摘要
为精准鉴定贵州荞麦种质资源,采用SSR分子标记对60份荞麦种质进行遗传多样性分析,构建DNA分子身份证数据库。结果显示,从100对SSR引物中筛选出16对稳定性好、多态性丰富的引物,在60份供试种质中共扩增出174个多态性条带;Shannon’s信息指数、Nei’s多样性指数、多态信息指数均值分别为0.337、0.206、0.693,引物的多态性较好,能有效揭示60份荞麦种质的遗传多样性;在Dice遗传相似系数为0.374时,所有供试材料可聚为A、B、C 三组;当Dice遗传相似系数为0.484时,将苦荞组(A组)更细分为A1、A2两个小组。采用毛细管电泳及8%的聚丙烯酰胺凝胶(PAGE)电泳对SSR标记扩增产物进行双验证,2种方法的聚类结果一致。结果表明,本研究开发的高效性SSR分子标记能够有效地鉴定贵州荞麦重要种质的遗传多样性且用于构建分子身份证。
荞麦属于蓼科(Polygonaceae)荞麦属(Fagopyrum Mill)双子叶植物,营养丰富,有“百谷之王”之
SSR(simple sequence repeat,简单重复序列)分子标记操作简单、多态性丰富、重复性好,在近似品种的鉴别方面优势显著,是构建指纹图谱的重要标
目前,国内外未见利用SSR分子标记结合毛细管电泳技术用于荞麦的研究报道,本研究拟采用SSR标记对贵州省60份荞麦种质开展遗传多样性分析,并构建其DNA分子身份证,旨在揭示贵州省荞麦种质资源间的亲缘关系,为贵州省荞麦种质的遗传育种、种质保护提供科学依据。
苦荞、甜荞和金荞3个种共60份试验材料,保存单位为贵州师范大学(54份)和六盘水职业技术学院(6份)(
编号 Number | 种质名称 Germplasm name | 原产地 Origin | 编号 Number | 种质名称 Germplasm name | 原产地 Origin |
---|---|---|---|---|---|
QM01 | 黔黑荞 | 威宁县 | QM24 | 毕选苦荞3号 | 威宁县 |
Qianheiqiao | Weining County | Bixuankuqiao No.3 | Weining County | ||
QM02 | 黔苦荞2号 | 威宁县 | QM25 | 毕选苦荞4号 | 威宁县 |
Qiankuqiao No. 2 | Weining County | Bixuankuqiao No.4 | Weining County | ||
QM03 | 黔苦荞3号 | 威宁县 | QM26 | 六农1号 | 安顺市 |
Qiankuqiao No. 3 | Weining County | Liunong No.1 | Anshun City | ||
QM04 | 黔苦荞4号 | 威宁县 | QM27 | 威宁地方苦荞 | 威宁县 |
Qiankuqiao No. 4 | Weining County | Weining Difangkuqiao | Weining County | ||
QM05 | 黔苦荞5号 | 威宁县 | QM28 | 凉K19-10 | 六盘水市 |
Qiankuqiao No. 5 | Weining County | Liang K19-10 | Liupanshui City | ||
QM06 | 黔苦荞6号 | 威宁县 | QM29 | 盘县四格荞 | 安顺市 |
Qiankuqiao No. 6 | Weining County | Panxiansigeqiao | Anshun City | ||
QM07 | 黔苦荞7号 | 威宁县 | QM30 | AL-031 | 威宁县 |
Qiankuqiao No. 7 | Weining County | Weining County | |||
QM08 | 褐米202203-212 | 威宁县 | QM31 | 六苦荞3号 | 六盘水市 |
Hemi 202203-212 | Weining County | Liukuqiao No.3 | Liupanshui City | ||
QM09 | 黄米202203-221 | 威宁县 | QM32 | 六苦荞4号 | 六盘水市 |
Huangmi 202203-221 | Weining County | Liukuqiao No.4 | Liupanshui City | ||
QM10 | 黑米202203-88 | 赫章县 | QM33 | 六苦荞5号 | 六盘水市 |
Heimi 202203-88 | Hezhang County | Liukuqiao No.5 | Liupanshui City | ||
QM11 | 黑米41-2 | 赫章县 | QM34 | 六苦荞6号 | 六盘水市 |
Heimi41-2 | Hezhang County | Liukuqiao No.6 | Liupanshui City | ||
QM12 | 黑米2号 | 赫章县 | QM35 | 云南昭通苦荞 | 六盘水市 |
Heimi No. 2 | Hezhang County | Yunnanzhaotongkuqiao | Liupanshui City | ||
QM13 | 贵米苦荞18号 | 赫章县 | QM36 | 丰甜1号 | 安顺市 |
Guimikuqiao 18 | Hezhang County | Fengtian No.1 | Anshun City | ||
QM14 | 贵米苦荞55号 | 赫章县 | QM37 | 贵甜荞1号 | 安顺市 |
Guimikuqiao 55 | Hezhang County | Guitianqiao No.1 | Anshun City | ||
QM15 | 贵黑米15号 | 赫章县 | QM38 | 贵甜2号 | 安顺市 |
Guiheimi 15 | Hezhang County | Guitian No.2 | Anshun City | ||
QM16 | 小米荞 | 安顺市 | QM39 | 贵甜21-1系 | 安顺市 |
Xiaomiqiao | Anshun City | Guitian 21-1 | Anshun City | ||
QM17 | 晋荞2号 | 安顺市 | QM40 | 贵甜20220315 | 安顺市 |
Jinqiao No.2 | Anshun City | Guitian 20220315 | Anshun City | ||
QM18 | 品苦1号 | 安顺市 | QM41 | 贵甜4号 | 安顺市 |
Pinku No.1 | Anshun City | Guitian No.4 | Anshun City | ||
QM19 | 贵苦荞1号 | 安顺市 | QM42 | 贵红花甜荞2号 | 安顺市 |
Guikuqiao No.1 | Anshun City | Guihonghua Tianqiao No.2 | Anshun City | ||
QM20 | 贵苦20203-218 | 安顺市 | QM43 | 贵红花甜荞3号 | 安顺市 |
Guiku 20203-218 | Anshun City | Guihonghua Tianqiao No.3 | Anshun City | ||
QM21 | 贵苦20203-219 | 安顺市 | QM44 | 庆红甜1号 | 安顺市 |
Guiku 20203-219 | Anshun City | Qinghongtian No.1 | Anshun City | ||
QM22 | 毕选苦荞1号 | 威宁县 | QM45 | 贵金苦1号 | 赫章县 |
Bixuankuqiao No.1 | Weining County | Guijinku No.1 | Hezhang County | ||
QM23 | 毕选苦荞2号 | 威宁县 | QM46 | 贵金苦4号 | 赫章县 |
Bixuankuqiao No.2 | Weining County | Guijinku No.4 | Hezhang County | ||
QM47 | 贵金苦5号 | 赫章县 | QM54 | 贵金荞3号 | 赫章县 |
Guijinku No.5 | Hezhang County | Guijinqiao No. 3 | Hezhang County | ||
QM48 | 贵金苦6号 | 赫章县 | QM55 | 九江苦荞 | 安顺市 |
Guijinku No.6 | Hezhang County | Jiujiangkuqiao | Anshun City | ||
QM49 | 长黑4T | 赫章县 | QM56 | 六农1号-1 | 六盘水市 |
Changhei 4T | Hezhang County | Liunong No.1-1 | Liupanshui City | ||
QM50 | 大苦1号 | 赫章县 | QM57 | 六苦荞5号-1 | 六盘水市 |
Daku No.1 | Hezhang County | Liukuqiao No.5-1 | Liupanshui City | ||
QM51 | 红心金荞麦 | 赫章县 | QM58 | 六苦荞6号-1 | 六盘水市 |
Hongxin Jinqiao | Hezhang County | Liukuqiao No.6-1 | Liupanshui City | ||
QM52 | 贵金荞1号 | 赫章县 | QM59 | 地方苦荞 | 六盘水市 |
Guijinqiao No. 1 | Hezhang County | Difangkuqiao | Liupanshui City | ||
QM53 |
贵金荞2号 Guijinqiao No. 2 | 赫章县 | QM60 | 六苦荞3号 | 六盘水市 |
Hezhang County | Liukuqiao No.3 | Liupanshui City |
采用DNA提取试剂盒DP320(天根,北京)提取所有供试样品DNA,提取完成后采用1%琼脂糖凝胶电泳检测DNA完整性,采用全波长酶标仪(Thermo Fisher Scientific, MA, USA)检测其浓度与纯度,质量合格后将其稀释至约35 ng/μL,置于-20 ℃保存。
随机挑选5个DNA模板对100对引物进行PCR扩增,通过2%琼脂糖凝胶电泳初步筛选出多态性引物,再采用Qsep 10
PCR扩增反应采用10 μL体系:模板基因组DNA 1 μL,正、反向引物各1 μL,2×Taq PCR Master Mix 5 μL,ddH2O补充至10 μL。2×Taq PCR Master Mix来源于北京天根生物科技有限公司(TIANGEN)。SSR-PCR扩增反应程序:94 ℃预变性4 min;94 ℃变性30 s,最适退火温度60 ℃反应30 s,72 ℃反应30 s,共35个循环;72 ℃延伸7 min;4 ℃保存。
将筛选出的16对多态性丰富的SSR引物(
引物名称 Primer name | 正向序列 Forward DNA sequence | 反向序列 Reverse DNA sequence | 退火温度/℃ Annealing temperature | 产物大小/bp Product size | 来源 Source |
---|---|---|---|---|---|
SSR13 | GGGTCTGAGAACGAGATGCG | GACCCCCACCCAGACCAAC | 64 | 172 |
[ |
SSR27 | GCCACTCGACAATCACAACAG | TCTCCACAATGCCTGCTACA | 60 | 246 |
[ |
SSR29 | CTCACCTTCCTTCCACCGTC | CGTCCTCTCTCCCCCTCAAA | 60 | 216 |
[ |
SSR33 | ACAAGAGCACACACATTCGA | ATTTGGCAGCAACCCCTGAT | 60 | 237 |
[ |
SSR34 | GCTTCAGGAGCCTTTGTCTAAC | ACTGCTTAAACTAGAGGGGCA | 60 | 263 |
[ |
SSR36 | TGCTTGATTCGAGACCGTCA | CAGGCGGCAATATGACAAGC | 60 | 246 |
[ |
SSR38 | CAGGCGGCAATATGACAAGC | CAAACAGCACCTTACCGCAA | 60 | 224 |
[ |
SSR42 | TCATCCCTGGTCAGAGAGCT | TCTAGATTTTCAATCGGACCTACA | 60 | 208 |
[ |
SSR55 | GATCACGGTCACCATCACGA | CAAGAGCGAGCATCCCAGAG | 60 | 261 |
[ |
SSR59 | CTTGCCCAGAGCCAAGGTAT | AGCAAAACCTATGCTTTTACTGC | 60 | 168 |
[ |
SSR72 | ATTCAATTCACCAAAACGCC | CGGTGAGCCATTTCTCTCTC | 60 | 220 |
[ |
SSR77 | TGAGAGCCAATCGAGGTGTG | GAAGGTTGCCGATTGTGAAT | 60 | 266 |
[ |
SSR82 | CAACTCAAGGTCAGGACCCA | TGGACGGTAGTTTGTATGCG | 60 | 214 |
[ |
SSR85 | GGCGTGTTCTGATTCCAAAT | AAAATGTTTGTACAGCGCCC | 60 | 150 |
[ |
SSR87 | TGAATTTGGTCACACATCTGAA | CCAAACATATGGCAGAACCC | 60 | 276 |
[ |
SSR98 | AAAGGTTGAGTGCCACGAAT | GAAAGTGTTGGGTGGATGCT | 60 | 214 |
[ |
毛细管电泳和聚丙烯酰胺凝胶电泳的结果均按获得的DNA分子质量进行统计,根据片段位置区分,同一位置有条带记为1,无条带记为0。将统计结果构建成数据矩阵,用Popgen32软件计算等位基因数、有效等位基因数、观察杂合度和Shannon’s指数;用Power Marker v3.25软件计算多态信息含量(PIC);NTSYS pc 2.10e分析软件计算相似系数,并按UPMGA方法构建亲缘关系树状图;通过条形码和二维码生成器(http://qr-batch.com/)构建供试种质分子身份证。
提取的60份荞麦种质的基因组DNA质量浓度为38~122 ng/μL,OD260/OD280在1.7~2.0,均满足后续PCR试验的要求。利用100对引物对随机选取的5个荞麦品种进行扩增,筛选出扩增产物条带清晰稳定的40对引物(

图1 部分SSR引物的2%琼脂糖电泳图
Fig.1 The profiles amplified by several primers using 2% agarose gel electrophoresis

图2 SSR98引物在5个荞麦样本中的毛细管电泳图
Fig.2 Capillary electrophoresis of SSR98 primer in five samples
通过Popgene32对毛细管电泳结果统计的0、1数据进行统计分析,结果(
引物 Primer | 扩增位点数 Amplification bit count | 观测等位基因数Observing number of alleles | 有效等位基因数 Effective number of alleles | 基因多样性指数Gene diversity index | Shannon’s指数 Shannon’s index | 多态信息含量 Polymorphism information content |
---|---|---|---|---|---|---|
SSR-13 | 12 | 2.000 | 1.647 | 0.361 | 0.532 | 0.878 |
SSR-27 | 13 | 2.000 | 1.245 | 0.171 | 0.292 | 0.796 |
SSR-29 | 24 | 2.000 | 1.206 | 0.154 | 0.273 | 0.925 |
SSR-33 | 7 | 2.000 | 1.369 | 0.224 | 0.354 | 0.689 |
SSR-34 | 7 | 2.000 | 1.317 | 0.192 | 0.312 | 0.606 |
SSR-36 | 23 | 2.000 | 1.168 | 0.126 | 0.231 | 0.901 |
SSR-38 | 11 | 2.000 | 1.360 | 0.236 | 0.382 | 0.765 |
SSR-42 | 8 | 2.000 | 1.204 | 0.150 | 0.266 | 0.558 |
SSR-55 | 14 | 2.000 | 1.236 | 0.165 | 0.282 | 0.744 |
SSR-59 | 6 | 2.000 | 1.591 | 0.324 | 0.481 | 0.701 |
SSR-72 | 3 | 2.000 | 1.363 | 0.244 | 0.396 | 0.309 |
SSR-77 | 17 | 1.944 | 1.258 | 0.171 | 0.284 | 0.835 |
SSR-82 | 16 | 2.000 | 1.162 | 0.133 | 0.252 | 0.910 |
SSR-85 | 6 | 2.000 | 1.215 | 0.160 | 0.279 | 0.461 |
SSR-87 | 4 | 2.000 | 1.450 | 0.273 | 0.425 | 0.518 |
SSR-98 | 3 | 2.000 | 1.280 | 0.206 | 0.348 | 0.484 |
平均 Mean | 10.875 | 1.993 | 1.317 | 0.206 | 0.337 | 0.693 |
根据UPGMA法对60份荞麦种质进行聚类分析,进而获得不同荞麦品种间的遗传关系树状图(

图3 基于毛细管电泳的荞麦种质SSR标记UPGMA聚类图
Fig.3 UPGMA dendrograms of 60 buckwheat germplasms as revealed by SSR markers
本研究分别采用毛细管和聚丙烯银染显影技术,基于相同的材料和引物对2种方法的检测结果进行比较,以SSR-13为例展示2种检测方法的结果(

图4 引物SSR-13扩增荞麦种质的毛细管电泳图
Fig.4 The capillary electrophoretic profiles of buckwheat germplasms as revealed by primer pair SSR-13

图5 引物SSR-13扩增的60份荞麦聚丙烯酰胺凝胶电泳图
Fig.5 The polyacrylamide gel electrophoretic profiles of buckwheat germplasms

图6 基于聚丙烯酰胺凝胶电泳的荞麦种质SSR标记UPGMA聚类图
Fig.6 UPGMA dendrograms of 60 buckwheat germplasms as revealed by SSR markers
在16对多态性引物中,SSR29、SSR36、SSR77、SSR82、SSR55、SSR13和SSR38的多态性指数较高,鉴别能力较强,其中SSR29引物鉴别能力最强(
引物名称 Primer name | 区分种质数 Number of germplasm that can be identified | 鉴定比率/% Identification ratio |
---|---|---|
SSR-29 | 39 | 65 |
SSR-36 | 37 | 62 |
SSR-77 | 26 | 43 |
SSR-82 | 23 | 38 |
SSR-55 | 17 | 28 |
SSR-13 | 15 | 25 |
SSR-38 | 15 | 25 |
SSR-27 | 14 | 23 |
SSR-59 | 12 | 20 |
SSR-33 | 10 | 17 |
SSR-42 | 10 | 17 |
SSR-34 | 9 | 15 |
SSR-85 | 8 | 13 |
SSR-81 | 6 | 10 |
SSR-72 | 5 | 8 |
SSR-87 | 5 | 8 |
SSR-89 | 5 | 8 |
SSR-98 | 5 | 8 |
SSR-37 | 4 | 7 |
SSR-57 | 3 | 5 |
SSR-86 | 3 | 5 |

图7 荞麦种质贵米苦荞55号和九江苦荞分子身份证
Fig.7 Molecular IDs of buckwheat cultivars Guimikuqiao 55 and Jiujiangkuqiao
SSR分子标记是国际植物新品种保护联盟(UPOV)认可的DNA指纹数据库构建的首选标记,其扩增产物主要通过聚丙烯酰胺凝胶电泳(PAGE)和毛细管电泳(CE) 2种方法进行检
种质资源DNA分子身份证与DNA指纹图谱能够区分不同的品种,但二者又有所不同。分子身份证是指纹图谱数字化后的结果,分子身份证利用特定的数字编码成数字串,辅以条形码或者二维码可以实现种质资源快速识别,现已作为一个标准应用于品种的快速识别和鉴
以往对于贵州省荞麦种质资源的研究均为利用SSR分子标记技术构建指纹图谱对荞麦种质资源进行鉴
本研究利用16对SSR引物分析荞麦60份种质,使用毛细管电泳法检测出174个多态性位点,每对引物平均10.875个,多态信息含量变幅为0.309~0.925,平均为0.693,表明贵州省荞麦种质资源具有丰富的遗传多样性,这对于今后荞麦品种改良以及挖掘更多的优良基因有重要意义。王晋
聚类分析中苦荞、甜荞和金荞麦各聚为一类,在相似系数约为0.484处苦荞进一步聚为A1和A2两个小组。所有种质遗传相似系数变幅在0.032~0.918,贵甜4号和黑米2号的遗传相似系数最小,黑米41-2和黑米202203遗传相似性系数最大。根据王贵
总之,本研究开发的高效性SSR分子标记能够有效地鉴定贵州荞麦重要种质的遗传多样性,并且可用于构建分子身份证。未来可将筛选到的SSR标记应用于更广泛的荞麦种质的多态性鉴定和分析中,以促进荞麦的种质创新和种质保存。
致谢
感谢贵州师范大学荞麦产业技术研究中心陈庆富教授和六盘水职业技术学院张清明老师提供试验材料。参考文献 References
参考文献 References
田晓庆,徐宏亚,汪灿,等.用SSR标记分析荞麦栽培种资源的遗传多样性[J].作物杂志,2013(5):28-33.TIAN X Q,XU H Y,WANG C,et al.Genetic diversity of common buckwheat based on SSR markers[J].Crops,2013(5):28-33 (in Chinese with English abstract). [百度学术]
罗嵩,黄俊明,易勇,等.贵州省荞麦产业发展现状、问题、优势及对策[J].耕作与栽培,2017(6):49-53.LUO S,HUANG J M,YI Y,et al.Development status,problems,advantages and countermeasures of Guizhou buckwheat industry[J].Tillage and cultivation,2017(6):49-53 (in Chinese with English abstract). [百度学术]
郭旭,胡俊鸿,杨婷,等.贵州省威宁县荞麦产业高质量发展路径研究[J].食品工业,2022,43(9):209-212.GUO X,HU J H,YANG T,et al.Study on the high quality development path of buckwheat industry in Weining County,Guizhou Province[J].The food industry,2022,43(9):209-212 (in Chinese with English abstract). [百度学术]
范昱,丁梦琦,张凯旋,等.荞麦种质资源概况[J].植物遗传资源学报,2019,20(4):813-828.FAN Y,DING M Q,ZHANG K X,et al.Germplasm resource of the genus Fagopyrum mill[J].Journal of plant genetic resources,2019,20(4):813-828 (in Chinese with English abstract). [百度学术]
苏怀鲜,黄朝宾.贵州省威宁县荞麦产业发展分析与思考[J].南方农机,2020,51(11):25-26.SU H X,HUANG C B.Analysis and thinking on the development of buckwheat industry in Weining County,Guizhou Province[J].China southern agricultural machinery,2020,51(11):25-26 (in Chinese). [百度学术]
MA S N,HAN C Y,ZHOU J,et al.Fingerprint identification of white clover cultivars based on SSR molecular markers[J].Molecular biology reports,2020,47(11):8513-8521. [百度学术]
LIU S R,AN Y L,LI F D,et al.Genome-wide identification of simple sequence repeats and development of polymorphic SSR markers for genetic studies in tea plant (Camellia sinensis)[J/OL].Molecular breeding,2018,38(5):59[2023-09-18].https://doi.org/10.1007/s11032-018-0824-z. [百度学术]
黎瑞源,石桃雄,陈其皎,等.中国35个苦荞审定品种EST-SSR指纹图谱构建与遗传多样性分析[J].植物科学学报,2017,35(2):267-275.LI R Y,SHI T X,CHEN Q J,et al.Construction of EST-SSR fingerprinting and analysis of genetic diversity of thirty-five registered Tartary buckwheat cultivars (Fagopyrum tataricum) in China[J].Plant science journal,2017,35(2):267-275 (in Chinese with English abstract). [百度学术]
李春花,陈蕤坤,王艳青,等.利用SSR标记构建云南苦荞种质资源分子身份证[J].分子植物育种,2019,17(5):1575-1582.LI C H,CHEN R K,WANG Y Q,et al.Establishment of the molecular ID for Yunnan Tartary buckwheat germplasm resources based on SSR marker[J].Molecular plant breeding,2019,17(5):1575-1582 (in Chinese with English abstract). [百度学术]
李红琴,刘宝龙,张波,等.青海省审定小麦品种SSR遗传多样性分析及分子身份证的建立[J].作物杂志,2020(3):60-65.LI H Q,LIU B L,ZHANG B,et al.Analysis of genetic diversity and establishment of molecular ID of the wheat cultivars registered in Qinghai using SSR[J].Crops,2020(3):60-65 (in Chinese with English abstract). [百度学术]
马琳,刘海珍,陆徐忠,等.130份甘蓝型油菜种质分子身份证的构建[J].中国油料作物学报,2013,35(3):231-239.MA L,LIU H Z,LU X Z,et al.Molecular identity of 130 Brassica napus varieties[J].Chinese journal of oil crop sciences,2013,35(3):231-239 (in Chinese with English abstract). [百度学术]
秦瑞英,许学,张立平,等.小麦SSR指纹图谱及品种身份证的构建:基于毛细管电泳分析[J].中国农学通报,2017,33(34):46-55.QIN R Y,XU X,ZHANG L P,et al.Construction of wheat variety SSR fingerprint and ID:based on capillary electrophoresis[J].Chinese agricultural science bulletin,2017,33(34):46-55 (in Chinese with English abstract). [百度学术]
武志江,邓海燕,梁桂东,等.利用荧光标记SSR构建火龙果种质资源分子身份证[J].中国南方果树,2020,49(4):20-28.WU Z J,DENG H Y,LIANG G D,et al.Construction of molecular identity card of pitaya germplasm resources by fluorescent SSR[J].South China fruits,2020,49(4):20-28 (in Chinese). [百度学术]
李月.普通荞麦种质资源农艺性状评价和SSR遗传多样性研究[D].贵阳:贵州师范大学,2015.LI Y.Genetic diversity of common buckwheatgermplasm resources by SSRmarkers and theirevaluation on agronomic traits[D].Guiyang:Guizhou Normal University,2015(in Chinese with English abstract). [百度学术]
LIU Y,FANG X M,TANG T,et al.Inflorescence transcriptome sequencing and development of new EST-SSR markers in common buckwheat (Fagopyrum esculentum)[J/OL].Plants,2022,11(6):742[2023-09-18].https://doi.org/10.3390/plants11060742. [百度学术]
任长忠,陈庆富.中国荞麦品种志[M].北京:中国农业出版社,2022.REN C Z,CHEN Q F.Chinese buckwheat variety catalogue[M].Beijing:China Agriculture Press,2022(in Chinese). [百度学术]
蔡齐宗,王佳蕊,陈庆富,等.苦荞全基因组SSR位点鉴定及分子标记开发[J].河南农业大学学报,2022,56(3):392-400.CAI Q Z,WANG J R,CHEN Q F,et al.Identification of SSR loci and molecular marker development in the whole genome of Tartary buckwheat[J].Journal of Henan Agricultural University,2022,56(3):392-400 (in Chinese with English abstract). [百度学术]
GUO L L,GUO D L,ZHAO W,et al.Newly developed SSR markers reveal genetic diversity and geographical clustering in Paeonia suffruticosa based on flower colour[J].The journal of horticultural science and biotechnology,2018,93(4):416-424. [百度学术]
颜新林,管中荣,温雯,等.基于SSR标记的芥菜品种鉴定技术体系建立及应用[J].植物遗传资源学报,2021,22(3):758-770.YAN X L,GUAN Z R,WEN W,et al.Establishment and application of mustard variety identification system based on SSR markers(Brassica juncea L.)[J].Journal of plant genetic resources,2021,22(3):758-770 (in Chinese with English abstract). [百度学术]
左茜茜,宋英杰,马心妍,等.苦荞全基因组SSR位点挖掘及遗传多样性分析[J].中国农业科技导报,2022,24(4):38-51.ZUO X X,SONG Y J,MA X Y,et al.Mining SSR loci and analysis the genetic diversity of Tartary buckwheat based on the whole genome sequence[J].Journal of agricultural science and technology,2022,24(4):38-51 (in Chinese with English abstract). [百度学术]
白晓倩,陈于,张仕杰,等.基于表型性状和SSR标记的板栗品种遗传多样性分析及分子身份证构建[J].植物遗传资源学报,2022,23(4):972-984.BAI X Q,CHEN Y,ZHANG S J,et al.Genetic diversity analysis and fingerprinting of chestnut varieties based on phenotypic traits and SSR markers[J].Journal of plant genetic resources,2022,23(4):972-984 (in Chinese with English abstract). [百度学术]
徐雷锋,葛亮,袁素霞,等.利用荧光标记SSR构建百合种质资源分子身份证[J].园艺学报,2014,41(10):2055-2064.XU L F,GE L,YUAN S X,et al.Using the fluorescent labeled SSR markers to establish molecular identity of lily germplasms[J].Acta horticulturae sinica,2014,41(10):2055-2064 (in Chinese with English abstract). [百度学术]
潘凡.苦荞种质遗传资源农艺性状的评价及SSR指纹图谱的构建[D].贵阳:贵州师范大学,2016.PAN F.Envaluation of Main agronomic traits and construction of SSR fingerprints in tartary buckwheat germplasm[D].Guiyang:Guizhou Normal University,2016 (in Chinese with English abstract). [百度学术]
王晋雄.甘肃省收集荞麦种质SSR遗传多样性分析[D].太原:山西大学,2015.WANG J X.SSR genetic diversity analysis of buckwheat germplasm collected in Gansu Province[D].Taiyuan:Shanxi University,2015 (in Chinese with English abstract). [百度学术]
马名川,张丽君,刘璋,等.基于SSR标记的山西省不同地区苦荞遗传多样性分析[J].山西农业大学学报(自然科学版),2021,41(3):25-31.MA M C,ZHANG L J,LIU Z,et al.Analysis of genetic diversity of Tartary buckwheat from different regions of Shanxi Province based on SSR marker[J].Journal of Shanxi Agricultural University(natural science edition),2021,41(3):25-31 (in Chinese with English abstract). [百度学术]
王贵,李蕊蕊,吴茂宏,等.基于IRAP标记的沙子空心李遗传多样性评价及指纹图谱构建[J].华中农业大学学报,2023,42(1):1-11.WANG G,LI R R,WU M H,et al.Evaluation of genetic diversity and construction of DNA fingerprint of Prunus salicina Lindl.‘Shazikongxinli’ based on IRAP markers[J].Journal of Huazhong Agricultural University,2023,42(1):1-11 (in Chinese with English abstract). [百度学术]