摘要
本文基于诱致性技术变迁理论分析地块规模约束下的化肥减施逻辑,利用2020年中国乡村振兴综合调查(CRRS)7个省(自治区)的玉米种植户数据,运用两阶段最小二乘法(two-stage least squares regression,2SLS)分析地块规模对化肥投入的影响。实证结果表明:扩大地块规模可以降低化肥投入强度,提高化肥投入效率。异质性分析发现,与小农户相比,规模农户扩大地块规模对化肥减施的影响更大;对于化肥投入强度越高、投入效率越低的农户,扩大地块规模对化肥投入的影响越大。进一步的分析发现,机械作业替代农业劳动,是扩大地块规模促进化肥减施的作用机制。
改革开放以来,我国农业取得了巨大发展,农业综合生产能力不断提升。FAO的数据显示,2021年,我国以全球7.79%的耕地,养活了18.03%的人口,粮食生产实现连续丰收,多年粮食产量稳定在6.5亿t以上。化肥是农业增长的重要驱动力,在改革开放初期,化肥投入贡献了超过1/3的农业产出增
诱致性变迁理论认为,农业资源禀赋会诱致农业技术变
上述研究主要关注经营规模,但“肥瘦搭配、按人均分”的承包制度引发的耕地细碎化问题十分突出,承包耕地平均地块面积不足0.1 h
现有文献对耕地禀赋与化肥投入的关系进行了深入分析,部分以粮食作物为研究对象,考察经营规模和地块规模对化肥投入的影响,为本研究提供了重要借鉴。但存在2个方面的不足:一是多数研究主要关注化肥投入强度,关注化肥投入效率问题的研究相对较少;二是在关注粮食作物的相关研究中,关注水稻化肥投入的研究较
速水佑次郎与弗农·拉坦的诱致性技术变迁理论认为,农业要素禀赋会诱致农业技术变迁,不同要素禀赋的国家应当选取差异化的农业增长路
为了保证农业产出不下降,提高农业劳动生产率,需要使用其他要素替代较为昂贵的劳动投入,主要方式包括以下2种:一是发展“劳动节约型”技术,通过使用机械作业来替代农业劳动投入。然而,农业机械购置门槛高、资产专用性强,具有较强的“不可分性”。以租赁、共用等形式可以分摊购置机械的高昂投入,缓解耕地经营规模的限制。在“肥瘦搭配、按人均分”的承包制度下,我国耕地细碎化问题十分突出,这会影响机械作业效率,提高单位面积机械作业成本,阻碍机械作业替代农业劳动投入。二是利用“土地节约型”技术,通过增加化肥、农药等农业化学品投入,减少因劳动投入下降带来的产出损失。与机械作业替代农业劳动投入相比,化肥、农药等农业化学投入品的价格更低,且受到耕地细碎化的影响较小,农民倾向于在短期内增加化肥投入量以纾解农业生产中劳动力投入不足的掣
据此,提出研究假说1:扩大地块规模可以促进化肥减施。

图1 理论分析图
Fig.1 Theoretical analysis figure
此外,从机械作业来看,与化肥投入相关的机械作业包括2个部分:一是使用机械施肥。与人工施肥相比,机械施肥的标准化程度高,可以实现定量控制,使得施肥更加均匀、精确,避免不均匀施肥导致的化肥过量投
据此,提出研究假说2:在地块规模对化肥投入的影响中,机械作业发挥正向调节作用。
为检验地块规模对化肥投入的影响,即检验假说1,构建以下基准模型:
(1) |
其中,表示农户的化肥投入情况,使用化肥投入强度与化肥投入效率来衡量,为农户种植玉米的地块规模,为控制变量。为截距项,、为待估计系数,为随机扰动项。为减小量纲,实证分析中对地块规模取自然对数。
为进一步检验地块规模对化肥投入的影响机制,即检验假说2,构建以下模型:
(2) |
其中,表示机械作业,其余变量设定和式(1)相同。为克服引入交互项可能带来的共线性问题,对交互项做了中心化处理。
在研究农户行为决策及其影响研究时,需要关注内生性问
研究数据来源于中国社会科学院组织的中国乡村振兴调查(CRRS)数据库。2020年8—9月,CRRS共在全国10个省份开展,采用分层抽样与随机抽样相结合的方式,共抽取50个县(区)、150个乡镇、308个行政村的3 833户农户。调查内容包括家庭人口特征、收支状况、耕地利用、种植结构、作物投入产出等多个方面。玉米是我国种植面积与产量最大的粮食作物,研究地块规模能否以及如何影响玉米化肥减施具有现实意义。基于CRRS数据库中黑龙江、山东、河南、四川、贵州、陕西与宁夏等7个玉米主产省(自治区)的调查数据,在剔除地块规模、化肥投入情况等指标有缺失的样本后,使用1 226户玉米种植户数据进行分析。
1)被解释变量。一是化肥投入强度(consumption intensity of chemical fertilizer,CICF),使用单位面积化肥投入量来衡量;二是化肥投入效率(consumption efficiency of chemical fertilizer,CECF),参考Zhu
2)核心解释变量。地块规模参考梁志会
3)机制变量。根据前文的理论分析,选取机械作业和劳动投入作为机制变量。其中,机械作业用于检验地块规模和化肥投入的影响机制,劳动投入则用于检验机械作业是否较好替代了施肥环节的劳动投入。机械作业使用玉米种植是否机械施肥或秸秆粉碎还田来衡量,1表示使用机械作业,0表示未使用机械作业。劳动投入为种植玉米施肥环节的单位面积劳动投入量,是家庭劳动投入与雇佣劳动投入的工日数之和,雇佣劳动投入工日数使用当地农闲用工价格折算。
4)控制变量。不同要素禀赋与农户特征的施肥行为存在较大差异,为准确测度地块规模对化肥投入影响,参考高晶晶
变量名称 Variable names | 变量定义 Variable definition | 平均值 Mean | 标准差 SD |
---|---|---|---|
被解释变量 Dependent variables | |||
化肥投入强度 Consumption intensity of chemical fertilizer (CICF) | |||
单位面积用量 Usage per unit area | 玉米每公顷化肥施用量/kg Consumption of chemical fertilizer per hectare of corn | 938.813 | 576.790 |
单位面积费 Cost per unit are | 玉米每公顷化肥费用/元 Chemical fertilizer cost per hectare of corn | 2 444.910 | 1 707.329 |
化肥投入效率 Consumption efficiency of chemical fertilizer (CECF) | |||
50 kg玉米用量 Usage of 50 kg corn | 生产50 kg玉米的化肥施用量/kg Consumption of chemical fertilizer for producing 50 kg of corn | 8.220 | 6.846 |
50 kg玉米费 Cost of 50 kg cor | 生产50 kg玉米的化肥费用/元 Chemical fertilizer cost for producing 50 kg of corn | 21.404 | 21.137 |
核心解释变量Independent variables | |||
地块规模 Plot scale |
种植玉米地块的平均面积/(h | 0.272 | 0.799 |
机制变量 Mechanism variables | |||
机械作业 Mechanical operation | 种植玉米是否使用机械施肥或秸秆粉碎还田,1=是,0=否Whether mechanical fertilization or straw crushing is used for planting corn, 1=Yes, 0=No | 0.706 | 0.456 |
劳动投入 Labor input |
种植玉米施肥环节单位面积劳动投入量/(工日/h | 3.822 | 5.047 |
控制变量 Covariates | |||
年龄 Age | 家庭加权平均年龄,以家庭成员农业劳动时间占比为权重Average age of the family, weighted by the proportion of agricultural labor time of family members | 52.954 | 9.826 |
受教育年限 Years of education | 家庭加权平均教育年限,以家庭成员农业劳动时间占比为权重Average years of education of the family, weighted by the proportion of agricultural labor time of family members | 7.283 | 2.773 |
劳动力占比 Share of family labor force | 家庭成员中劳动力人数占比 Share of labor force among family members | 0.619 | 0.286 |
农业收入占比 Share of agricultural income | 家庭农业净收入占总收入的比例 Share of household agricultural net income to total income | 0.377 | 0.415 |
可灌溉面积占比 Share of irrigable area | 可灌溉面积占总面积的比例 Share of irrigable area to total area | 0.507 | 0.454 |
粮食播种面积占比 Share of grain sown area | 3种主粮播种面积占总播种面积的比例 Share of planting area for 3 main grains to total planting area | 0.794 | 0.255 |
销售占比Sold share | 2019年玉米销售量占总产量的比例 Share of corn sales to total production in 2019 | 55.333 | 45.660 |
减产份额 Share of production reduction | 2019年玉米受灾减产的比例 Share of corn yield reduction due to disasters in 2019 | 0.101 | 0.181 |
村庄地势Village terrain | 本村是否属于平原地区,1=是,0=否 Whether the village is located in a plain area, 1=Yes, 0=No | 0.475 | 0.500 |
注: *表示该变量仅用于稳健性检验。Note: * indicates that this variable is used only for robustness test.
1)地块规模与要素投入。扩大地块规模是优化农业要素配置的重要途径。
项目 Items | 全样本 All samples | (0,0.05] h | (0.05,0.10] h | (0.10,0.33] h | (0.33,0.67]h | (0.67,+∞) h |
---|---|---|---|---|---|---|
样本量 Sample size | 1 226 | 238 | 236 | 503 | 156 | 93 |
化肥投入强度/(kg/h | 938.813 | 1 112.042 | 970.191 | 911.968 | 812.133 | 773.555 |
化肥投入效率/kg CECF | 8.220 | 11.398 | 9.306 | 7.336 | 6.072 | 5.710 |
机械施肥 Mechanical fertilization | 0.462 | 0.134 | 0.373 | 0.499 | 0.712 | 0.914 |
秸秆粉碎还田 Straw mulching and incorporation | 0.546 | 0.421 | 0.566 | 0.606 | 0.523 | 0.522 |
劳动投入/(工日/h | 3.822 | 7.562 | 5.346 | 2.725 | 1.548 | 0.725 |
地块规模方面,种植玉米的平均地块面积在0.1~0.33 h
2)农户经营规模与化肥投入。按照世界银行的标准,将经营规模小于2 h
类型 Types | 经营规模/h Operation scale | 样本量 Sample size | 化肥投入 强度/ (kg/h | 化肥投入效率/ kg CECF |
---|---|---|---|---|
全体小农户 All small-scale farmers | 972 | 960.565 | 8.705 | |
小农户 Small-scale farmers | (0,0.33] | 383 | 982.923 | 9.468 |
(0.33,0.67] | 300 | 936.388 | 8.215 | |
(0.67,2] | 289 | 956.032 | 8.204 | |
全体规模农户 All large-scale farmers | 245 | 851.491 | 6.349 | |
规模农户 Large-scale farmers | (2,3] | 77 | 957.569 | 6.910 |
(3,5] | 67 | 860.783 | 6.839 | |
(5,7] | 33 | 888.636 | 6.802 | |
(7,+∞) | 68 | 704.193 | 5.010 |
3)机械作业与化肥投入。
变量名称 Variable names | 类别Types | 样本量 Sample size | 化肥投入 强度/(kg/h | 化肥投入效率/kg CECF |
---|---|---|---|---|
机械作业环节数量 Number of mechanical operations | 0 | 166 | 1 046.337 | 11.319 |
1 | 264 | 1 039.391 | 10.434 | |
2 | 227 | 934.398 | 7.879 | |
3 | 215 | 856.014 | 6.457 | |
4 | 187 | 911.681 | 7.346 | |
5 | 167 | 815.914 | 5.349 | |
机械施肥 Mechanical fertilization | 是 Yes | 567 | 871.924 | 6.903 |
否 No | 659 | 996.364 | 9.352 | |
秸秆粉碎还田 Straw mulching and incorporation | 是 Yes | 662 | 890.528 | 7.775 |
否 No | 551 | 1 000.190 | 8.798 |
使用两阶段最小二乘法(two-stage least squares regression,2SLS)对(1)式的估计结果如
变量 Variables | 第一阶段 First stage | 第二阶段Second stage | |
---|---|---|---|
(A)CICF | (B)CECF | ||
地块规模 Plot scale | — |
-86.24 |
-2.31 |
工具变量 IV |
0.83 | — | — |
年龄 Age |
-0.00 | 0.614(1.825) | 0.003(0.019) |
受教育年限 Years of education |
-0.01 |
-11.23 |
-0.11 |
劳动力占比 Share of family labor force | 0.062(0.071) | 41.728(59.221) | 0.825(0.668) |
农业收入占比 Share of agricultural income |
0.18 | 30.876(35.053) | -0.298(0.461) |
可灌溉面积占比 Share of irrigable area |
-0.20 | 66.878(43.745) | -0.166(0.443) |
粮食播种面积占比 Share of grain sown area | 0.126(0.089) | 86.596(67.686) |
1.27 |
销售占比 Sold share |
0.00 |
-0.79 | -0.006(0.004) |
减产份额 Share of production reduction |
0.28 | 126.286(88.105) |
14.52 |
村庄地势 Village terrain | -0.045(0.06) | -18.394(40.165) |
-1.21 |
常数项 Constant term |
-0.33 |
712.94 | 2.345(1.515) |
K-P rk LM statistic |
244.83 | ||
K-P rk Wald F statistic | 831.708 | ||
C-D Wald F statistic | 763.064 | ||
样本量 Sample size | 1 226 | 1 226 | 1 226 |
注: ***、**和*分别表示1%、5%和10%的统计水平上显著,括号内为稳健标准误。下表同。Note: ***, ** and * denote significance at 1%, 5% and 10% level, respectively. The parentheses indicate robust standard errors. The same as below.
1)更换估计模型。
变量Variables | OLS | LIML | 2SLS | |||
---|---|---|---|---|---|---|
(A) CICF | (B) CECF | (C) CICF | (D) CECF | (E) CICF | (F) CECF | |
地块规模Plot scale |
-86.91 |
-1.39 |
-86.24 |
-2.31 |
-380.04 |
-6.93 |
(17.215) | (0.186) | (23.952) | (0.280) | (75.154) | (0.921) | |
控制变量Covariates | Controlled | Controlled | Controlled | Controlled | Controlled | Controlled |
2)更换被解释变量。以化肥投入费用替代化肥投入量,使用单位面积化肥费用与每生产50 kg玉米化肥费用分别表示化肥投入强度与投入效率,实证结果如
3)近似外生工具变量检验。工具变量完全外生是一种理想状态,现实中估计模型仍然可能存在轻微的内生性问题。由于工具变量的外生性难以检验,使用Conley
变量 Variables | CICF | CECF | ||
---|---|---|---|---|
LTZ | UCI | LTZ | UCI | |
地块规模 Plot scale |
-86.66 | [-125.885,-46.608] |
-2.73 | [-3.019,-1.615] |
控制变量 Covariates | Controlled | Controlled | Controlled | Controlled |
4)遗漏变量检验。为进一步考察可能存在的遗漏变量及遗漏变量对回归的影响,本研究使用Oste
被解释变量 Dependent variables | 检验方法 Testing method | 判断标准 Check standards | 估计结果 Estimation results | 检验结果 Test results |
---|---|---|---|---|
CICF | (1) | 是Yes | ||
(2) | 是Yes | |||
CECF | (1) | 是Yes | ||
(2) | 是Yes |
1)农户异质性。
变量 Variables | 小农户 Small-scale farmers | 规模农户 Large-scale farmers | ||
---|---|---|---|---|
CICF | CECF | CICF | CECF | |
地块规模 Plot scale |
-82.40 |
-2.45 |
-160.54 |
-3.23 |
(42.102) | (0.472) | (91.626) | (1.046) | |
控制变量 Covariates | Controlled | Controlled | Controlled | Controlled |
样本量 Sample size | 972 | 972 | 245 | 245 |
2)化肥投入异质性。
百分位点 Percentile point | CICF | CECF |
---|---|---|
15% | -18.155(23.501) |
-0.80 |
25% | -10.893(16.131) |
-0.96 |
50% |
-32.63 |
-1.55 |
75% |
-123.21 |
-2.93 |
85% |
-204.96 |
-4.02 |
注: 表内为加入控制变量的估计结果。Note: The table shows the estimation results with covariates.
实证结果表明,扩大地块规模可以促进化肥减量增效。下面进一步验证机械作业在地块规模对化肥投入影响中的调节作用,并检验机械作业是否有效替代了农业劳动力投入。
变量 Variables | (A) CICF | (B) CECF | (C) 劳动投入 Labor input | (D) 劳动投入 Labor input | (E) 劳动投入 Labor input |
---|---|---|---|---|---|
地块规模 Plot scale | 84.400 | -0.508 |
-2.56 |
-2.32 |
-2.70 |
(63.587) | (0.620) | (0.248) | (0.251) | (0.245) | |
地块规模×机械作业 Plot scale×Mechanical operation |
-203.66 |
-2.26 | — | — | — |
(65.266) | (0.650) | ||||
机械作业 Mechanical operation |
-601.73 | 0.296 |
-0.63 | — | — |
(171.202) | (0.602) | (0.355) | |||
机械施肥 Mechanical fertilization | — | — | — |
-1.24 | — |
(0.330) | |||||
秸秆粉碎还田 Straw mulching and incorporation | — | — | — | — |
-0.73 |
(0.331) | |||||
控制变量 Covariates | Controlled | Controlled | Controlled | Controlled | Controlled |
K-P rk LM statistic |
236.47 |
220.82 |
223.55 |
207.32 | |
K-P rk Wald F statistic | 251.674 | 706.236 | 632.198 | 652.884 | |
C-D Wald F statistic | 344.145 | 659.710 | 569.499 | 709.456 | |
样本量 Sample size | 1 226 | 1 226 | 1 083 | 1 083 | 1 072 |
注: 由于部分变量存在缺失值,C、D、E列样本量略有下降。Note:Due to missing values in some variables,the sample size in columns C, D, and E slightly decrease.
根据理论分析和
本研究基于诱致性技术变迁理论,从耕地禀赋的角度分析化肥减施的逻辑,然后使用2020年CRRS提供的7省微观调查数据,利用2SLS模型实证分析扩大地块规模对化肥投入的影响。主要研究结论包括以下3个方面:第一,基准回归结果表明,扩大地块规模对化肥减量增效有促进作用。地块规模扩大1%,单位面积化肥用量平均下降86.25 kg/h
地块规模与化肥投入之间的负向关系本质上反映的是耕地细碎化与农业绿色发展之间的矛盾。因此,本研究有以下三方面的政策含义:首先,消除耕地细碎化对要素优化配置的不利影响,需要通过地块整合、归并,降低耕地细碎化程度。要推进高标准农田建设与土地整治,通过地块整理、合并扩大地块规模,解决承包经营权在地块层面过度分散带来的低效利用问题;支持在农户协商、村委会协调下,开展承包耕地互换,以耕地高效利用为导向,以耕地宜机化为目标,争取实现“一户一块田”。其次,完善社会化服务体系。服务主体方面,鼓励种粮大户、家庭农场、专业合作社等多种主体提供社会化服务,扩大社会化服务的覆盖农户数量与辐射范围;服务内容方面,深松、深施、秸秆粉碎还田等绿色技术往往需要机械作业完成,需要进一步提高社会化服务的能力与范围,提高社会化服务质量。加大对小型农业机械与施肥无人机的研发投资,提高对适合在丘陵、山地等耕地细碎、宜机化难度高的耕地作业的小型农机的购置补贴,通过保障技术装备供给缓解耕地禀赋约束。最后,完善农业绿色技术供给体系。供给渠道方面,通过线上信息服务、线下培训、现场生产指导等多种形式,降低绿色技术的使用门槛,指导用户实施、适量施肥;供给主体方面,小农户数量多、经营耕地的细碎化程度高,要实现农业生产的绿色转型,需要扩大绿色技术供给主体,促进绿色技术的推广与应用。
参考文献 References
LIN J Y. Rural reforms and agricultural growth in China[J].The American economic review,1992,82(1):34-51. [百度学术]
高晶晶,彭超,史清华.中国化肥高用量与小农户的施肥行为研究:基于1995—2016年全国农村固定观察点数据的发现[J].管理世界,2019,35(10): 120-132.GAO J J,PENG C,SHI Q H. Study on high chemical fertilizer usage and fertilization behavior of smallholder farmers in China: findings based on national rural longitudinal household survey data from 1995 to 2016[J].Journal of management world,2019, 35(10):120-132(in Chinese with English abstract). [百度学术]
速水佑次郎,弗农·拉坦.农业发展:国际前景[M].吴伟东,等,译.北京:商务印书馆, 2014.HAYAMI Y,RUTTAN V W. Agricultural development:an international perspective[M].Transalated by WU W D,et al.Beijing: The Commercial Press,2014(in Chinese). [百度学术]
魏后凯.中国农业发展的结构性矛盾及其政策转型[J].中国农村经济, 2017(5):2-17.WEI H K.Structural contradiction and policy transformation of agricultural development in China[J].Chinese rural economy,2017(5):2-17(in Chinese with English abstract). [百度学术]
QI X X,DANG H P. Addressing the dual challenges of food security and environmental sustainability during rural livelihood transitions in China[J].Land use policy,2018,77:199-208. [百度学术]
REN C C, LIU S, VAN GRINSVEN H, et al. The impact of farm size on agricultural sustainability[J].Journal of cleaner production,2019,220:357-367. [百度学术]
邹伟,崔益邻,周佳宁.农地流转的化肥减量效应:基于地权流动性与稳定性的分析[J].中国土地科学,2020,34(9): 48-57. ZOU W, CUI Y L, ZHOU J N. The impact of farmland transfer on farmers’ fertilizer reduction: an analysis of transferability and security of land rights[J].China land science,2020, 34(9):48-57(in Chinese with English abstract). [百度学术]
郑纪刚,张日新,曾昉. 农地流转对化肥投入的影响:以山东省为例[J].资源科学,2021, 43(5)921-931. ZHENG J G, ZHANG R X, ZENG F.Impact of farmland transfer on fertilizer input: taking Shandong Province as an example[J].Resources science,2021, 43(5):921-931(in Chinese with English abstract). [百度学术]
钱龙,冯永辉,陆华良,等.产权安全性感知对农户耕地质量保护行为的影响:以广西为例[J].中国土地科学, 2019, 33(10): 93-101.QIAN L, FENG Y H, LU H L, et al. The influence of property right security perception on farmers’ farmland quality protection behaviors:taking Guangxi as an example[J].China land science,2019, 33(10):93-101(in Chinese with English abstract). [百度学术]
PAN D, KONG F B, ZHANG N, et al. Knowledge training and the change of fertilizer use intensity:evidence from wheat farmers in China[J].Journal of environmental management,2017,197: 130-139. [百度学术]
HU L X, ZHANG X H, ZHOU Y H. Farm size and fertilizer sustainable use: an empirical study in Jiangsu,China[J].Journal of integrative agriculture,2019, 18(12):2898-2909. [百度学术]
田云,张俊飚,何可,等.农户农业低碳生产行为及其影响因素分析:以化肥施用和农药使用为例[J].中国农村观察, 2015(4):61-70. TIAN Y, ZHANG J B, HE K, et al. Analysis of low-carbon agricultural production behaviors of farmers and their influencing factors:using fertilizer application and pesticide use as example[J].China rural survey,2015(4):61-70(in Chinese). [百度学术]
马贤磊,车序超,李娜,等.耕地流转与规模经营改善了农业环境吗?基于耕地利用行为对农业环境效率的影响检验[J].中国土地科学,2019,33(6): 62-70. MA X L, CHE X C, LI N, et al. Has cultivated land transfer and scale operation improved the agricultural environment? an empirical test on impact of cultivated land use on agricultural environment efficiency[J].China land science,2019,33(6):62-70(in Chinese with English abstract). [百度学术]
曹慧,赵凯.耕地经营规模对农户亲环境行为的影响[J].资源科学,2019,41(4):740-752.CAO H,ZHAO K. Farmland scale and farmers' pro-environmental behavior: verification of the inverted U hypothesis[J].Resources science,2019,41(4):740-752(in Chinese with English abstract). [百度学术]
刘乐,张娇,张崇尚,等. 经营规模的扩大有助于农户采取环境友好型生产行为吗?以秸秆还田为例[J].农业技术经济,2017(5):17-26. LIU L, ZHANG J, ZHANG C S,et al. Does the expansion of farm scale contribute to farmers adopting environmentally friendly production behaviors? using straw incorporation as an example[J].Journal of agrotechnical economics,2017(5):17-26(in Chinese). [百度学术]
饶静,师丹婧,袁伟.生产者视角对农业发展转型和农业污染关系的一个解释[J].西北农林科技大学学报(社会科学版),2021,21(4):43-53.RAO J, SHI D J, YUAN W. An interpretation of the relationship between agriculture transformation and agricultural pollution from the perspective of producers[J].Journal of Northwest A&F University(social science edition),2021,21(4):43-53(in Chinese with English abstract). [百度学术]
赵昶,孔祥智,仇焕广.农业经营规模扩大有助于化肥减量吗?基于全国1274个家庭农场的计量分析[J].农业技术经济,2021(4):110-121.ZHAO C, KONG X Z,QIU H G.Does the expansion of farm size contribute to the reduction of chemical fertilizers?empirical analysis based on 1274 family farms in China[J].Journal of agrotechnical economics,2021(4):110-121(in Chinese with English abstract). [百度学术]
郭阳,钟甫宁,纪月清.规模经济与规模户耕地流转偏好:基于地块层面的分析[J].中国农村经济,2019(4):7-21. GUO Y,ZHONG F N,JI Y Q, Economies of scale and farmland transfer preferences of large-scale households: an analysis based on land plots[J].Chinese rural economy,2019(4): 7-21(in Chinese with English abstract). [百度学术]
MANJUNATHA A V, ANIK A R, SPEELMAN S, et al. Impact of land fragmentation, farm size,land ownership and crop diversity on profit and efficiency of irrigated farms in India[J]. Land use policy,2013,31:397-405. [百度学术]
SKLENICKA P,JANOVSKA V, SALEK M,et al.The farmland rental paradox: extreme land ownership fragmentation as a new form of land degradation[J].Land use policy,2014,38: 587-593. [百度学术]
罗必良,胡新艳,张露.为小农户服务:中国现代农业发展的“第三条道路”[J].农村经济,2021(1): 1-10.LUO B L HU X Y,ZHANG L.Serving small farmers: the "third way" of modern agricultural development in China[J].Rural economy,2021(1):1-10(in Chinese). [百度学术]
CHI L,HAN S Q,HUAN M L,et al. Land fragmentation, technology adoption and chemical fertilizer application: evidence from China[J/OL].International journal of environmental research and public health,2022,19(13):8147[2023-10-25].https://doi.org/10.3390/ijerph19138147. [百度学术]
梁志会,张露,张俊飚.土地转入、地块规模与化肥减量:基于湖北省水稻主产区的实证分析[J].中国农村观察, 2020(5):73-92. LIANG Z H, ZHANG L, ZHANG J B.Land inward transfer, plot scale and chemical fertilizer reduction: an empirical analysis based on main rice-producing areas in Hubei Province[J].Chinese rural survey,2020(5):73-92(in Chinese with English abstract). [百度学术]
肖剑,罗必良.小农的绿色发展转型:人力资本维度的考察[J].华中农业大学学报(社会科学版),2023(5):20-30. XIAO J, LUO B L.Green development transformation of smallholder farmers:an examination from the perspective of human capital[J].Journal of Huazhong Agricultural University(social sciences edition),2023(5):20-30(in Chinese with English abstract). [百度学术]
张露,罗必良.农业减量化:农户经营的规模逻辑及其证据[J]. 中国农村经济,2020(2):81-99.ZHANG L, LUO B L. Agricultural chemical reduction: the logic and evidence based on farmland operation scale of households[J].Chinese rural economy,2020(2):81-99(in Chinese with English abstract). [百度学术]
卢华,胡浩.土地细碎化增加农业生产成本了吗?来自江苏省的微观调查[J]. 经济评论,2015(5):129-140. LU H, HU H. Does land fragmentation increase agricultural production costs? a microscopic investigation from Jiangsu Province[J]. Economic review,2015(5):129-140(in Chinese with English abstract). [百度学术]
LU H,HU L X,ZHENG W W,et al. Impact of household land endowment and environmental cognition on the willingness to implement straw incorporation in China[J/OL].Journal of cleaner production,2020,262:121479[2023-10-25].https://doi.org/10.1016/j.jclepro.2020.121479. [百度学术]
梁志会,张露,张俊飚.土地整治与化肥减量:来自中国高标准基本农田建设政策的准自然实验证据[J]. 中国农村经济, 2021(4): 123-144. LIANG Z H, ZHANG L, ZHANG J B. Land consolidation and fertilizer reduction: quasi-natural experimental evidence from China’s well-facilitated capital farmland construction[J].Chinese rural economy,2021(4):123-144(in Chinese with English abstract). [百度学术]
梁志会,张露,刘勇,等.农业分工有利于化肥减量施用吗?基于江汉平原水稻种植户的实证[J].中国人口·资源与环境,2020,30(1):150-159.LIANG Z H, ZHANG L, LIU Y, et al.Is the agricultural division of labor conducive to the reduction of fertilizer input? empirical evidence from rice production households in the Jianghan Plain[J].China population, resources and environment,2020,30(1):150-159(in Chinese with English abstract). [百度学术]
李博伟.土地流转契约稳定性对转入土地农户化肥施用强度和环境效率的影响[J].自然资源学报,2019,34(11): 2317-2332.LI B W.The effect of the stability of land transfer contract on the fertilization intensity and environmental efficiency of the farmer who transfer in land[J].Journal of natural resources, 2019,34(11):2317-2332(in Chinese with English abstract). [百度学术]
徐志刚,张骏逸,吕开宇.经营规模、地权期限与跨期农业技术采用:以秸秆直接还田为例[J].中国农村经济,2018(3):61-74.XU Z G,ZHANG J Y, LV K Y.The scale of operation, term of land ownership and the adoption of inter-temporal agricultural technology: an example of “straw return to soil directly”[J].Chinese rural economy, 2018(3):61-74(in Chinese with English abstract). [百度学术]
张森福.中国农业技术变迁:理论与政策[J].农业经济问题,1990(7):33-39. ZHANG S F.Chinese agricultural technology transformation:theory and policy[J].Issues in agricultural economy, 1990(7): 33-39 (in Chinese). [百度学术]
蔡昉.刘易斯转折点:中国经济发展阶段的标识性变化[J].经济研究 2022,57(1):16-22.CAI F. Lewis turning point: a milestone in the development stages of the Chinese economy[J].Economic research journal,2022,57(1):16-22(in Chinese). [百度学术]
罗斯炫,何可,张俊飚.增产加剧污染?基于粮食主产区政策的经验研究[J]. 中国农村经济,2020(1):108-131. LUO S X, HE K, ZHANG J B.The more grain production, the more fertilizers pollution? empirical evidence from major grain-producing areas in China[J].Chinese rural economy,2020(1):108-131(in Chinese with English abstract). [百度学术]
周晓时,樊胜根.破解“谁来种粮”难题:全面推进农业机械化的基础与路径[J].中州学刊,2023(12):54-60.ZHOU X S, FAN S G. Solving the problem of “who will grow grain”:the foundation and path of comprehensively promoting agricultural mechanization[J].Academic journal of Zhongzhou,2023(12):54-60(in Chinese with English abstract). [百度学术]
郭庆海,张美琪,刘帅.农户耕地质量保护行为及其机制建设:基于东北黑土地的分析[J].农村经济,2023(11):35-44. GUO Q H,ZHANG M Q,LIU S.Farmers’ farmland quality protection behavior and mechanism construction: based on the analysis of black soil in Northeast China[J].Rural economy, 2023(11):35-44(in Chinese). [百度学术]
KHONJE M G,MANDA J, MKANDAWIRE P,et al. Adoption and welfare impacts of multiple agricultural technologies: evidence from eastern Zambia[J].Agricultural economics,2018,49(5):599-609. [百度学术]
MA W L,ABDULAI A,GOETZ R.Agricultural cooperatives and investment in organic soil amendments and chemical fertilizer in China[J].American journal of agricultural economics,2018,100(2):502-520. [百度学术]
ZHU W, QI L X,WANG R M.The relationship between farm size and fertilizer use efficiency: evidence from China[J].Journal of integrative agriculture,2022,21(1):273-281. [百度学术]
CONLEY T G, HANSEN C B, ROSSI P E.Plausibly exogenous[J].Review of economics and statistics,2012,94(1): 260-272. [百度学术]
OSTER E. Unobservable selection and coefficient stability:theory and evidence[J].Journal of business & economic statistics,2019,37(2):187-204. [百度学术]
刘晓燕,章丹,徐志刚.粮食规模经营户化肥施用也“过量”吗?基于规模户和普通户异质性的实证[J]农业技术经济, 2020(9):117-129. LIU X Y,ZHANG D, XU Z G.Does grain scale farmers also overuse fertilizer? based on the heterogeneity of large-sized farmers and small-sized farmers[J].Journal of agrotechnical economics,2020(9):117-129(in Chinese with English abstract). [百度学术]
江艇.因果推断经验研究中的中介效应与调节效应[J].中国工业经济, 2022(5):100-120. JIANG T. Mediating effects and moderating effects in causal inference[J].China industrial economics,2022(5):100-120(in Chinese with English abstract). [百度学术]