摘要
为鉴定和发掘玉米渍水胁迫抗性基因,克隆玉米ERF家族成员ZmEREB46(Zm00001d015759)基因,同时对该基因进行重测序分析、功能变异位点鉴定以及表达模式分析,并进一步在模式植物拟南芥中初步探究ZmEREB46参与耐渍的功能。结果显示,ZmEREB46编码1个AP2/EREBP类转录因子;相较于耐渍自交系A3237,ZmEREB46基因编码区及启动子区在渍水敏感自交系A3239中分别存在1个G/A的转换以及1个911 bp片段插入,911 bp片段的插入显著抑制了渍水敏感自交系A3239中ZmEREB46基因的表达;亚细胞定位结果显示,ZmEREB46定位在细胞核中;荧光定量PCR结果显示,ZmEREB46受渍水胁迫诱导上调表达,渍水处理8 h后ZmEREB46在耐渍自交系A3237中的表达量是渍水敏感自交系A3239中的2倍。结果表明,ZmEREB46在拟南芥中过量表达提高了拟南芥苗期的耐渍性。
我国玉米产区主要集中在东北和华北,降水时期多在玉米苗期到开花期,此阶段玉米对涝渍胁迫最为敏感,极易造成生长发育受阻,影响后期产量形成,每年因暴雨和洪水造成大面积涝渍灾害,产量和经济损失巨大。因此,鉴定和发掘玉米渍水胁迫抗性基因,探究其生物学功能及其在涝渍胁迫中的分子机制,对玉米分子育种具有重要意义。
玉米、小麦、大麦、大豆、棉花等旱地作物常面临着渍水带胁
AP2/ERF家族相关蛋白依据AP2 domain的数量和结构分为3个亚类: APETALA2(2个AP2域)、RAV(与abscisic acid insensitive 3/ Viviparous 1,ABI 3/VPI相关)和ERF(ethylene-responsive factor
Xu
AP2/EREBP类家族成员是植物逆境胁迫相关的重要基因,然而玉米中参与耐渍的AP2/EREBP类基因鲜有报道。前期研究结合QTL定位、转录组分析和生物信息学等方法在玉米5.04 bin耐渍主效QTL区间内,定位、鉴定了1个关键耐渍候选基因ZmEREB4
玉米自交系A3237与A3239由华中农业大学玉米研究团队邱法展课题组自育,A3237耐渍性强,A3239涝渍敏感。
本研究所用的拟南芥(Arabidopsis thaliana L.)材料为哥伦比亚生态型(Columbia)。
拟南芥过表达载体以pC1300st为骨架,经部分片段替换改造而成,含有潮霉素及卡那霉素抗性筛选标记基因。农杆菌转化菌株为GV3101和玉米原生质体瞬时表达载体pM999,笔者所在实验室保存。
大肠杆菌转化感受态DH5α以及农杆菌转化感受态EHA105购买自上海唯地生物技术有限公司。
ZmEREB46是ERF第五亚家族基因,根据B73参考基因组序列,利用在线网站Primer3Plus(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi)设计引物,以B73、A3237和A3239的基因组DNA以及cDNA为模板,克隆ZmEREB46基因。
载体构建和玉米原生质体转化步骤参照文献[
通过NCBI查询ZmEREB46在各个物种中已报道的同源基因,将相应的氨基酸序列全长整理为Fasta格式,导入MEGA-X进化树构建软件,采用默认程序通过Clustal W进行序列比对,用邻近法(neighbor joining, NJ)构建进化树(bootstrap 1 000次重复)。
所用载体由CaMV 35S组成型表达强启动子、多克隆酶切位点、绿色荧光蛋白(EGFP)、氨苄抗性核酸序列组成,共定位核Marker基因为拟南芥中的核基因AtHY5,Marker蛋白与红色荧光蛋白(RFP)融合。首先,构建ZmEREB46亚细胞定位载体,基因扩增引物为PM999EREB46-F:ACTCTAGCAGATCTATCGATTCTAGAATGACAGAGAATCTCCACTCCA;PM999EREB46-R:TCTTCTCCTTTGCCCATGGCTCTAGAGATGATGAAGCGACCTTGGT,载体检测引物:PM999-F:TCCACTGACGTAAGGGATGACGCA;PM999-R:GCATGGCGCTCTTGAAGAAGTCGT。以B73 cDNA为模板,克隆ZmEREB46,胶回收产物。载体目的基因插入酶切位点选用XbaⅠ(TCTAGA)。同源重组试剂盒采用诺唯赞公司ClonExpressII/One Step Clone Kit。将ZmEREB46亚细胞定位载体、核Marker通过PEG/C
玉米自交系A3237、A3239幼苗生长到2叶1心(包括子叶)时进行渍水处理(水面没过玉米茎部生长点),于处理后不同时间段取根与叶组织(每5株混样)用锡纸包裹后迅速放入液氮,提取总RNA,采用诺唯赞公司试剂盒HiScript Ⅲ1st Strand cDNA Synthesis Kit (+gDNA wiper)反转录,cDNA稀释5倍后作为模板。实时荧光定量PCR反应用酶为北京艾德莱公司生产的2×Sybr Green qPCR Mix,所用引物GM46-Qpcr-F:CAATCCAAAGAAGCAGCACA,GM46-Qpcr-R:GTGGGACTTCTCAGGGTCAA;ZmActin-F:AATGACGCAGATTATGTTTGAAAC,ZmActin-R:TGTGAGGATCTTCATTAGGTGGT。
设计带pC1300st载体同源臂的引物,以B73 cDNA为模板,扩增目的基因ZmEREB46。胶回收后获得带有同源臂的目的片段。酶切载体质粒,获得线性化pC1300st载体,将目的基因与载体同源重组,以pC1300st-F/R为引物,通过菌落PCR鉴定检测携带目的基因的阳性克隆,通过测序验证目的基因序列正确性后提取质粒。通过电转法转入GV3101农杆菌感受态中,阳性农杆菌菌液与50%灭菌甘油体积比1∶1混合,-80 ℃保存菌种。
取适量拟南芥种子于离心管内,用75%乙醇消毒1 min,用10%次氯酸钠表面消毒3次,用灭菌水清洗5次。将消毒后的种子均匀地涂抹在潮霉素抗性1/2 MS培养皿(MS 2.215 g/L、30 g/L蔗糖、10 g琼脂粉、NaOH调pH到5.6~5.8)上,于超净台风干,覆盖后用封口膜封口,培养室放置10 d初步筛选出阳性苗。挑选阳性苗转移到1/2无抗MS培养皿上培养2~3 d,移栽,盖膜培养2 d后揭膜,注意保持土壤湿润。待植株抽薹后,取适量叶片提取RNA,用引物扩增目的基因,根据条带亮度的强弱初步判断基因的表达水平。
1)材料种植。将营养土与蛭石以质量比2∶1混合后加水至土壤湿润(捏后出水不滴落),在10 cm×10 cm方盆里均匀洒落几十颗种子盖膜培养,3~4 d出苗后揭膜,培养10 d左右,将幼苗移栽到7 cm×7 cm方盆中,每盆4株,移苗后盆外浇水盖膜保持土表湿润,1 d后揭膜。每周浇水2次,施1次速溶复合肥,移栽后约20 d植株达到处理要求。
2)淹水处理。种植2个超表达材料OE1、OE2,加水淹没植株(水面距离植株10 cm),置于23 ℃培养箱暗培养。
3)存活率统计。将淹水处理48 h后的盆栽取出,置于23 ℃恒温光照培养室复氧培养,10 d后统计植株存活情况,长出新叶即算植株存活。
4)拟南芥地上部莲座部分干质量测定。将淹水处理48 h后的拟南芥取出,完整取下地上部分莲座部分,清洗干净叶片上附着的泥土,用吸水纸吸干水分,用硫酸纸袋包裹,放于65 ℃烘箱烘干24 h后,测定拟南芥地上部莲座部分干质量。
5)DAB染色。DAB染色液质量浓度为1 mg/mL,pH调至3.8,在配好的DAB染色液中加入0.5 μL/mL吐温20。取新鲜处理后的叶片放入染色液中浸没,在黑暗环境下静置5~10 h,使染色充分。将叶片转移到无水乙醇中煮沸脱色,脱色后的叶片为棕黄色,通过颜色深浅和染色面积判断H2O2含量。
6)MDA含量的测定。参照文献[
以玉米自交系B73的基因组DNA及cDNA为模板,克隆ZmEREB46的基因组序列。结果显示,基因序列全长为1 087 bp,编码区序列长度642 bp,含有2个外显子和1个内含子。进一步利用高世代玉米重组自交系A3237和A3239对ZmEREB46进行重测序,结果显示,在基因编码区(起始密码子下游556 bp处)存在1个SNP位点变异(G/A),导致第186位氨基酸由丙氨酸(A3239)变为苏氨酸(A3237);同时,ZmEREB46在A3239中起始密码子上游2 kb的位置相对于A3237中存在1个911 bp的大片段插入(

图 1 ZmEREB46基因结构和启动子顺式元件分析
Fig. 1 Gene structure and cis-regulatory element analysis of ZmEREB46
A:ZmEREB46基因的结构示意图与多态性位点;B:ZmEREB46基因启动子顺式元件分析,Indel表示ZmEREB46启动子在A3239中插入片段。A: The schematic diagram and polymorphism sites of ZmEREB46;B:Cis-element analysis of ZmEREB46 gene promoter,Indel indicates the ZmEREB46 promoter inserted the fragment in A3239.
对ZmEREB46启动子2 kb序列进行顺式调控元件分析,结果显示,基因启动子序列含有厌氧响应元件(ARE、GC-motif、G-box)、干旱响应元件(MBS)以及多个激素(GA、ABA、MeJA、IAA)相关响应元件。同时,在A3239中ZmEREB46启动子序列中插入部分有3个G-box、1个脱落酸响应元件和1个生长素响应元件,新增2个GA响应元件P-box(
为鉴定大片段插入对ZmEREB46表达的影响,分别克隆了2个自交系A3237与A3239中ZmEREB46的启动子片段,构建了由花椰菜花叶病毒的最小启动子(mpCaMV)驱动的LUC表达载体,并比较LUC在玉米叶肉原生质体中的活性(

图2 A3237和A3239中ZmEREB46启动子活性差异
Fig. 2 The difference of ZmEREB46 promoter activity in A3237 and A3239
A: 载体结构。B:启动子活性分析。数据以平均值和标准误表示,相对于空载的均值均一化处理;采用t检验进行差异显著性分析,**:P<0.01。A: Plasmid structure. B: Promoter activity. The data are normalized with respect to the average values of the empty construct and are shown as means ± Sd. Significant differences are estimated by t-test(**:P<0.01).
进化树分析结果(

图 3 ZmEREB46系统进化树
Fig. 3 Phylogenetic tree of ZmEREB46
将ZmEREB46报告载体35S∷ZmEREB46-EGFP(ZmEREB46-EGFP)和连有细胞核marker基因AtHY5的报告载体35S∷AtHY5-RFP(AtHY5-RFP)转化到玉米原生质体中共表达,在共聚焦显微镜下观察,绿光荧光和红光荧光共定位于细胞核,表明ZmEREB46蛋白定位在细胞核中(

图4 ZmEREB46亚细胞定位
Fig. 4 Subcellular localization of ZmEREB46
利用qRT-PCR对ZmEREB46在A3237、A3239苗期渍水处理0、2、4、6、8、10、12 h后叶片和根系中的表达量进行分析(

图5 ZmEREB46在A3237和A3239苗期渍水处理后叶片和根部相对表达量
Fig.5 Differences in relative expression patterns of ZmEREB46 in leaves and roots at different stages after waterlogging treatment at the seedling stage of A3237 and A3239
A:ZmEREB46在叶片中的表达模式; B:ZmEREB46在根部的表达模式。A:Expression pattern of ZmEREB46 in leaves; B:Expression pattern of ZmEREB46 in roots.
期间ZmEREB46在A3239中表达量无显著变化。ZmEREB46的表达差异可能是造成A3237和A3239苗期耐渍性差异的原因。
对ZmEREB46超表达材料经过2代筛选获得的纯合阳性植株((

图 6 超表达ZmEREB46拟南芥材料耐淹性分析
Fig. 6 Analysis of submergence tolerance of Arabidopsis overexpressing ZmEREB46
A:ZmEREB46基因拟南芥T1代(检测纯合体表达量)转基因超表达植株半定量RT-PCR检测;B:将移栽后20~22 d的拟南芥进行暗淹水处理。Submergence:淹水处理48 h后复氧1 d;Reoxygenation:淹水处理48 h后复氧10 d摄。C:DAB染色。D:MDA 含量检测:淹水处理24 h后MDA含量,每个株系4个重复。E:淹水处理48 h后植株干质量。F:植株复氧10 d后存活率。WT:野生型植株;OE:超表达植株。用t-test对WT和OE进行差异显著性分析;*:P<0.05,**:P<0.01。A: RT-PCR was used to detect overexpressed plants of ZmEREB46 gene in Arabidopsis in T1 generation (after homozygote and then detection of expression leve; B: The Arabidopsis has been cultured for 20-22 d after transplanting is treated with water in dark. Submergence: Submergence treatment for 48 h, then reoxygenation treatment for 1 d; Reoxygenation: Submergence treatment for 48 h, reoxygenation treatment for 10 d. C: DAB staining. D:MDA content after 24 h of submerged treatment, 4 replicates per plant. E:Dry matter mass of plants after 48 h of submerged treatment. F:Survival rates: survival rate of plants after 10 d of reoxygenation. WT:Wild type; OE:Overexpression.Use t-test to analyze the significance of the difference between WT and OE,*:P<0.05,**:P<0.01.
ZmEREB46具有典型的AP2/EREBP结构域,属于AP2/EREBP类基因家族。AP2/EREBP类基因家族是植物逆境胁迫相关的重要基因。玉米中,ZmEREB180除了能促进植株不定根的生成外,还能通过增强植株抗氧化剂的生成来提高玉米渍水胁迫下的生存能
在转录因子的启动子序列中,包含有多种不同类型的顺式作用元件,针对转录因子的启动子序列进行分析,对阐明其分子作用机制具有重要意义。玉米中,作为ERF家族成员的ZmERF5被鉴定为一个受到渍水胁迫诱导的基因,在耐渍自交系HZ32以及渍水敏感自交系Mo17中对其启动子进行测序分析,发现其启动子序列中含有多个厌氧响应顺式元件和激素响应元
转座因子(transposable element, TEs)是基因组DNA序列中的可移动因子。转座子在植物的适应性进化和表型变异中发挥重要作用,包括产生等位基因多样性、诱导结构变异和调控基因表
参考文献 References
REN B Z,DONG S T,ZHAO B,et al.Responses of nitrogen metabolism,uptake and translocation of maize to waterlogging at different growth stages[J/OL].Frontiers in plant science,2017,8:1216 [2023-03-18].https://doi.org/10.3389/fpls.2017.01216. [百度学术]
YE H,SONG L,CHEN H T,et al.A major natural genetic variation associated with root system architecture and plasticity improves waterlogging tolerance and yield in soybean[J].Plant,cell & environment,2018,41(9):2169-2182. [百度学术]
SAKUMA Y,LIU Q,DUBOUZET J G,et al.DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs,transcription factors involved in dehydration- and cold-inducible gene expression[J].Biochemical and biophysical research communications,2002,290(3):998-1009. [百度学术]
SRIVASTAVA R,KUMAR R.The expanding roles of APETALA2/ethylene responsive factors and their potential applications in crop improvement[J].Briefings in functional genomics,2018,18(4):240-254. [百度学术]
GASCH P,FUNDINGER M,MÜLLER J T,et al.Redundant ERF-VII transcription factors bind to an evolutionarily conserved cis-motif to regulate hypoxia-responsive gene expression in Arabidopsis[J].The plant cell,2016,28(1):160-180. [百度学术]
XU K N,MACKILL D J.A major locus for submergence tolerance mapped on rice chromosome 9[J].Molecular breeding,1996,2(3):219-224. [百度学术]
XU K N,XU X,FUKAO T,et al.Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice[J].Nature,2006,442(7103):705-708. [百度学术]
JUNG K H,SEO Y S,WALIA H,et al.The submergence tolerance regulator Sub1A mediates stress-responsive expression of AP2/ERF transcription factors[J].Plant physiology,2010,152(3):1674-1692. [百度学术]
HATTORI Y,NAGAI K,FURUKAWA S,et al.The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water[J].Nature,2009,460(7258):1026-1030. [百度学术]
ZHANG Y,LI J,CHEN S J,et al.An APETALA2/ethylene responsive factor,OsEBP89 knockout enhances adaptation to direct-seeding on wet land and tolerance to drought stress in rice[J].Molecular genetics and genomics,2020,295(4):941-956. [百度学术]
JISHA V,DAMPANABOINA L,VADASSERY J,et al.Overexpression of an AP2/ERF type transcription factor OsEREBP1 confers biotic and abiotic stress tolerance in rice[J/OL].PLoS One,2015,10(6):e0127831 [2023-03-18].https://doi.org/10.1371/journal.pone.0127831. [百度学术]
WEI X N,XU H J,RONG W,et al.Constitutive expression of a stabilized transcription factor group Ⅶethylene response factor enhances waterlogging tolerance in wheat without penalizing grain yield[J].Plant,cell & environment,2019,42(5):1471-1485. [百度学术]
YU F,LIANG K,FANG T,et al.A group Ⅶ ethylene response factor gene,ZmEREB180,coordinates waterlogging tolerance in maize seedlings[J].Plant biotechnology journal,2019,17(12):2286-2298. [百度学术]
耿存娟.淹水胁迫下玉米幼苗的转录组分析及耐渍候选基因克隆[D].武汉:华中农业大学,2014.GENG C J.Transcriptome analysis of maize seedling under waterlogging stress and cloning of candidate gene for waterlogging tolerance[D].Wuhan:Huazhong Agricultural University,2014 (in Chinese with English abstract). [百度学术]
贾海涛.玉米行粒数主效QTL kernel number per row6(KNR6)的克隆与功能解析[D].武汉:华中农业大学,2018.JIA H T.Cloning and function characterization of a major QTL kernel number per row6(KNR6)in Zea mays[D] .Wuhan:Huazhong Agricultural University,2018 (in Chinese with English abstract). [百度学术]
余锋.玉米苗期耐渍遗传基础解析[D].武汉:华中农业大学,2016.YU F.Dissecting the genetic basis of waterlogging tolerance at maize seedling stage[D].Wuhan:Huazhong Agricultural University,2016 (in Chinese with English abstract). [百度学术]
WANG Y H,WAN L Y,ZHANG L X,et al.An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice[J].Plant molecular biology,2012,78(3):275-288. [百度学术]
LOURENÇO T F,SERRA T S,CORDEIRO A M,et al.The rice E3-ubiquitin ligase high expression of osmotically responsive gene 1 modulates the expression of root meander curling,a gene involved in root mechanosensing,through the interaction with two ethylene-response factor transcription factors[J].Plant physiology,2015,169(3):2275-2287. [百度学术]
DJEMAL R , KHOUDI H. Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (Triticum turgidum L. subsp. durum)[J]. Protoplasma, 2015, 252: 1461-1473. [百度学术]
XIONG H Y,YU J P,MIAO J L,et al.Natural variation in OsLG3 increases drought tolerance in rice by inducing ROS scavenging[J].Plant physiology,2018,178(1):451-467. [百度学术]
LIN C C,CHAO Y T,CHEN W C,et al.Regulatory cascade involving transcriptional and N-end rule pathways in rice under submergence[J].PNAS,2019,116(8):3300-3309. [百度学术]
PEÑA-CASTRO J M,VAN ZANTEN M,LEE S C,et al.Expression of rice SUB1A and SUB1C transcription factors in Arabidopsis uncovers flowering inhibition as a submergence tolerance mechanism[J].The plant journal,2011,67(3):434-446. [百度学术]
AL-ABDALLAT A M,AL-DEBEI H S,AYAD J Y,et al.Over-expression of SlSHN1 gene improves drought tolerance by increasing cuticular wax accumulation in tomato[J].International journal of molecular sciences,2014,15(11):19499-19515. [百度学术]
DJEMAL R,MILA I,BOUZAYEN M,et al.Molecular cloning and characterization of novel WIN1/SHN1 ethylene responsive transcription factor HvSHN1 in barley (Hordeum vulgare L.)[J].Journal of plant physiology,2018,228:39-46. [百度学术]
LIU Y Y,WEI M J,HOU C,et al.Functional characterization of Populus PsnSHN2 in coordinated regulation of secondary wall components in tobacco[J/OL].Scientific reports,2017,7(1):42 [2023-03-18].https://doi.org/10.1038/s41598-017-00093-zs. [百度学术]
ZHANG J,YANG J J,YANG Y,et al.Transcription factor CsWIN1 regulates pericarp wax biosynthesis in cucumber grafted on pumpkin [J/OL].Frontiers in plant science,2019,10: 1564 [2023-03-18].https://doi.org/10.3389/fpls.2019.01564. [百度学术]
KUROKAWA Y,NAGAI K,HUAN P D,et al.Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance[J].New phytologist,2018,218(4):1558-1569. [百度学术]
黄敏,陈威,范金香,等.玉米淹水诱导表达ZmERF5基因启动子的克隆与生物信息学分析[J].湖北农业科学,2013,52(23):5880-5883.HUANG M,CHEN W,FAN J X,et al.The cloning and bioinformatics analysis of waterlogging inducible ZmERF5 promoter in maize[J].Hubei agricultural sciences,2013,52(23):5880-5883 (in Chinese with English abstract). [百度学术]
DU H W,ZHANG Z X,LI J S.Isolation and functional characterization of a waterlogging-induced promoter from maize[J].Plant cell reports,2010,29(11):1269-1275. [百度学术]
WALKER J C,HOWARD E A,DENNIS E S,et al.DNA sequences required for anaerobic expression of the maize alcohol dehydrogenase 1 gene[J].PNAS,1987,84(19):6624-6628. [百度学术]
BOURQUE G.Transposable elements in gene regulation and in the evolution of vertebrate genomes[J].Current opinion in genetics & development,2009,19(6):607-612. [百度学术]
LISCH D.How important are transposons for plant evolution?[J].Nature reviews genetics,2013,14(1):49-61. [百度学术]
SALVI S,SPONZA G,MORGANTE M,et al.Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize[J].PNAS,2007,104(27):11376-11381. [百度学术]
STUDER A,ZHAO Q,ROSS-IBARRA J,et al.Identification of a functional transposon insertion in the maize domestication gene Tb1[J].Nature genetics,2011,43(11):1160-1163. [百度学术]
ZHOU L L,ZHANG J Y,YAN J B,et al.Two transposable element insertions are causative mutations for the major domestication gene teosinte branched 1 in modern maize[J].Cell research,2011,21(8):1267-1270. [百度学术]