摘要
为探讨鄱阳湖季节性淹水湿地土壤有机碳的空间分布特征及遥感方法在土壤有机碳估算中的适用性,依托江西鄱阳湖国家级自然保护区,选择蚌湖、常湖池和泗洲头湿地为研究区域,基于野外实测土壤有机碳含量数据和同期的Landsat8 OLT遥感影像,采用遥感图像处理和GIS技术提取影像中遥感特征因子,构建遥感参数与土壤有机碳的一元线性、一元曲线和多元逐步线性回归模型,通过对比分析选择最优遥感估算模型,预测鄱阳湖季节性淹水湿地表层(0~20 cm)土壤有机碳含量。结果表明,提取了影像中33个遥感特征因子,包括7个波段的反射率值(b1~b7)、4个植被指数(NDVI、SR、SAVI、EVI)、第一主成分特征(PCA1)、单波段纹理特征的均值(MEAN)、熵(ENT)和相关性(COR),其中纹理特征是研究区土壤有机碳含量预测的重要遥感因子,其与土壤有机碳含量构建的多元逐步线性回归模型拟合效果最优,模型决定系数
湿地土壤有机碳(soil organic carbon,SOC)是湿地生态系统环境响应的重要指标和联系湿地系统内外部物质循环的重要纽带,直接影响湿地生态系统生产力,在湿地生态系统和全球碳循环中具有重要作
鄱阳湖是中国第一大淡水湖,具有丰水期和枯水期交替出现的独特水文变化规律,湿地类型多样,生态环境复杂,生物多样性丰富,使得鄱阳湖湿地碳循环研究具有显著的区域特色,但也具有不确定
研究区为江西鄱阳湖国家级自然保护区内的蚌湖、常湖池和泗洲头(28°22′N~29°45′N,115°47′E~116°45′E)。该研究区属于亚热带湿润季风气候,夏季潮热,冬季干冷,1月平均气温最低为5.6 ℃,7月平均气温最高为29.7 ℃,年均气温17 ℃左右,雨量充沛,年均降水量1 350~2 150 mm,多集中在4—8

图1 研究区地理位置及样点布置
Fig.1 Geographical location and sample layout of the research area
1)土壤样品采集与处理。2021年1月17—19日前往研究区进行实地调查观测和样品采集,研究区按照地形(水位梯度)从岸边到湖心适当选择3~5个样带,每个样带间隔150 m以上,进行GPS定位,并立桩固定。在每条样带上设置5个样地,每个样点设定30 m×30 m样方5个,作为重复。选择具有代表性的土壤样方,利用五点采样法采集表层(0~20 cm)土壤样品,除去土壤表层的石块、凋谢物、根系等异物后混合成1个样品,同时用GPS记录经纬度信息。本次调查共选取了48个样方地进行采样(蚌湖16个、常湖池12个、泗洲头20个)(
2)遥感数据与预处理。遥感数据为来自地理空间数据云(http://www.gscloud.cn/)的Landsat8 OLT卫星数字影像,行列号为122/40,成像时间与现场采样时间同步,影像对研究区域覆盖率为100%,影像清晰,分辨率为30 m,目标区域无云量,数据良好。对获取的影像进行预处理,利用ENVI5.3依次进行辐射定标、大气校正、几何精校正,最后按研究区的边界将影像进行裁剪,得到研究区的遥感影像(
3)遥感特征因子提取。在预处理完的影像上提取遥感特征因子,主要包括:7个单波段反射率值(b1~b7);4个植被指数:归一化植被指数(NDVI)、比值植被指数(SR)、土壤调节植被指数(SAVI)、增强型植被指数(EVI);主成分特征第一个分量(PCA1)和7个单波段纹理特征因子的均值(MEAN)、熵(ENT)、相关性(COR)。主要的植被指数计算公式如
植被指数 Vegetation index | 计算公式 Calculation formula |
---|---|
NDVI | |
SR | |
SAVI | |
EVI |
注: 表中ρλ表示波长λ处光谱反射率,NIR、Red、Blu分别代表Landsat8 OLT卫星近红外波段、红光波段和蓝光波段。Note:In formula, the ρλ represents spectral reflectance at λ wavelength, NIR, Red and Blu represent near-infrared band, red band and blue band of Landsat8 OLT satellite, respectively.
4)回归建模。利用SPSS软件进行相关性分析和回归模型构建。选取80%样本的SOC含量与影像提取的遥感特征因子进行相关分析,筛选相关性较强的遥感特征因子参与模型构建。在相关性分析的基础上,以相关性较强的遥感特征因子为自变量,以SOC含量作为因变量,分别建立一元线性、一元曲线和多元逐步线性回归模型,其中一元曲线模型类型有二次型、三次型、幂型、增长型和指数型。
5)模型精度验证。将剩余的20%样本数据对构建的遥感预测模型进行精度验证。选取模型决定系数
(1) |
RME= | (2) |
RMSE= | (3) |
从影像中提取相关遥感特征因子值(
遥感特征因子 Remote sensing feature factors | 常湖池 Changhu Lake | 蚌湖 Banghu Lake | 泗洲头 Sizhoutou | |
---|---|---|---|---|
单波段反射率值 Single band reflectance value | b1 | 570.67±9.77b | 568.08±5.68b | 655.69±12.66a |
b2 | 486.08±10.66b | 479.69±8.07b | 598.00±18.84a | |
b3 | 619.75±16.69b | 628.31±16.53b | 816.38±25.84a | |
b4 | 741.50±22.54b | 690.00±17.41b | 1 046.69±61.71a | |
b5 | 1 661.92±49.45b | 1 819.62±117.01b | 2 248.46±70.19a | |
b6 | 2 038.33±39.96b | 1 937.62±160.93b | 2 386.15±70.20a | |
b7 | 1 364.92±25.99b | 1 230.77±105.47b | 1 661.00±85.52a | |
植被指数 Vegetation index | NDVI | 0.38±0.03a | 0.44±0.02a | 0.37±0.03a |
SR | 2.29±0.13a | 2.63±0.15a | 2.30±0.23a | |
SAVI | 0.57±0.04a | 0.66±0.03a | 0.55±0.05a | |
EVI | 0.94±0.07ab | 1.18±0.06a | 0.80±0.12b | |
主成分特征第一分量 Principal component characteristic first component | PCA1 | 1 998.75±33.42b | 1 960.12±200.66b | 2 809.55±84.81a |
单波段纹理特征的均值、相关性和熵 Mean value, correlation and entropy of single band texture features | b1MEAN | 20.80±0.43b | 20.58±0.21b | 22.68±0.87a |
b1ENT | 1.56±0.07ab | 1.37±0.11b | 1.66±0.10a | |
b1COR | 0.45±0.10a | 0.13±0.13a | 0.41±0.14a | |
b2MEAN | 16.76±0.44b | 16.38±0.24b | 19.50±0.91a | |
b2ENT | 1.43±0.10b | 1.43±0.14b | 1.93±0.04a | |
b2COR | 0.52±0.12a | 0.15±0.13a | 0.48±0.14a | |
b3MEAN | 13.80±0.46b | 13.78±0.33b | 17.03±0.79a | |
b3ENT | 1.46±0.12b | 1.40±0.13b | 1.81±0.06a | |
b3COR | 0.51±0.13a | 0.35±0.11a | 0.44±0.15a | |
b4MEAN | 10.95±1.22b | 11.76±0.22b | 17.04±0.96a | |
b4ENT | 1.36±0.16b | 1.47±0.09b | 1.96±0.05a | |
b4COR | 0.46±0.09ab | 0.30±0.10b | 0.60±0.09a | |
b5MEAN | 19.46±2.24b | 28.24±1.75a | 29.83±0.68a | |
b5ENT | 1.91±0.05a | 1.95±0.08a | 2.03±0.05a | |
b5COR | 0.15±0.13b | 0.51±0.06a | 0.56±0.11a | |
b6MEAN | 24.36±2.55ab | 23.09±6.59b | 27.01±4.17a | |
b6ENT | 2.09±0.02a | 1.88±0.08b | 1.98±0.06ab | |
b6COR | 0.51±0.09a | 0.45±0.10a | 0.53±0.10a | |
b7MEAN | 14.75±1.44ab | 15.69±1.12b | 19.03±1.05a | |
b7ENT | 1.70±0.17a | 1.77±0.10a | 1.97±0.05a | |
b7COR | 0.59±0.07a | 0.34±0.11a | 0.46±0.12a |
注: 不同小写字母表示遥感特征因子在不同湿地之间差异显著(P<0.05)。Note:Different lowercase letters indicate significant differences in remote sensing feature factors between different wetlands(P<0.05).
相关分析结果(
遥感特征因子 Remote sensing feature factors | 相关系数 Correlation coefficients | 遥感特征因子 Remote sensing feature factors | 相关系数 Correlation coefficients |
---|---|---|---|
b1 |
-0.71 | b1MEAN |
-0.68 |
b2 |
-0.72 | b2MEAN |
-0.72 |
b3 |
-0.74 | b2ENT |
-0.53 |
b4 |
-0.69 | b3MEAN |
-0.78 |
b7 |
-0.45 | b3ENT |
-0.62 |
NDVI |
0.43 | b4MEAN |
-0.68 |
SAVI |
0.43 | b4ENT |
-0.47 |
EVI |
0.49 | b5COR |
-0.42 |
SR |
0.34 | b7MEAN |
-0.39 |
PCA1 |
-0.38 |
注: **表示在0.01水平上显著相关,*表示在0.05水平上显著相关。Note: ** represents a significant correlation at the 0.01 level,* represents a significant correlation at the 0.05 level.
波段1~4反射率值(b1、b2、b3、b4)、波段2和波段3纹理特征的均值(b2MEAN、b3MEAN)分别进入SOC含量一元线性和一元曲线回归模型构建中。结果表明,由筛选出的6个遥感特征因子构建的一元线性回归模型决定系数为0.484~0.617,其中,b3MEAN与SOC含量一元线性回归拟合效果最佳(,
自变量 Arguments | 一元线性回归方程 Unary linear regression models | Sig | 自变量 Arguments | 一元曲线回归方程 Unary curve regression models | Sig | ||
---|---|---|---|---|---|---|---|
b1 | 0.514 | 0.000 | b1 | 0.636 | 0.000 | ||
b2 | 0.525 | 0.000 | b2 | 0.707 | 0.000 | ||
b3 | 0.549 | 0.000 | b3 | 0.675 | 0.000 | ||
b4 | 0.484 | 0.000 | b4 | 0.718 | 0.000 | ||
b2MEAN | 0.531 | 0.000 | b2MEAN | 0.665 | 0.000 | ||
b3MEAN | 0.617 | 0.000 | b3MEAN | 0.710 | 0.000 |
在构建的一元曲线回归模型中发现,对于每个自变量构建的多种曲线方程而言,增长型和指数型方程的拟合效果整体上要优于二次、三次方程和幂型方程,进一步筛选每一自变量的最优一元曲线模型。结果表明,决定系数
选取与SOC含量具有显著相关性的19个遥感特征因子(
( | (4) |
采用预留的验证样本数据对构建的3种回归模型进行精度检验,分别计算其平均相对误差(MRE)和均方根误差(RMSE),对比3种模型的检验因子(
预测模型Prediction models | Sig | MRE/% | RMSE | |
---|---|---|---|---|
0.617 | 0.000 | 64.38 | 3.450 | |
0.718 | 0.000 | 38.11 | 4.430 | |
0.772 | 0.000 | 45.53 | 2.417 |

图2 3种回归模型散点图
Fig.2 Scatter plots of three regression models

图3 预留样本实测值与估算值散点图
Fig.3 Scatter plot of measured and estimated values of reserved samples
基于构建的SOC含量最优预测模型,利用GIS空间分析功能计算并反演研究区表层SOC含量及其空间分布特征显示(

图4 研究区表层SOC含量空间分布
Fig.4 Spatial distribution of surface soil organic carbon content in the research area
遥感数据通过波段反射率和植被指数以及一些土壤指数等,可以提供与植被生长和土壤状况有关的生物物理特
影响SOC的因素众多,对于不同植被群落、水文节律、地形地貌以及土壤理化因子与有机碳之间的复杂关系以及这些关系在不同空间尺度上的异质性都是导致不同区域SOC含量差异显著的重要因
大区域尺度上湿地SOC含量的变异受气候、植被覆盖状况、成土母质和水文条件等影响较大,不同湿地生态系统SOC积累情况差异显
综上,本研究提取了影像中7个波段的反射率值(b1~b7)、4个植被指数(NDVI、SR、SAVI、EVI)、第一主成分特征(PCA1)、单波段纹理特征的均值(MEAN)、熵(ENT)和相关性(COR)共33个遥感特征因子。多元逐步线性回归方程Y=42.708-2.817Xb3MEAN-4.887Xb5COR+0.667Xb7MEAN(
参考文献References
CAO Q Q,WANG H,ZHANG Y R,et al.Factors affecting distribution patterns of organic carbon in sediments at regional and national scales in China[J/OL].Scientific reports,2017,7(1):5497[2023-07-05].https://doi.org/10.1038/s41598-017-06035-z. [百度学术]
吴南锟,刘健,郑文英,等.马尾松林地土壤有机碳遥感估测[J].东北林业大学学报,2020,48(1):68-73.WU N K,LIU J,ZHENG W Y,et al.Remote sensing estimation of soil organic carbon in Masson pine forest land[J].Journal of Northeast Forestry University,2020,48(1):68-73(in Chinese with English abstract). [百度学术]
帅艳菊.湖北省主要稻作模式温室气体排放模拟研究[D].武汉:华中农业大学,2021.SHUAI Y J.Simulation research on greenhouse gas emission of major rice-based cropping systems in Hubei Province[D].Wuhan:Huazhong Agricultural University,2021(in Chinese with English abstract). [百度学术]
郭彦茹.清澜港红树林湿地土壤有机碳空间分布及碳储量遥感估算研究[D].北京:中国林业科学研究院,2014.GUO Y R.Study on mangrove wetland soil organic carbon spatial distribution and carbon storage estimates by remote sensing of Qingland Harbours[D].Beijing:Chinese Academy of Forestry,2014(in Chinese with English abstract). [百度学术]
王燕.半干旱地区土壤有机碳遥感估算研究[D].北京:中国林业科学研究院,2018.WANG Y.Estimation of soil organic carbon in semi-arid area by remote sensing[D].Beijing:Chinese Academy of Forestry,2018(in Chinese with English abstract). [百度学术]
赵思萌.基于Landsat8的土壤有机碳遥感反演模型研究[D].太谷:山西农业大学,2020.ZHAO S M.Study on remote sensing inversion model of soil organic carbon based on Landsat8[D].Taigu:Shanxi Agricultural University,2020(in Chinese with English abstract). [百度学术]
钱海燕,周杨明,谢冬明,等.鄱阳湖季节性积水湿地表层土壤碳氮高程梯度分布特征及其影响因素[J].江西农业大学学报,2021,43(5):1199-1210.QIAN H Y,ZHOU Y M,XIE D M,et al.Distribution characteristics of surface soil carbon and nitrogen along with the elevation gradient and their influencing factors in seasonal waterlogged wetlands of Poyang Lake[J].Acta Agriculturae Universitatis Jiangxiensis,2021,43(5):1199-1210(in Chinese with English abstract). [百度学术]
袁继红,任琼,周莉荫,等.鄱阳湖湿地不同环境条件土壤有机碳组分特征及其影响因素[J].生态学杂志,2023,42(6):1323-1329.YUAN J H,REN Q,ZHOU L Y,et al.Characteristics and influencing factors of soil organic carbon components under different environmental conditions in Poyang Lake wetland[J].Chinese journal of ecology,2023,42(6):1323-1329(in Chinese with English abstract). [百度学术]
江玉梅,胡琳玉,林娣,等.鄱阳湖湿地四种植物群落土壤碳含量和酶活性[J].湿地科学,2017,15(6):802-808.JIANG Y M,HU L Y,LIN D,et al.Soil carbon contents and enzyme activities of 4 kinds of vegetation communities of Poyang Lake wetlands[J].Wetland science,2017,15(6):802-808(in Chinese with English abstract). [百度学术]
陈莎莎,钱海燕,周杨明,等.鄱阳湖季节性淹水湿地土壤有机碳动态模拟与预测[J].江西师范大学学报(自然科学版),2022,46(5):542-550.CHEN S S,QIAN H Y,ZHOU Y M,et al.The dynamic simulation and prediction of soil organic carbon in seasonally flooded wetlands in Poyang Lake[J].Journal of Jiangxi Normal University(natural science edition),2022,46(5):542-550(in Chinese with English abstract). [百度学术]
江叶枫.鄱阳湖平原典型小流域不同农业土地利用方式对土壤碳氮空间分布的影响[D].南昌:江西农业大学,2019.JIANG Y F.Effects of different agricultural land use types on spatial distribution of soil organic carbon and total nitrogen in a typical small watershed of Poyang Lake Plain,China[D].Nanchang:Jiangxi Agricultural University,2019(in Chinese with English abstract). [百度学术]
翟茂彤.基于原位vis-NIR高光谱的鄱阳湖湿地土壤有机碳预测研究[D].南昌:江西财经大学,2020.ZHAI M T.Prediction of soil organic carbon in Poyang Lake wetland based on in-situ vis-NIR hyperspectral data[D].Nanchang:Jiangxi University of Finance and Economics,2020(in Chinese with English abstract). [百度学术]
崔乾,苗雨青,周光,等.鄱阳湖湿地典型植被群落土壤养分有效性特征[J].安徽师范大学学报(自然科学版),2020,43(1):80-85.CUI Q,MIAO Y Q,ZHOU G,et al.The characteristics of soil available nutrients under typical plant communities in Poyang Lake wetland[J].Journal of Anhui Normal University (natural science edition),2020,43(1):80-85(in Chinese with English abstract). [百度学术]
谢冬明,温丽,易青,等.基于景观尺度下的鄱阳湖湿地浅层土有机碳的空间特征[J].生态科学,2020,39(1):101-109.XIE D M,WEN L,YI Q,et al.Spatial characteristic of SOC in surface soil in different landscape of Poyang Lake wetlands[J].Ecological science,2020,39(1):101-109(in Chinese with English abstract). [百度学术]
孙清凡,钱海燕,陈莎莎,等.鄱阳湖泗洲头湿地土壤粒度组成及其对有机碳的影响[J].华中农业大学学报,2023,42(1):197-204.SUN Q F,QIAN H Y,CHEN S S,et al.Composition of soil grain size and its effect on organic carbon in Sizhoutou wetland of Poyang Lake[J].Journal of Huazhong Agricultural University,2023,42(1):197-204(in Chinese with English abstract). [百度学术]
LIN C,ZHU A X,WANG Z F,et al.The refined spatiotemporal representation of soil organic matter based on remote images fusion of Sentinel-2 and Sentinel-3[J/OL].International journal of applied earth observation and geoinformation,2020,89:102094[2023-07-05].https://doi.org/10.1016/j.jag.2020.102094. [百度学术]
邓永鹏,朱洪芬,丁皓希,等.黄河中游退耕还林地土壤有机碳含量的高光谱估测:以大宁县为例[J].山西农业科学,2022,50(6):869-877.DENG Y P,ZHU H F,DING H X,et al.Estimation of soil organic carbon in returning cropland to forest in the middle reaches of the Yellow River based on hyperspectral data:take Daning County as an example[J].Journal of Shanxi agricultural sciences,2022,50(6):869-877 (in Chinese with English abstract). [百度学术]
陈增文,陈光水,钟羡芳,等.基于高光谱遥感的土壤有机碳含量估算研究进展[J].亚热带资源与环境学报,2009,4(1):78-87.CHEN Z W,CHEN G S,ZHONG X F,et al.Review on estimations of soil organic carbon content based on hyperspectral measurements[J].Journal of subtropical resources and environment,2009,4(1):78-87(in Chinese with English abstract). [百度学术]
王琼.基于遥感技术的棉田土壤质量评价研究[D].石河子:石河子大学,2013.WANG Q.The assessment of soil quality on cotton field based on remote sensing technology[D].Shihezi:Shihezi University,2013(in Chinese with English abstract). [百度学术]
张永彬,张阔,满卫东,等.基于遥感指标的深圳市生态环境质量动态研究[J].环境污染与防治,2021,43(7):909-914.ZHANG Y B,ZHANG K,MAN W D,et al.Dynamic research on the ecological environment quality of Shenzhen based on remote sensing indicator[J].Environmental pollution & control,2021,43(7):909-914(in Chinese with English abstract). [百度学术]
古丽娜尔·索尔达汗.吉林省中部城市用地扩张对耕层土壤有机碳分布的影响[D].长春:吉林大学,2022.Gulinaer Suoerdahan.Effects of urban land expansion on the distribution of soil organic carbon of arable layers in central Jilin Province[D].Changchun:Jilin University,2022(in Chinese with English abstract). [百度学术]
ANWER M R,KHAN S F,WEIJER D V J,et al.Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification[J].ISPRS journal of photogrammetry and remote sensing,2018,138:74-85. [百度学术]
王经波,郑利林,郭宇菲,等.鄱阳湖湿地土壤有机碳空间分布及其影响因素[J].长江流域资源与环境,2022,31(4):915-926.WANG J B,ZHENG L L,GUO Y F,et al.Spatial distribution of soil organic carbon and its influencing factors in Poyang Lake wetland[J].Resources and environment in the Yangtze Basin,2022,31(4):915-926(in Chinese with English abstract). [百度学术]
谢冬明,易青,周国宏,等.鄱阳湖湿地洲滩前缘浅层土壤碳-氮-磷的时空特征[J].江西师范大学学报(自然科学版),2020,44(1):82-88.XIE D M,YI Q,ZHOU G H,et al.The spatio-temporal characteristics of carbon,nitrogen and phosphorus in surface soil of tideland in Poyang Lake wetlands[J].Journal of Jiangxi Normal University (natural science edition),2020,44(1):82-88(in Chinese with English abstract). [百度学术]
胡敏杰,任洪昌,邹芳芳,等.闽江河口淡水、半咸水沼泽土壤碳氮磷分布及计量学特征[J].中国环境科学,2016,36(3):917-926.HU M J,REN H C,ZOU F F,et al.Spatiotemporal distribution and stoichiometry characteristics of carbon,nitrogen and phosphorus in surface soils of freshwater and brackish marshes in the Min River Estuary[J].China environmental science,2016,36(3):917-926(in Chinese with English abstract). [百度学术]
张剑,王利平,谢建平,等.敦煌阳关湿地土壤有机碳分布特征及其影响因素[J].生态学杂志,2017,36(9):2455-2464.ZHANG J,WANG L P,XIE J P,et al.Distribution and influencing factors of soil organic carbon in Dunhuang Yangguan wetland[J].Chinese journal of ecology,2017,36(9):2455-2464(in Chinese with English abstract). [百度学术]
王勇辉,焦黎.艾比湖湿地土壤有机碳及储量空间分布特征[J].生态学报,2016,36(18):5893-5901.WANG Y H,JIAO L.The characteristics and storage of soil organic carbon in the Ebinur Lake wetland[J].Acta ecologica sinica,2016,36(18):5893-5901 (in Chinese with English abstract). [百度学术]
黄昕琦,李琳,吕烨,等.内蒙古乌梁素海湿地土壤有机碳组成与碳储量[J].湿地科学,2015,13(2):252-257.HUANG X Q,LI L,LU Y,et al.Composition and storage of organic carbon in soils of in Ulansuhai wetlands in Inner Mongolia autonomous region[J].Wetland science,2015,13(2):252-257(in Chinese with English abstract). [百度学术]
李苏青,管冬兴,李希媛,等.天津滨海湿地土壤有机碳和有效磷的盐度响应及影响因素[J/OL].生态学杂志:1-13[2023-07-05].http://kns.cnki.net/kcms/detail/21.1148.Q.20230309.1047.006.html. LI S Q,GUAN D X,LI X Y,et al.Changes in response to salinity and influencing factors of soil organic carbon and available phosphorus in Tianjin coastal wetland[J/OL].Chinese Journal of ecology:1-13[2023-07-05].http://kns.cnki.net/kcms/detail/21.1148.Q.20230309.1047.006.html(in Chinese with English abstract). [百度学术]
訾园园,郗敏,孔范龙,等.胶州湾滨海湿地土壤有机碳时空分布及储量[J].应用生态学报,2016,27(7):2075-2083.ZI Y Y,XI M,KONG F L,et al.Temporal and spatial distribution of soil organic carbon and its storage in the coastal wetlands of Jiaozhou Bay,China[J].Chinese journal of applied ecology,2016,27(7):2075-2083(in Chinese with English abstract). [百度学术]
李瑾璞,于秀波,夏少霞,等.白洋淀湿地区土壤有机碳密度及储量的空间分布特征[J].生态学报,2020,40(24):8928-8935.LI J P,YU X B,XIA S X,et al.The spatial distribution of soil organic carbon density and carbon storage in Baiyangdian wetland[J].Acta ecologica sinica,2020,40(24):8928-8935 (in Chinese with English abstract). [百度学术]
王文波,白冰,张鹏骞,等.若尔盖湿地土壤有机碳含量和密度的分布特征[J].生态学杂志,2021,40(11):3523-3530.WANG W B,BAI B,ZHANG P Q,et al.Distribution characteristics of soil organic carbon content and density in Zoige wetland[J].Chinese journal of ecology,2021,40(11):3523-3530 (in Chinese with English abstract). [百度学术]
陈良帅,黄新亚,薛丹,等.川西高原泥炭沼泽土壤有机碳分布特征及其影响因素[J].应用与环境生物学报,2022,28(2):267-275.CHEN L S,HUANG X Y,XUE D,et al.Distribution characteristics of soil organic carbon and its influencing factors in the peatlands of Western Sichuan Plateau,China[J].Chinese journal of applied and environmental biology,2022,28(2):267-275(in Chinese with English abstract). [百度学术]
贾海锋,罗怀秀,胡金明,等.纳帕海湿地区表土有机碳及其活性组分的空间分异[J].山地学报,2014,32(5):624-632.JIA H F,LUO H X,HU J M,et al.Spatial variability of topsoil organic carbon and labile components in Napahai wetland,northwest of Yunnan,China[J].Mountain research,2014,32(5):624-632(in Chinese with English abstract). [百度学术]
张文菊,吴金水,肖和艾,等.三江平原典型湿地剖面有机碳分布特征与积累现状[J].地球科学进展,2004,19(4):558-563.ZHANG W J,WU J S,XIAO H A,et al.Profile distribution characteristics and accumulation of organic carbon in typical wetlands in Sanjiang Plain[J].Advance in earth sciences,2004,19(4):558-563(in Chinese with English abstract). [百度学术]
闫欣,牛振国.白洋淀流域湿地连通性研究[J].生态学报,2019,39(24):9200-9210.YAN X,NIU Z G.Preliminary study on wetland connectivity in Baiyangdian Basin[J].Acta ecologica sinica,2019,39(24):9200-9210(in Chinese with English abstract). [百度学术]