摘要
为检测广热带亚属睡莲挥发性成分,鉴定香气活性物质,筛选优良芳香品种,采用顶空固相微萃取结合气相色谱-质谱联用技术(HS-SPEM-GC-MS)对30个广热带睡莲亚属常见栽培品种进行挥发态物质检测。结果显示,30个睡莲品种共含有60种挥发态物质,含量从高到低排列依次是烷烃、烯烃、萜类、芳香族、酯类、醇类、醛类7类化合物。其中,烷烃、烯烃是含量较高的类别,平均占比分别达到42.43%和28.61%,但其无明显气味特征。进一步通过气味活性值(OAV)筛选到了19种气味活性物质,其中可被嗅觉感知的(OAV>1)的特征气味物质均为萜类化合物,包括α-紫罗兰酮、β-紫罗兰酮、反式-β-紫罗兰酮、金合欢烯,其中紫罗兰酮赋予睡莲木质香、甜香,金合欢烯赋予睡莲苹果香及典型花香。结果表明,以气味活性值为标准筛选出的‘蓝鸟’‘卡拉阳光’‘黄金国’‘鲁比’‘粉钻’5个睡莲品种是园林应用和产品加工的潜在优良品种。
关键词
中国芳香植物种质资源丰富,应用历史悠
芳香植物品种间的香气物质差异显著,优良品种筛选是开展芳香产品研发的前提。如在梅花(Prunus mume)的研究中发现肉桂醇是其重要香气成分之一,不同品种肉桂醇脱氢酶活性差异导致其合成量差异,进而导致梅花品种间的香气差
植物合成的芳香物质主要以挥发态、游离态和糖苷态3种形式存在,其中挥发态香气物质分子质量小、挥发性强,可以为人的嗅觉直接感知,是决定香味品质的关键因
睡莲为睡莲科(Nymphaeaceae)睡莲属(Nymphaea)植物,花色丰富,花香宜人,是少有的芳香水生植
30个品种睡莲花试验材料(

图1 30个广热带睡莲品种
Fig. 1 30 cultivars of pantropical water lilies
采用DB-5MS 色谱柱(30 m×0.25 mm×0.25 µm,Themo Scientific,Bellefonte,PA,USA),载气为高纯氦气(99.999%),分流比50∶1,流速为1 mL/min。离子源和进样口的温度分别为280 ℃和230 ℃,传输线的温度为250 ℃。色谱条件:40 ℃保持5 min,以5 ℃/min速率升温至120 ℃并保留2 min,以3 ℃/min速率升温至160 ℃并保留2 min,以5 ℃/min速率升温至200 ℃并保留4 min。质谱条件:EI(电子轰击)离子源,电子轰击能量70 eV,正离子扫描模式,质量扫描范围 m/z 40~450 amu。
GC-MS原始数据用Xcalibur软件处理并导出。在相同升温程序下用正构烷烃标准样品(C8~C30)计算得到的科瓦茨保留指数(‘Kovats’ retention index, RI)。挥发物鉴定基于NIST质谱数据库(NIST 2017)结合RI进行定性。采用内标定量法,计算公式如下:
各组分含量=×
OAV是客观估计气味物质对样品整体气味贡献程度的方法,OAV值是气味物质在样品气味中的浓度(concentration,C)与其阈值(odor threshold,OT)的比值。当OAV>1时,该气味物质对整体气味具有贡献作用,OAV值越大,对样品整体气味的贡献度越高。
通过HS-SPME-GC-MS技术进行挥发物检测,根据保留时间和保留指数进行物质鉴定。在30个广热带睡莲品种中共检测出7类60种挥发态成分(
类别 Category | 序号 No. | 名称 Name | CAS号 CAS number | 保留指数 Retention index | 平均含量(含量范围)/(ng/g) Average content (content range) |
---|---|---|---|---|---|
萜类Terpenoid | 1 | α-蒎烯 α-Pinene | 80-56-8 | 937 | 0.03 (0.00~0.28) |
2 | 马苄烯酮 (S)-Verbenone | 80-57-9 | 1 205 | 0.20 (0.00~1.98) | |
3 | α-紫罗兰醇 α-Ionol | 25312-34-9 | 1 390 | 0.13 (0.00~0.81) | |
4 | 胡萝卜烯 Carotene | 16661-00-0 | 1 381 | 0.22 (0.00~2.76) | |
5 | (+)-7-表-倍半萜烯 (+)-7-epi-Sesquithujene | 159407-35-9 | 1 391 | 0.97 (0.00~6.40) | |
6 | 顺式-α-香柠檬烯 cis-α-Bergamotene | 18252-46-5 | 1 415 | 1.83 (0.00~14.22) | |
7 | 二氢-β-紫罗兰酮 Dihydro-β-ionone | 17283-81-7 | 1 407 | 0.07 (0.00~0.78) | |
8 | γ-榄香烯 γ-Elemene | 29873-99-2 | 1 433 | 0.41 (0.00~3.92) | |
9 | α-紫罗酮 α-Ionone | 127-41-3 | 1 426 | 1.38 (0.00~4.46) | |
10 | 反式-α-香柠檬烯 trans-α-Bergamotene | 13474-59-4 | 1 435 | 19.60 (0.00~85.20) | |
11 | 顺式-β-金合欢烯 cis-β-Farnesene | 28973-97-9 | 1 444 | 18.98 (0.00~215.94) | |
12 | 香叶基丙酮 Geranyl acetone | 3796-70-1 | 1 453 | 0.12 (0.00~0.63) | |
13 | 金合欢烯 Farnesene | 18794-84-8 | 1 457 | 111.00 (0.00~443.38) | |
14 | γ-木犀烯 γ-Muurolene | 30021-74-0 | 1 477 | 0.02 (0.00~0.41) | |
15 | β-紫罗酮 β-Ionone | 14901-07-6 | 1 491 | 1.13 (0.00~10.57) | |
16 | 反式-β-紫罗兰酮 trans-β-Ionone | 79-77-6 | 1 486 | 4.86 (0.00~26.66) | |
17 | 反式-β-佛手柑烯 trans-β-Bergamotene | 15438-94-5 | 1 492 | 7.03 (0.00~43.06) | |
18 | 姜烯 Gingerene | 495-60-3 | 1 495 | 10.90 (0.00~42.60) | |
19 | β-倍半水芹烯 β-Sesquicyclene | 20307-83-9 | 1 524 | 35.54 (0.00~180.32) | |
20 | 红没药烯 Bisabolene | 17627-44-0 | / | 0.37 (0.00~1.43) | |
21 | 橙花叔醇 Nerolidol | 7212-44-4 | 1 564 | 0.94 (0.00~7.00) | |
22 | 贝壳杉烯 Kaur-16-ene | 562-28-7 | 2 041 | 1.23 (0.00~5.69) | |
烷烃类Alkane | 23 | 十一烷 Undecane | 1120-21-4 | 1 100 | 0.02 (0.00~0.52) |
24 | 十三烷 Tridecane | 629-50-5 | 1 300 | 1.49 (0.00~3.75) | |
25 | 十四烷 Tetradecane | 629-59-4 | 1 400 | 2.24 (0.05~5.71) | |
26 | 十五烷 Pentadecane | 629-62-9 | 1 500 | 283.54 (4.39~584.63) | |
27 | 十六烷 Hexadecane | 544-76-3 | 1 600 | 1.76 (0.05~4.31) | |
28 | 十七烷 Heptadecane | 629-78-7 | 1 700 | 28.32 (1.06~77.89) | |
29 | 十八烷 Octadecane | 593-45-3 | 1 800 | 1.35 (0.00~7.81) | |
30 | 十九烷 Nonadecane | 629-92-5 | 1 900 | 14.75 (2.53~37.48) | |
31 | 二十烷 Eicosane | 112-95-8 | 2 000 | 0.02 (0.00~0.17) | |
32 | 二十一烷 Heneicosane | 629-94-7 | 2 100 | 4.31 (0.00~9.94) | |
醛类Aldehyde | 33 | (E)-2-己烯醛 (E)-2-Hexenal | 6728-26-3 | 854 | 1.63 (0.00~3.95) |
34 | 肉桂醛 Cinnamaldehyde | 104-55-2 | 1 274 | 0.21 (0.00~1.31) | |
35 |
(E)-10,(E)-12-十六碳二烯醛 E,E-10,12-Hexadecadienal | 69977-24-8 | 1 702 | 1.87 (0.00~6.79) | |
36 | 十六醛 Hexadecanal | 629-80-1 | 1 817 | 1.26 (0.00~5.37) | |
37 | 顺式-9-十六碳烯醛 cis-9-Hexadecenal | 56219-04-6 | 1 780 | 0.06 (0.00~0.72) | |
38 | (E)-2-十六烯醛 (E)-2-Hexadecenal | 22644-96-8 | 1 878 | 0.23 (0.00~2.25) | |
39 | (Z)-9-十八碳烯醛 (Z)-9-Octadecenal | 2423-10-1 | 2 010 | 0.13 (0.00~1.89) | |
40 | 十八醛 Octadecanal | 638-66-4 | 2 021 | 0.82 (0.00~2.66) | |
酯类 Ester | 41 | 乙酸苄酯 benzyl acetate | 140-11-4 | 1 164 | 1.03 (0.00~3.84) |
42 | 乙酸月桂酯 Lauryl acetate | 112-66-3 | 1 607 | 1.76 (0.00~38.59) | |
43 | 茉莉酸甲酯 Methyl jasmonate | 1211-29-6 | 1 638 | 0.05 (0.00~0.48) | |
44 | 苯甲酸苄酯 Benzyl benzoate | 120-51-4 | 1 762 | 0.63 (0.00~3.57) | |
45 | 肉豆蔻醇乙酸酯 Tetradecyl acetate | 638-59-5 | 1 810 | 0.47 (0.00~8.55) | |
46 | 1-十六烷醇甲酸酯 Hexadecanyl acetate | 629-70-9 | 2 009 | 0.61 (0.00~3.24) | |
芳香族Benzenoid | 47 | 苯甲醛 Benzaldehyde | 100-52-7 | 962 | 0.76 (0.00~2.20) |
48 | 苯甲醇 Benzyl alcohol | 100-51-6 | 1 036 | 28.84 (0.00~82.56) | |
49 | 大茴香醛 Anisic aldehyde | 123-11-5 | 1 250 | 0.72 (0.00~5.74) | |
50 | 4-甲氧基苯甲醇 4-Methoxybenzyl alcohol | 105-13-5 | 1 290 | 1.71 (0.00~6.23) | |
51 | 依杜兰 Edulane | 41678-29-9 | 1 314 | 0.02 (0.00~0.17) | |
烯烃类Alkene | 52 | 十五烯 1-Pentadecene | 13360-61-7 | 1 492 | 0.36 (0.00~4.46) |
53 | 6,9-十七碳二烯 6,9-Heptadecadiene | 81265-03-4 | 1 667 | 248.15 (2.51~601.53) | |
54 | (Z)-3-十六烯 (Z)-3-Hexadecene | / | 1 689 | 51.39 (0.00~282.10) | |
55 | (Z)-3-十七碳烯 (Z)-3-Heptadecene | 62026-26-0 | 1 689 | 8.06 (0.00~97.71) | |
56 | 1-十九碳烯 1-Nonadecene | 18435-45-5 | 1 892 | 1.35 (0.00~8.39) | |
醇类Alcohol | 57 | 肉桂醇 Cinnamyl alcohol | 104-54-1 | 1 313 | 1.83 (0.00~11.18) |
58 | (Z)-6-十五稀醇 (Z)-6-Pentadecen-1-ol | 68797-95-5 | 1 480 | 0.12 (0.00~2.65) | |
59 | 1-十四醇 1-Tetradecanol | 112-72-1 | 1 676 | 51.72 (0.00~247.81) | |
60 | 棕榈油醇 Palmitoleyl alcohol | 10378-01-5 | 1 863 | 0.20 (0.00~1.09) |
由

图2 不同广热带睡莲品种的挥发物总含量(A)和挥发物种类(B)
Fig. 2 Total volatile content and volatile species of different pantropical water lily cultivars
不同小写字母表示不同品种间差异显著(P<0.05)。Different lowercase letters indicate significant differences between different cultivars(P<0.05).
由

图3 不同广热带睡莲品种各类挥发物含量热图
Fig. 3 Heat map of various volatile content of different pantropical water lily cultivars
为明确广热带睡莲的特征气味物质,进一步计算气味活性值,共筛选获得19个气味活性物质(
序号No. | 名称 Name | 气味属性 Odor description | 阈值/(ng/g) Threshold | OAV平均值(含量范围) Average content of OAV (content range) |
---|---|---|---|---|
1 | 反式-β-紫罗兰酮 trans-β-Ionone | 甜香、木香 | 0.007 | 21.014 (0~191.850) |
2 | α-紫罗兰酮 α-Ionone | 甜香、木香 | 0.4 | 3.672 (0~11.150) |
3 | β-紫罗兰酮 β-Ionone | 甜香、木香 | 0.007 | 1.615 (0~23.680) |
4 | 金合欢烯 Farnesene | 苹果香、花瓣香 | 87 | 1.170 (0~5.096) |
5 | (E)-2-癸烯醛 (E)-2-Decenal | 柑橘香 | 0.3 | 0.876 (0~1.19) |
6 | 苯乙醛 Benzeneacetaldehyde | 果香 | 0.3 | 0.598 (0~0.598) |
7 | 二氢-β-紫罗兰酮 Dihydro-β-ionone | 甜香、木香 | 1 | 0.446 (0~0.785) |
8 | α-蒎烯 α-Pinene | 草香 | 2.5 | 0.114 (0~0.114) |
9 | 肉桂醇 Cinnamyl alcohol | 甜香 | 77 | 0.060 (0~0.145) |
10 | 大茴香醛 Anisic aldehyde | 草香、花香 | 27 | 0.055 (0~0.213) |
11 | 橙花叔醇 Nerolidol | 甜香、木香 | 10 | 0.051 (0~0.099) |
12 | 苯乙烯 Styrene | 甜香 | 3.6 | 0.034 (0~0.050) |
13 | (E)-2-己烯醛 (E)-2-Hexenal | 草香 | 88.7 | 0.018 (0~0.045) |
14 | 苯甲醇 Benzyl alcohol | 甜香,果香 | 2 546.21 | 0.012 (0~0.032) |
15 | 肉桂醛 Cinnamaldehyde | 辛香 | 50 | 0.011 (0~0.026) |
16 | 茉莉酸甲酯 Methyl jasmonate | 甜香 | 70 | 0.005 (0~0.007) |
17 | 香叶基丙酮 Geranyl acetone | 果香、木香 | 60 | 0.004 (0~0.010) |
18 | 乙酸苄酯 Benzyl acetate | 甜花香 | 364 | 0.003 (0~0.011) |
19 | 苯甲醛 Benzaldehyde | 苦杏仁味 | 750.89 | 0.001 (0~0.003) |
气味物质的种类和含量决定了睡莲的香气类型和香气浓郁程度。通过OAV值计算,α-紫罗兰酮、β-紫罗兰酮、反式-β-紫罗兰酮和金合欢烯被筛选为主要的气味贡献成分。通过比较,筛选以上4种物质OAV值相对较高的品种,定义为优良的芳香睡莲品种。选取每种物质含量前3名的品种进行比较分析,结果如

图4 4种香气活性物质在不同广热带睡莲品种的OAV值比较
Fig. 4 Comparison of OAVs of four aroma active compounds in different pantropical water lily cultivars
*和**分别表示在0.05和0.01水平上差异显著。* and ** indicate significant differences at 0.05 and 0.01 levels,respectively.
睡莲是优良的水生芳香植物,既可用于芳香水景营建,也是花茶、精油、纯露等新兴产品的主要原料。睡莲精油具有抗菌、抗氧化的功效,在芳香疗法中极具应用潜
本研究以香味浓郁、栽培广泛的广热带睡莲亚属不同品种为材料,采用HS-SPME-GC-MS技术检测鉴定出60种挥发物,其中十五烷、6,9-十七碳二烯、金合欢烯等含量较高,是睡莲的主要挥发物成分,与袁茹
通过计算OAV值,本研究明确了睡莲的特征气味物质包括α-紫罗兰酮、β-紫罗兰酮、反式-β-紫罗兰酮和金合欢烯。紫罗兰酮类物质OAV值在桂
本研究通过OAV值比较品种间差异,筛选出‘卡拉阳光’‘粉钻’‘鲁比’‘蓝鸟’‘黄金国’5个优良芳香品种。其中‘卡拉阳光’气味活性成分含量高,香气浓郁;‘鲁比’‘蓝鸟’‘黄金国’3个品种紫罗兰酮类物质丰富,甜香特征明显;‘粉钻’‘卡拉阳光’‘蓝鸟’3个品种金合欢烯含量相对较高,为精油提取的优良品种。由于本研究采样量较大,采用了低温冷冻法保存样品,样品香气物质可能存在损失,导致部分香气活性物质OAV值偏低,影响睡莲香气活性物质的鉴别,后续在条件许可的情况下可采用鲜样和精油进一步检测鉴定。此外,采用顶空固相微萃取技术对睡莲的主要特征香气物质进行鉴定存在一定的局限性,后续可以通过GC-O嗅辨、香气重构与缺失等方法进行验证,获取更精确的睡莲香气构成数据。
参考文献References
王羽梅.中国芳香植物[M].北京:科学出版社,2008.WANG Y M.Aromatic plants in China[M].Beijing:Science Press,2008 (in Chinese). [百度学术]
曹磊,张大宝,陈振艺.云南省康养旅游产业与芳香产业融合发展初探:从中医芳香疗法谈起[J].亚太传统医药,2023,19(2):11-14.CAO L,ZHANG D B,CHEN Z Y.Preliminary study on the integration of health tourism industry and aromatic industry in Yunnan Province:from Chinese medicine aromatherapy[J].Asia-pacific traditional medicine,2023,19(2):11-14 (in Chinese with English abstract). [百度学术]
王有江.精油企业与市场之间差的不止是“精油与疫情防控” 的话题[J].中国化妆品,2020(4):102-103.WANG Y J.Essential oil epidemic prevention and control[J].China cosmetics review,2020(4):102-103 (in Chinese). [百度学术]
ALOUM L,ALEFISHAT E,ADEM A,et al.Ionone is more than a violet’s fragrance:a review[J/OL].Molecules,2020,25(24):5822[2023-09-21].https://doi.org/10.3390/molecules25245822. [百度学术]
AN Q,REN J N,LI X,et al.Recent updates on bioactive properties of linalool[J].Food & function,2021,12(21):10370-10389. [百度学术]
TURKEZ H,SOZIO P,GEYIKOGLU F,et al.Neuroprotective effects of farnesene against hydrogen peroxide-induced neurotoxicity in vitro[J].Cellular and molecular neurobiology,2014,34(1):101-111. [百度学术]
ARSLAN M E,TÜRKEZ H,MARDINOĞLU A.In vitro neuroprotective effects of farnesene sesquiterpene on Alzheimer’s disease model of differentiated neuroblastoma cell line[J].The international journal of neuroscience,2021,131(8):745-754. [百度学术]
ZHANG T X,BAO F,DING A Q,et al.Comprehensive analysis of endogenous volatile compounds,transcriptome,and enzyme activity reveals PmCAD1 involved in cinnamyl alcohol synthesis in Prunus mume[J/OL].Frontiers in plant science,2022,13:820742[2023-09-21].https://doi.org/10.3389/fpls. 2022.820742. [百度学术]
朱琳琳,周婉飞,宁璇,等.不同桂花品种游离态香气物质分析[J].园艺学报,2022,49(11):2395-2406.ZHU L L,ZHOU W F,NING X,et al.Analysis of free aromatic components of different Osmanthus fragrans cultivars[J].Acta horticulturae sinica,2022,49(11):2395-2406 (in Chinese with English abstract). [百度学术]
WANG Y G,LI X R,JIANG Q J,et al.GC-MS analysis of the volatile constituents in the leaves of 14 compositae plants[J/OL].Molecules,2018,23(1):166[2023-09-21].https://doi.org/10.3390/molecules23010166. [百度学术]
SUN H N,ZHANG T,FAN Q Q,et al.Identification of floral scent in chrysanthemum cultivars and wild relatives by gas chromatography-mass spectrometry[J].Molecules,2015,20(4):5346-5359. [百度学术]
郝朝运,秦晓威,贺书珍,等.不同基因型依兰鲜花挥发性香气成分分析[J].热带作物学报,2017,38(10):1926-1931.HAO C Y,QIN X W,HE S Z,et al.Analysis of volatile aroma compounds in Cananga odorata (Ylangylang) of different genotypes[J].Chinese journal of tropical crops,2017,38(10):1926-1931 (in Chinese with English abstract). [百度学术]
SONG C K,HÄRTL K,MCGRAPHERY K,et al.Attractive but toxic:emerging roles of glycosidically bound volatiles and glycosyltransferases involved in their formation[J].Molecular plant,2018,11(10):1225-1236. [百度学术]
WEN Y Q,HE F,ZHU B Q,et al.Free and glycosidically bound aroma compounds in cherry (Prunus avium L.)[J].Food chemistry,2014,152:29-36. [百度学术]
WU B P,CAO X M,LIU H R,et al.UDP-glucosyltransferase PpUGT85A2 controls volatile glycosylation in peach[J].Journal of experimental botany,2019,70(3):925-936. [百度学术]
TAN F L,WANG P,ZHAN P,et al.Characterization of key aroma compounds in flat peach juice based on gas chromatography-mass spectrometry-olfactometry (GC-MS-O),odor activity value (OAV),aroma recombination,and omission experiments[J/OL].Food chemistry,2022,366:130604[2023-09-21].https://doi.org/10.1016/j.foodchem.2021.130604. [百度学术]
YANG Y J,AI L Z,MU Z Y,et al.Flavor compounds with high odor activity values (OAV > 1) dominate the aroma of aged Chinese rice wine (Huangjiu) by molecular association[J/OL].Food chemistry,2022,383:132370[2023-09-21].https://doi.org/10.1016/j.foodchem.2022.132370. [百度学术]
刘子毓,杨光穗,奚良,等.睡莲研究现状及展望[J].热带农业科学,2023,43(1):38-43.LIU Z Y,YANG G S,XI L,et al.The present situation and prospect of water lily research[J].Chinese journal of tropical agriculture,2023,43(1):38-43 (in Chinese with English abstract). [百度学术]
王书妹,曾秀丽,王忠红.2010—2020年我国睡莲研究的文献分析[J].安徽农学通报,2022,28(1):37-39.WANG S M,ZENG X L,WANG Z H.Analysis of the literature on waterlily research in China during 2010-2020[J].Anhui agricultural science bulletin,2022,28(1):37-39 (in Chinese with English abstract). [百度学术]
刘晓然,李岚,周大庆.睡莲属植物资源及栽培应用[J].现代园艺,2022,45(12):156-158.LIU X R,LI L,ZHOU D Q.Plant resources and cultivation application of water lily[J].Xiandai horticulture,2022,45(12):156-158 (in Chinese). [百度学术]
袁茹玉.不同品种睡莲花挥发物组成及其茶汤功能成分和抗氧化活性评价[D].南京:南京农业大学,2014.YUAN R Y.Study on the composition of volatiles in different cultivars of water lily and functional component and antioxidant activity evaluation in its tea[D].Nanjing:Nanjing Agricultural University,2014 (in Chinese with English abstract). [百度学术]
苏群,田敏,王虹妍,等.睡莲属62个栽培种花朵挥发性成分GC-MS分析[J].热带亚热带植物学报,2022,30(4):567-574.SU Q,TIAN M,WANG H Y,et al.Volatile components in flowers of 62 Nymphaea cultivars by GC-MS[J].Journal of tropical and subtropical botany,2022,30(4):567-574 (in Chinese with English abstract). [百度学术]
YIN D D,YUAN R Y,WU Q,et al.Assessment of flavonoids and volatile compounds in tea infusions of water lily flowers and their antioxidant activities[J].Food chemistry,2015,187:20-28. [百度学术]
ZHANG L S,CHEN F,ZHANG X T,et al.The water lily genome and the early evolution of flowering plants[J].Nature,2020,577(7788):79-84. [百度学术]
WEI L J,WEI S H,HU D L,et al.Comprehensive flavor analysis of volatile components during the vase period of cut lily (Lilium spp.‘manissa’) flowers by HS-SPME/GC-MS combined with E-nose technology[J/OL].Frontiers in plant science,2022,13:822956[2023-09-21]. https://doi.org/10.3389/fpls.2022.822956. [百度学术]
刘晶晶,王富民,刘国峰,等.茶树萜类香气物质代谢谱与相关基因表达谱时空变化的关系[J].园艺学报,2014,41(10):2094-2106.LIU J J,WANG F M,LIU G F,et al.Correlation between spatiotemporal profiles of volatile terpenoids and relevant terpenoid synthase gene expression in Camellia sinensis[J].Acta horticulturae sinica,2014,41(10):2094-2106 (in Chinese with English abstract). [百度学术]
范杨杨,王健,余文刚,等.同时蒸馏萃取制备延药睡莲精油及其抗氧化研究[J].食品研究与开发,2018,39(12):19-23.FAN Y Y,WANG J,YU W G,et al.Preparation of essential oil from Nymphaea stellata by the method of simultaneous distillation extraction and its antioxidative activities[J].Food research and development,2018,39(12):19-23 (in Chinese with English abstract). [百度学术]
陈彦甫,范杨杨,周卫娟,等.热带红睡莲精油主要成分及其抑菌活性分析[J].食品研究与开发,2022,43(1):32-38.CHEN Y F,FAN Y Y,ZHOU W J,et al.Extraction of essential oil from tropical water lily and its antibacterial activities[J].Food research and development,2022,43(1):32-38 (in Chinese with English abstract). [百度学术]
黄秋伟,毛立彦,龙凌云,等.热带睡莲精油的超临界CO2萃取优化及其成分GC-MS分析[J].食品研究与开发,2020,41(7):188-195.HUANG Q W,MAO L Y,LONG L Y,et al.Optimization of essential oil from tropical water lily extracted by supercritical CO2 and volatile components of essential oil analysis by GC-MS[J].Food research and development,2020,41(7):188-195 (in Chinese with English abstract). [百度学术]
XIAO Z B,LI J,NIU Y W,et al.Verification of key odorants in rose oil by gas chromatography-olfactometry/aroma extract dilution analysis,odour activity value and aroma recombination[J].Natural product research,2017,31(19):2294-2302. [百度学术]