层,将病毒PEDV与625 μg/mL GO-MnO2 NSs在4 ℃预混1 h后加入6孔板中,在37 ℃下培养1 h,同时设置阳性对照组及阴性对照组,先用PBS冲洗后,加入DMEM(补充10 μg/mL胰蛋白酶)分别培养至侵染后12、24、36、48 h;然后使用150 μL裂解缓冲液收获细胞,通过12% SDS聚丙烯酰胺凝胶电泳解析裂解的样品,并将样品转移到PVDF膜上,参照文献[
干扰素刺激基因(ISGs)作为由干扰素(IFNs)诱导表达的基因,在宿主抵抗病毒感染中发挥着重要作用。将Vero细胞接种到24孔板中,培养至单层。每孔加入625 μg/mL GO-MnO2 NSs,同时设置细胞对照组,各3个复孔,培养至侵染后24 h,每孔加入1.0 mL的Trizol试剂,通过Trizol
将Vero细胞接种到24孔板中,培养至单层,将病毒PEDV与625 μg/mL GO-MnO2 NSs在4 ℃预混1 h后加入24孔板中,同时设置阳性对照组和阴性对照组,37 ℃下培养1 h,PBS冲洗后,用DMEM(补充10 μg/mL胰蛋白酶)分别培养至侵染后12、24、36、48 h。然后加入10 mmol/L 2',7'-二氯荧光二乙酸酯(DCFH-DA),37 ℃避光染色30 min,PBS洗掉多余染料后,通过倒置荧光显微镜观察细菌细胞荧光强度,测定细胞内ROS水平。
线粒体膜电位的降低常作为细胞凋亡早期的标志。将Vero细胞接种到玻底细胞培养皿中,培养至单层,将PEDV病毒与625 μg/mL GO-MnO2 NSs在4 ℃预混1 h后加入24孔板中,同时设置病毒感染组、CCCP阳性对照组和无处理的细胞阴性对照组,在37 ℃下培养1 h,PBS冲洗后,用DMEM(补充10 μg/mL胰蛋白酶)进一步培养至侵染后12 h,参照JC-1试剂盒说明进行操作处理,最后用共聚焦激光扫描显微镜观察,以JC-1荧光探针从红色荧光到绿色荧光的转变作为细胞凋亡早期的检测指标。
利用透射电子显微镜(TEM)对GO-MnO2 NSs的表面形貌进行表征(

图1 GO-MnO2 NSs的TEM图
Fig.1 TEM image of GO-MnO2 NSs
通过X射线衍射(XRD)测定GO、MnO2 NSs和GO-MnO2 NSs的结晶度,结果见

图2 GO-MnO2 NSs的XRD谱图
Fig.2 XRD patterns of GO-MnO2 NSs
通过X射线光电子能谱(XPS)光谱测定GO-MnO2 NSs的元素和表面化学状态。

图3 GO-MnO2 NSs的XPS谱图
Fig.3 XPS spectra of GO-MnO2 NSs
A是GO-MnO2 NSs的总谱; B、C、D分别对应C 1s、O 1s和Mn 2p的高分辨率谱图。A is overall spectrum of GO-MnO2 NSs;B,C and D responded to high-resolution spectra of C 1s, O 1s and Mn 2p,respectively.
采用MTT法测定不同浓度GO-MnO2 NSs对Vero细胞的细胞毒性的影响,结果见

图4 GO-MnO2 NSs不同处理时间下的细胞存活率
Fig.4 Cell viability by GO-MnO2 NSs treatment for different time
由

图5 GO-MnO2 NSs的EC50分级剂量反应曲线(EC50=140 μg/mL)
Fig.5 The EC50 graded dose response curve GO-MnO2 NS(EC50=140 μg/mL)
不同处理时间的GO-MnO2 NSs间接免疫荧光结果如

图6 GO-MnO2 NSs不同时间段的间接免疫荧示意图
Fig.6 Indirect immunofluorescence images of GO-MnO2 NSs at different time periods
蓝色荧光为活细胞(DAPI染色),绿色荧光为PEDV N蛋白(FITC-羊抗鼠抗体标记)。比例尺:200 μm。Blue is live cells (DAPI staining), green fluorescence is PEDV-N protein (labeled with FITC-goat anti-mouse antibody).Scale bar: 200 μm.
Western blot实验结果如

图7 625 μg/mL GO-MnO2 NSs处理后不同感染时间PEDV N蛋白的表达水平
Fig.7 Expression level of PEDV N protein after 625 μg/mL GO-MnO2 NSs treatment at different infection time
GO-MnO2 NSs对抗病毒因子表达的影响如

图8 625 μg/mL GO-MnO2 NSs处理前后抗病毒因子表达水平
Fig.8 Expression levels of antiviral factors before and after 625 μg/mL GO-MnO2 NSs treatment
A:IFN⁃α; B:IFN⁃β; C: ISG⁃20; D:ISG⁃54。***:P < 0.001.
病毒侵染后细胞会产生大量的活性氧,而过量的活性氧(ROS)会导致细胞DNA的损伤。如

图9 不同时间段GO-MnO2 NSs处理后活性氧的变化(比例尺:200 μm)
Fig.9 Changes of reactive oxygen species expression levels after GO-MnO2 NSs treatment at different time periods(scale bar: 200 μm)
如

图10 625 μg/mL GO-MnO2 NSs处理前后线粒体膜电位的变化(比例尺:50 μm)
Fig.10 Changes in mitochondrial membrane potential with and without 625 μg/mL GO-MnO2 NSs treatment(scale bar: 50 μm)
近年来,许多功能性纳米颗粒已被证实具有显著的抗病毒作用,如量子点、金/银纳米颗粒、纳米团簇、碳点、氧化石墨烯、硅材料、聚合物和树枝状聚合
GO是目前研究最广泛的一种二维纳米材料。本研究采用室温超声法合成GO-MnO2 NSs二维复合纳米片材料,在XRD表征结果中,GO的(111)晶面与Chaiyakun
病毒侵入宿主后,宿主的先天免疫系统被触发会迅速诱导产生干扰素(IFN),这些干扰素进一步与相应的受体结合,并诱导干扰素刺激基因(ISGs)表达,从而使细胞产生抗病毒防
此外,有诸多研究表明石墨烯相关二维材料与细菌、病毒和真菌之间的相互作用可能产生强大的抗菌和抗病毒活性。例如,氧化石墨烯(GO)衍生物已被证实在结合单纯疱疹病毒1型(HSV-1)时与细胞表面受体硫酸乙酰肝素竞
综上,本研究以PEDV作为冠状病毒的模式病毒,探索了GO-MnO2 NSs对PEDV的抗病毒活性和抗病毒机制。结果表明,GO-MnO2 NSs复合纳米材料的生物相容性较好,对PEDV增殖的体外抑制效果显著,可为冠状病毒的防治提供新的思路和基础。此外,基于GO和MnO2 NSs经近红外照射会产生光热的特性,可进一步探究其光热抗病毒活性及实际应用。
参考文献 References
王金玉,上官爱哨,孙玉梅,等.IL20RB、ATP6V0A1和STX10基因对PRRSV和PEDV的增殖作用[J].华中农业大学学报,2022,41(2):176-184.WANG J Y,SHANGGUAN A S,SUN Y M,et al.Effects of ATP6V0A1 ,IL20RB and STX10 gene on proliferation of PRRSV and PEDV[J].Journal of Huazhong Agricultural University,2022,41(2):176-184 (in Chinese with English abstract). [百度学术]
VLASOVA A N,MARTHALER D,WANG Q H,et al.Distinct characteristics and complex evolution of PEDV strains,North America,May 2013-February 2014[J].Emerging infectious diseases,2014,20(10):1620-1628. [百度学术]
FAWZY M,KHAIRY G M,HESHAM A,et al.Nanoparticles as a novel and promising antiviral platform in veterinary medicine[J].Archives of virology,2021,166(10):2673-2682. [百度学术]
VAZQUEZ-MUÑOZ R,BORREGO B,JUÁREZ-MORENO K,et al.Toxicity of silver nanoparticles in biological systems:does the complexity of biological systems matter?[J].Toxicology letters,2017,276:11-20. [百度学术]
YE S Y,SHAO K,LI Z H,et al.Antiviral activity of graphene oxide:how sharp edged structure and charge matter[J].ACS applied materials & interfaces,2015,7(38):21571-21579. [百度学术]
PATRA J K,DAS G,FRACETO L F,et al.Nano based drug delivery systems:recent developments and future prospects[J/OL].Journal of nanobiotechnology,2018,16(1):71[2023-11-02].https://pubmed.ncbi.nlm.nih.gov/30231877.DOI:10.1186/s12951-018-0392-8. [百度学术]
REN M S,ZHOU J J,SONG Z Y,et al.Aptamer and RVG functionalized gold nanorods for targeted photothermal therapy of neurotropic virus infection in the mouse brain[J/OL].Chemical engineering journal,2021,411:128557[2023-11-02].https://doi.org/10.1016/j.cej.2021.128557. [百度学术]
SALEEM H,HANEEF M,ABBASI H Y.Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide[J].Materials chemistry and physics,2018,204:1-7. [百度学术]
CHIMENE D,ALGE D L,GAHARWAR A K.Two-dimensional nanomaterials for biomedical applications:emerging trends and future prospects[J].Advanced materials,2015,27(45):7261-7284. [百度学术]
REQUIÃO R D,CARNEIRO R L,MOREIRA M H,et al.Viruses with different genome types adopt a similar strategy to pack nucleic acids based on positively charged protein domains[J/OL].Scientific reports,2020,10:5470[2023-11-02].https://doi.org/10.1038/s41598-020-62328-w. [百度学术]
HU X G,LU K C,MU L,et al.Interactions between graphene oxide and plant cells:regulation of cell morphology,uptake,organelle damage,oxidative effects and metabolic disorders[J].Carbon,2014,80:665-676. [百度学术]
WU M Y,HOU P F,DONG L N,et al.Manganese dioxide nanosheets:from preparation to biomedical applications[J].International journal of nanomedicine,2019,14:4781-4800. [百度学术]
XIA P F,ZHU B C,CHENG B,et al.2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity[J].ACS sustainable chemistry & engineering,2018,6(1):965-973. [百度学术]
DU T,ZHANG J Y,LI C Q,et al.Gold/silver hybrid nanoparticles with enduring inhibition of coronavirus multiplication through multisite mechanisms[J].Bioconjugate chemistry,2020,31(11):2553-2563. [百度学术]
蒋晓菡,张晓桐,梁建功,等.DDM-BSA复合纳米材料的制备及对猪繁殖与呼吸综合征病毒增殖的抑制[J].华中农业大学学报,2020,39(3):82-88.JIANG X H,ZHANG X T,LIANG J G,et al.Synthesis of DDM-BSA composite nanomaterials and inhibition of porcine reproductive and respiratory syndrome virus[J].Journal of Huazhong Agricultural University,2020,39(3):82-88 (in Chinese with English abstract). [百度学术]
陶叶杏,余倩,刘瑞婷,等.广陈皮中黄酮类化合物提取物对t-BHP诱导HepG2细胞氧化损伤保护作用机制[J].华中农业大学学报,2022,41(5):161-168.TAO Y X,YU Q,LIU R T,et al.Protective mechanism of flavonoids extracts from Pericarpium Citri reticulatae ‘Chachi’ on t-BHP-induced oxidative damage in HepG2 cells[J].Journal of Huazhong Agricultural University,2022,41(5):161-168 (in Chinese with English abstract). [百度学术]
LU C,LIANG J.An overview of functional nanoparticles as novel emerging antiviral therapeutic agents [J/OL].Materials science & engineering C,2020,112(2020):110924[2023-11-02].https://doi.org/10.1016/j.msec.2020.110924. [百度学术]
CHAIYAKUN S,WITIT-ANUN N,NUNTAWONG N,et al.Preparation and characterization of graphene oxide nanosheets[J].Procedia engineering,2012,32:759-764. [百度学术]
PENG L L,PENG X,LIU B R,et al.Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance,flexible planar supercapacitors[J].Nano letters,2013,13(5):2151-2157. [百度学术]
SINHA A K,PRADHAN M,PAL T.Morphological evolution of two-dimensional MnO2 nanosheets and their shape transformation to one-dimensional ultralong MnO2 nanowires for robust catalytic activity[J].The journal of physical chemistry C,2013,117(45):23976-23986. [百度学术]
WEI W F,CUI X W,CHEN W X,et al.Phase-controlled synthesis of MnO2 nanocrystals by anodic electrodeposition:implications for high-rate capability electrochemical supercapacitors[J].The journal of physical chemistry C,2008,112(38):15075-15083. [百度学术]
SCHOGGINS J W.Interferon-stimulated genes:roles in viral pathogenesis[J].Current opinion in virology,2014,6:40-46. [百度学术]
SAMETBAND M,KALT I,GEDANKEN A,et al.Herpes simplex virus type-1 attachment inhibition by functionalized graphene oxide[J].ACS applied materials & interfaces,2014,6(2):1228-1235. [百度学术]
DONSKYI I S,AZAB W,CUELLAR-CAMACHO J L,et al.Functionalized nanographene sheets with high antiviral activity through synergistic electrostatic and hydrophobic interactions[J].Nanoscale,2019,11(34):15804-15809. [百度学术]