摘要
为研究SPL(SQUAMOSA-promoter binding protein-like)转录因子在矮牵牛成花转换中的作用,克隆矮牵牛PhSPL9b基因,并将该基因对应的miR156/157靶位点进行点突变获得rPhSPL9b,将PhSPL9b和rPhSPL9b分别构建超量表达载体,转化矮牵牛和拟南芥,最终获得拟南芥35S∶∶PhSPL9b与35S∶∶rPhSPL9b转基因植株以及矮牵牛35S∶∶PhSPL9b转基因植株。研究结果显示,过表达PhSPL9b和rPhSPL9b导致拟南芥莲座叶显著减少,花期明显提前,其中35S∶∶rPhSPL9b转基因表型更为明显;过表达PhSPL9b促进矮牵牛提前开花。RT-PCR和qRT-PCR分析结果显示,表型明显的转基因株系中,PhSPL9b基因表达量均显著高于对照。转录激活实验结果表明,PhSPL9b是一个具有转录激活活性的转录因子。以上结果表明,矮牵牛PhSPL9b基因对开花时间具有重要调控作用,其功能具有保守性,同时,它可能是通过转录激活下游基因的表达而影响植物开花。
开花是高等植物从营养生长到生殖生长状态的转变,这一过程决定植物能否成功繁殖子
SPL(SQUAMOSA-promoter binding protein-like)是植物中特异的一类转录因子,在植物营养生长和生殖生长过程中发挥着重要作
矮牵牛(Petunia hybrida)为茄科碧冬茄属的一、二年生草本花卉,花色绚丽、株型丰富、花期长,被誉为“花坛之王”。目前对矮牵牛的研究主要集中在花器官发育方
以矮牵牛W115株系(Petunia hybrida var. Mitchel diploid)和野生型(Col-0生态型)拟南芥(Arabidopsis thaliana)为试验材料。矮牵牛种植于华中农业大学花卉基地温室,常规管理。拟南芥种植于光照培养箱(光照强度2 000 lx、16 h光照/8 h黑暗,温度21~22 ℃,湿度75%)。
根据矮牵牛基因组和转录组数据鉴定的PhSPLs基
以35S∶∶PhSPL9b质粒为模板,设计并合成含EcoRⅠ和BamHⅠ酶切位点的特异引物克隆PhSPL9b基因。测序无误后,使用EcoRⅠ和BamHⅠ分别双酶切含有PhSPL9b的pMD18-T与酵母表达载体pGADT7和pGBKT7,用T4 DNA连接酶将双酶切后的表达载体与目的基因连接,构建pGADT7-PhSPL9b和pGBKT7-PhSPL9b表达载体。
所有构建的质粒都通过PCR检测筛选及双酶切进行验证。所用引物见
引物名称 Primer name | 引物序列 Primer sequence | 用途 Usage |
---|---|---|
PhSPL9b-F | GTAATGAATAGGCACTTGACGTCAG |
PhSPL9b全长克隆 Full-length clone of PhSPL9b |
PhSPL9b-R | GGCCATTCGTCGATAGAGCC | |
rPhSPL9b-F1 | CAGAAATGGAACTAAGTTCAGTTTC |
rPhSPL9b第一段克隆 First segment clone of rPhSPL9b |
rPhSPL9b-R1 | GGAAAGCAGTGATAGCGCTCCACTGGAGCCTGAGGCTCC | |
rPhSPL9b-F2 | GGAGCGCTATCACTGCTTTCCAATCGGTCCTGGGAATCAAG |
rPhSPL9b第二段克隆 Second segment clone of rPhSPL9b |
rPhSPL9b-R2 | GGCCATTCGTCGATAGAGCC | |
PhSPL9b-F(EcoRⅠ) | CCGGAATTCATGAATAGGCACTTGACGTC |
PhSPL9b克隆,下划线为酶切位点 Full-length clone of PhSPL9b with underscores as cleavage sites |
PhSPL9b-R(BamHⅠ) | CGGGATCCTTAAAGAGTCCAGTGAACAT | |
M13-F | AGCGGATAACAATTTCACACAGG |
大肠杆菌菌落阳性检测 Positive test for E. coli colonies |
M13-R | CGCCAGGGTTTTCCCAGTCACGAC | |
AD-F | CTATTCGATGATGAAGATACCCCACCAAACCC |
酵母菌落阳性检测 Positive test for yeast colonies |
AD-R | GTGAACTTGCGGGGTTTTTCAGTATCTACGATT | |
BD-F | TCATCGGAAGAGAGTAG | |
BD-R | GAGTCACTTTAAAATTTGTAT | |
35S-F | ACGCACAATCCCACTATCCTTC |
转基因植株阳性检测 Positive test for transgenic plants |
PhSPL9b-R(short) | CAACCTTCAACTTGACATCTAGGTG | |
PhEF1α-F | CCTGGTCAAATTGGAAACGG |
RT-PCR及qRT-PCR内参引物 Primers of actin genes by RT-PCR and qRT-PCR |
PhEF1α-R | CAGATCGCCTGTCAATCTTGG | |
AtEF1α-F | GCAAGATGGATGCCACTACCC | |
AtEF1α-R | AGTGGGAGACGAAGGGGCT | |
qPhSPL9b-F | TTCCTTCAGGAGACTGTTTCCCT | |
qPhSPL9b-R | CTGCTGCTAGCTTCATTTCCTTTAA |
将PhSPL9b和rPhSPL9b基因表达载体质粒分别电转化至GV3101和AGL0农杆菌,通过花序侵染法和叶盘转化法分别转化拟南芥和矮牵牛,最终获得转基因植株,具体操作方法参照Zhou
在拟南芥转基因株系中,根据转基因植株的表型,每个载体各选择3个符合3∶1分离比的T2代转基因株系,将其后代在长日照植物光照培养箱中培养。当植株抽薹1 cm高时,统计分析每个株系35株转基因植株(T3代)的表型,如开花时间、莲座叶数目和茎生叶数目。
在矮牵牛转基因株系中,每个载体各选择3株表达量不同的T0代转基因植株,将其后代在长日照条件下种植。经PCR鉴定后,每个转基因株系各统计25株转基因植株(T1代)的表型,如开花时间、植株高度、叶片长宽比、叶片节间距、花朵直径和分枝数。
在拟南芥中,选取同一时期CK(空载pCAMBIA2300转化Col-0)未开花时的幼苗和T3代35S∶∶PhSPL9b和35S∶∶rPhSPL9b抽薹的转基因植株;在矮牵牛中,选取同一时期CK未开花时的顶芽和T2代35S∶∶PhSPL9b已分化出花序的顶芽,分别通过RT-PCR和qRT-PCR检测PhSPL9b在不同转基因株系中的表达情况。每个株系3个生物学重复。qRT-PCR的反应体系为10 μL:1 μL稀释10倍的反转录产物(cDNA),5.0 μL 2×SYBR Mixture,0.2 μL上游特异引物和0.2 μL下游特异引物(10 μmol/L),0.2 μL ROX,3.4 μL ddH2O。反应程序为:95 ℃预变性2 min,95 ℃变性5 s,55 ℃退火34 s,40次循环,以拟南芥AtEF1α和矮牵牛PhEF1α作为内参基
将pGBKT7-PhSPL9b和pGADT7、pGADT7-PhSPL9b和pGBKT7、pGBKT7-53和pGADT7-T(阳性对照)及pGBKT7-Lam和pGADT7-T(阴性对照)组合分别转化酵母菌株AH109,经SD/-Trp/-Leu筛选及阳性检测后,再在SD/-Trp/-Leu/-His/-Ade筛选。将各组合的阳性菌落在SD/-Trp/-Leu液体培养基中30 ℃ 220 r/min孵育24 h,稀释后使其OD600=1,菌液经3 500 r/min室温离心4 min后弃上清,用ddH2O重悬菌体,吸打混匀后将菌液稀释成5个浓度梯度,即1
序列分析结果显示,PhSPL9b基因编码区长度为1 125 bp,编码374个氨基酸。与矮牵牛基因组数

图1 PhSPL9b基因结构图
Fig. 1 Structure of PhSPL9b gene
经PCR扩增、测序、双酶切、连接等步骤,完成植物表达载体35S∶∶PhSPL9b和35S∶∶rPhSPL9b、酵母表达载体pGADT7-PhSPL9b和pGBKT7-PhSPL9b的构建(

图2 PhSPL9b相关表达载体构建
Fig. 2 Construction of PhSPL9b expression vectors
A: PhSPL9b相关表达载体结构示意图Schematic diagram of expression vector of PhSPL9b; B: PhSPL9b相关表达载体双酶切检测图Double digestion diagram of expression vectors of PhSPL9b.
将35S∶∶PhSPL9b和35S∶∶rPhSPL9b载体分别电转化至农杆菌GV3101和AGL0,通过花序侵染法转化拟南芥和叶盘法转化矮牵牛。经Kan筛选和PCR检测,获得42个拟南芥35S∶∶PhSPL9b转基因株系(图

图3 PhSPL9b转基因植株阳性检测
Fig. 3 Positive detection of PhSPL9b transgenic plants
A: 1~23, 拟南芥35S∶∶PhSPL9b转基因株系35S∶∶PhSPL9b Arabidopsis transgenic lines; B: 1~24, 矮牵牛35S∶∶PhSPL9b转基因株系35S∶∶PhSPL9b transgenic petunia lines. C:1~17, 拟南芥35S∶∶rPhSPL9b转基因株系35S∶∶rPhSPL9b Arabidopsis transgenic lines. P:质粒阳性对照 Plasmid positive control; CK:空载阴性对照 Negative control; Blank:空白对照 Blank control.
表型统计发现,在拟南芥转基因植株中,36株35S∶∶PhSPL9b转基因T1代植株和29株35S∶∶rPhSPL9b转基因T1代植株表现出早花表型,其中35S∶∶PhSPL9b转基因植株的平均提前开花时间为4.9 d,35S∶∶rPhSPL9b转基因植株的平均提前开花时间为8.1 d。如

图4 PhSPL9b超量表达拟南芥表型分析
Fig. 4 Phenotypes of the transgenic Arabidopsis plants overexpressing PhSPL9b
A~B: 转基因植株表型(标尺=10 mm) Phenotype of transgenic plants about 3-weeks-old(scale=10 mm); C~D: 转基因株系中PhSPL9b基因的表达量Expression level of PhSPL9b in transgenic lines; E~F: 转基因株系的抽薹时间和莲座叶数量 Bloting time and number of rosette leaves in transgenic lines.*和**分别表示在0.05和0.01水平上差异显著,下同。 * and ** indicate significant differences at 0.05 and 0.01 levels, the same as follows.
株系 Lines | 莲座叶数目 Rosette leaves No. | 茎生叶数目 Cauline leaves No. | 抽薹时间/d Bolting time |
---|---|---|---|
CK | 11.57±0.80 | 2.14±0.17 | 26.27±0.78 |
PhSPL9b#13 |
9.03±1.2 | 2.03±0.23 |
20.72±1.5 |
PhSPL9b#19 | 9.96±0.78 | 2.24±0.34 |
22.31±1.7 |
PhSPL9b#21 |
9.29±1.1 | 2.15±0.21 |
20.98±1.6 |
rPhSPL9b#8 |
8.86±1.5 | 2.34±0.36 |
18.76±0.8 |
rPhSPL9b#12 |
8.14±1.2 | 2.37±0.10 |
17.37±0.6 |
rPhSPL9b#26 |
8.73±1.5 | 2.28±0.42 |
18.45±0.7 |
注: *和**分别表示在0.05和0.01水平上差异显著,下同。Note: * and ** indicate significant differences at 0.05 and 0.01 levels,the same as follows.

图5 rPhSPL9b超量表达拟南芥表型分析
Fig. 5 Phenotypes of the transgenic Arabidopsis plants overexpressing rPhSPL9b
A~B: 转基因植株表型 (标尺=10 mm) Phenotype of transgenic plants about 3-weeks-old (scale=10 mm); C~D: 转基因株系中PhSPL9b基因的表达量 Expression level of PhSPL9b in transgenic lines ; E~F: 转基因株系的抽薹时间和莲座叶数量 Bloting time and number of rosette leaves in transgenic lines.
在矮牵牛转基因植株中,27株T0代35S∶∶PhSPL9b转基因植株的开花时间较CK提前,开花时间平均提前7.6 d。如

图6 PhSPL9b超量表达矮牵牛表型分析
Fig. 6 Phenotypes of the transgenic petunia plants overexpressing PhSPL9b
A: 转基因植株表型Phenotype of transgenic plants about 10-weeks-old (scale=10 mm); B~C: 转基因株系中PhSPL9b的表达量 Expression level of PhSPL9b in transgenic lines; D: 转基因株系的开花时间Flowering time of transgenic lines.
株系 Lines | 开花时间/d Flowering time | 植株高度/cm Plant height | 叶片长宽比 Leave length/width ratio | 节间距/cm Internode length | 花朵直径/cm Flower diameter | 分枝数 Number of branches |
---|---|---|---|---|---|---|
CK | 65.81±1.64 | 60.81±2.59 | 2.34±0.17 | 3.02±0.23 | 5.31±0.11 | 2.13±0.21 |
PhSPL9b#7 |
59.23±4.3 | 62.42±3.12 | 2.29±0.32 | 2.92±0.25 | 5.33±0.32 | 2.36±0.23 |
PhSPL9b#13 |
58.72±3.5 | 62.73±2.43 | 2.30±0.16 | 3.07±0.31 | 5.30±0.41 | 2.30±0.16 |
PhSPL9b#28 |
56.63±2.9 | 63.63±3.31 | 2.36±0.25 | 2.89±0.28 | 5.24±0.37 | 2.18±0.34 |
将质粒组合pGBKT7-PhSPL9b+pGADT7、pGADT7-PhSPL9b+pGBKT7、pGBKT7-53+pGADT7-T(阳性对照)及pGBKT7-Lam+pGADT7-T(阴性对照)分别转化到酵母菌株AH109,结果发现,阳性对照pGBKT7-53+pGADT7-T和pGBKT7-PhSPL9b+pGADT7共转后的酵母单菌落在SD/―Trp/―Leu和SD/―Trp/―Leu/―His/―Ade上正常生长,并在SD/―Trp/―Leu/―His/―Ade/X-α-gal上发生显色反应(蓝色),而pGADT7-PhSPL9b+pGBKT7和pGBKT7-Lam+pGADT7-T(阴性对照)共转后的酵母单菌落在SD/―Trp/―Leu上正常生长,但在SD/―Trp/―Leu/―His/―Ade不能正常生长,也不能在SD/―Trp/―Leu/―His/―Ade/X-α-gal上发生显色反应(

图7 PhSPL9b转录激活特性分析
Fig. 7 Analysis of transcriptional activation characteristics of PhSPL9b
开花是观赏植物的重要性状,决定着观赏植物的品质和经济价
本研究构建35S∶∶PhSPL9b和35S∶∶rPhSPL9b超量表达载体并转化矮牵牛和拟南芥,结果显示PhSPL9b和rPhSPL9b超量表达拟南芥后,转基因植株的开花时间显著提前,莲座叶数目减少;35S∶∶PhSPL9b矮牵牛转基因植株的开花时间与对照相比也显著提前,这表明PhSPL9b对开花时间具有重要的调控作用。Xu
基因表达分析研究结果表明,转基因植株的表达量和表型强弱密切相关,且rPhSPL9b作用更显著。Xu
转录因子能发挥有效调控的必要前提是具有转录活
参考文献 References
周琴,张思思,包满珠,等.高等植物成花诱导的分子机理研究进展[J].分子植物育种,2018,16(11):3681-3692. ZHOU Q,ZHANG S S,BAO M Z,et al.Advances on molecular mechanism of floral initiation in higher plants[J].Molecular plant breeding,2018,16(11):3681-3692 (in Chinese with English abstract). [百度学术]
王云梦,宋贺云,刘娟,等. FT和TFL1基因调控植物开花的分子机理[J].植物生理学报,2022,58(1):77-90.WANG Y M,SONG H Y,LIU J,et al.Molecular mechanism of FT and TFL1 genes on regulation of plant flowering[J].Plant physiology journal,2022,58(1):77-90 (in Chinese with English abstract). [百度学术]
张璐,吴菁华,姚馨婷,等.中国水仙NtTFL1⁃1和NtTFL1⁃2基因的克隆和表达[J].应用与环境生物学报,2020,26(2):264-271.ZHANG L,WU J H,YAO X T,et al.Cloning and expression of the NtTFL1⁃1 and NtTFL1⁃2 genes from Narcissus tazetta var.chinensis[J].Chinese journal of applied and environmental biology,2020,26(2):264-271 (in Chinese with English abstract). [百度学术]
YU N,NIU Q W,NG K H,et al.The role of miR156/SPLs modules in Arabidopsis lateral root development[J].The plant journal,2015,83(4):673-685. [百度学术]
WANG Z S,WANG Y,KOHALMI S E,et al.Squamosa promoter binding protein-like 2 controls floral organ development and plant fertility by activating asymmetric leaves 2 in Arabidopsis thaliana[J].Plant molecular biology,2016,92(6):661-674. [百度学术]
XU M L,HU T Q,ZHAO J F,et al.Developmental functions of mir156-regulated squamosa promoter binding protein-like (spl) genes in Arabidopsis thaliana[J/OL].PLoS genetics,2016,12(8):e1006263[2024-01-24].https://doi.org/10.1371/journal.pgen.1006263. [百度学术]
KONG D X,PAN X,JING Y F,et al.ZmSPL10/14/26 are required for epidermal hair cell fate specification on maize leaf[J].New phytologist,2021,230(4):1533-1549. [百度学术]
XIE Y R,LIU Y,MA M D,et al.Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching[J/OL].Nature communications,2020,11(1):1955[2024-01-24].https://doi.org/10.1038/s41467-020-15893-7. [百度学术]
YU N,CAI W J,WANG S C,et al.Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana[J].The plant cell,2010,22(7):2322-2335. [百度学术]
CUI L G,SHAN J X,SHI M,et al.The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants[J].The plant journal,2014,80(6):1108-1117. [百度学术]
ZHAO J L,SHI M,YU J,et al.SPL9 mediates freezing tolerance by directly regulating the expression of CBF2 in Arabidopsis thaliana[J/OL].BMC plant biology,2022,22(1):59[2024-01-24].https://doi.org/10.1186/s12870-022-03445-8. [百度学术]
YAN Y,WEI M X,LI Y,et al.MiR529a controls plant height,tiller number,panicle architecture and grain size by regulating SPL target genes in rice (Oryza sativa L.)[J/OL].Plant science,2021,302:110728[2024-01-24].https://doi.org/10.1016/j.plantsci.2020.110728. [百度学术]
SUN Z X,SU C,YUN J X,et al.Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b[J].Plant biotechnology journal,2019,17(1):50-62. [百度学术]
周琴,鲁瑞,张书婷,等.一个矮牵牛花器官发育突变体aps的表型鉴定及遗传分析[J].园艺学报,2019,46(2):317-329.ZHOU Q,LU R,ZHANG S T,et al.Phenotype characterization and genetic analysis of a floral mutant aps in petunia[J].Acta horticulturae sinica,2019,46(2):317-329 (in Chinese with English abstract). [百度学术]
MOREL P,HEIJMANS K,ROZIER F,et al.Divergence of the floral A-function between an asterid and a rosid species[J].The plant cell,2017,29(7):1605-1621. [百度学术]
MOREL P,HEIJMANS K,AMENT K,et al.The floral C-lineage genes trigger nectary development in petunia and Arabidopsis[J].The plant cell,2018,30(9):2020-2037. [百度学术]
MOREL P,CHAMBRIER P,BOLTZ V,et al.Divergent functional diversification patterns in the SEP/AGL6/AP1 MADS-box transcription factor superclade[J].The plant cell,2019,31(12):3033-3056. [百度学术]
PRESTON J C,JORGENSEN S A,OROZCO R,et al.Paralogous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes differentially regulate leaf initiation and reproductive phase change in petunia[J].Planta,2016,243(2):429-440. [百度学术]
ZHOU Q,ZHANG S S,CHEN F,et al.Genome-wide identification and characterization of the SBP-box gene family in Petunia[J/OL].BMC genomics,2018,19(1):193[2024-01-24].https://doi.org/10.1186/s12864-018-4537-9. [百度学术]
ZHOU Q,SHI J W,LI Z N,et al.miR156/157 targets SPLs to regulate flowering transition,plant architecture and flower organ size in petunia[J].Plant & cell physiology,2021,62(5):839-857. [百度学术]
MALLONA I,LISCHEWSKI S,WEISS J,et al.Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida[J/OL].BMC plant biology,2010,10:4[2024-01-24].https://doi.org/10.1186/1471-2229-10-4. [百度学术]
BOMBARELY A,MOSER M,AMRAD A,et al.Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida[J/OL].Nature plants,2016,2(6):16074[2024-01-24].https://doi.org/10.1038/nplants.2016.74. [百度学术]
刘晓芬,凌晓祺,向理理,等.温度和赤霉素对春兰开花的调控[J].浙江农业学报,2023,35(2):355-363.LIU X F,LING X Q,XIANG L L,et al.Effect of temperature and gibberellin on flowering regulation of Cymbidium goeringii[J].Acta agriculturae Zhejiangensis,2023,35(2):355-363 (in Chinese with English abstract). [百度学术]
SALINAS M,XING S P,HÖHMANN S,et al.Genomic organization,phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato[J].Planta,2012,235(6):1171-1184. [百度学术]
李姝璇.农杆菌介导的大豆遗传转化方法优化及KN1和GID1基因对大豆再生和遗传转化效率的影响[D].南京:南京农业大学,2018.LI S X.Optimization of agrobacterium-mediated genetic transformation of soybean and effects of KN1 and GID1 genes on soybean regeneration and genetic transformation efficiency[D].Nanjing:Nanjing Agricultural University,2018 (in Chinese with English abstract). [百度学术]
DAI X Y,WANG Y Y,YANG A,et al.OsMYB2P-1,an R2R3 MYB transcription factor,is involved in the regulation of phosphate-starvation responses and root architecture in rice[J].Plant physiology,2012,159(1):169-183. [百度学术]