网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

SCF泛素连接酶的体外泛素化体系构建与检测  PDF

  • 胡健健
  • 梅文聪
  • 张文慧
  • 刘主
作物遗传改良全国重点实验室/湖北洪山实验室/华中农业大学生命科学技术学院,武汉 430070

中图分类号: Q814

最近更新:2024-04-02

DOI:10.13300/j.cnki.hnlkxb.2024.02.030

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

为研究蛋白质的体外泛素化过程,利用大肠杆菌表达系统异源表达和纯化APPBP1/UBA3 (E1)、UBC12 (E2)、Cullin1-Rbx1 (E3)和Nedd8 (neural precursor cell expressed developmentally down-regulated protein 8)蛋白,制备FITC-Cysteine 绿色荧光素标记的泛素Ub(Ubiquitin),构建了SCF泛素连接酶的体外泛素化体系,同时实现快速检测SCF泛素连接酶中Cullin1蛋白的自泛素化修饰。结果表明,建立的体外SCF E3自泛素化活性反应体系具有较高的可操作性和便利性。

SCF复合物(multisubunit SKP1/Cullin1/F-box, SCF)是一种被广泛研究的多亚基E3泛素连接酶,该复合物是最大的一个泛素化连接酶蛋白家族,由SKP1、Cullin1和F-box蛋白组成,这些蛋白质相互连接并执行不同的功能。人类、秀丽隐杆线虫和植物中分别有约70、300和1 000种SCF泛素连接

1。SCF泛素连接酶在调节植物生长发育和生理机制等方面起着关键的作用,目前已有较多文献报道了它参与植物次生代谢、植物胁迫、植物激素信号传导和植物光形态建成等过2-5。当植物面临病原体的威胁时,利用SCF泛素连接酶复合物降解其自身防御反应的负调节蛋白或者病原体的蛋白质,从而抑制病原体入6-7。SCF E3连接酶在几种关键植物激素的感知和信号转导中起着重要作用,包括生长素、茉莉酸、三萜内酯、赤霉素和乙烯。例如,在水稻的独脚金内酯(strigolactone, SL)信号通路中,稳定的抑制显性矮杆突变体蛋白DWARF53(D53)及其同系物在缺少SLs的情况下可以募集植物辅抑制因子TPL/TPR蛋白并抑制下游反应,在SL存在的情况下,独角金内酯受体DWARF14(D14)蛋白感知SLs信号,触发SCF泛素连接酶介导D53蛋白泛素化,随后被蛋白酶体系统降解,解除对下游反应的抑8-10

蛋白质合成和降解之间的平衡对细胞生存和发育至关重

11-12。蛋白质降解有2种主要途径:自噬和泛素蛋白酶体系统(autophagy and ubiquitin-proteasome system13。自噬功能以溶酶体依赖的方式降解细胞中过量或异常的蛋白质,而泛素蛋白酶体系统以蛋白酶体依赖的方式特异性泛素化并降解错误折叠和受损的蛋白质。泛素蛋白酶体系统在真核生物中高度保守,对许多生物过程有重要作用。ATP依赖的泛素偶联途径包括泛素激活酶(ubiquitin activating enzyme, E1)、泛素偶联酶(ubiquitin conjugating enzyme, E2)和泛素蛋白连接酶(ubiquitin ligase, E3),然后通过26S对蛋白进行降14-16。在所有真核生物中,SCF泛素连接酶具有相似的模块化结构,Cullin蛋白(植物中的Cullin1、Cullin3和Cullin4)具有一个细长支架结构,在其一端与催化亚基RBX1相互作用,在另一端与底物受体亚基相互作17-19。SCF E3复合物的关键特征是Cullin蛋白C末端一个保守的赖氨酸被Nedd8(neural precursor cell expressed developmentally down-regulated protein 8)共价修饰。SCF复合物的形成和激活是一个受调控的过程,首先SCF复合物中的Cullin蛋白被Neddylation修饰,被修饰后SCF E3复合物才能被激20-21。与泛素化过程一样,Neddylation8修饰与Cullin蛋白的结合是通过E1(APPBP1/UBA3)、E2(UBC12)和E3(Cullin-Rbx)多酶级联来实现22。遗传学研究表明,Neddylation8修饰对体内SCF E3复合物的活性有重要影22-24

建立体外泛素化修饰检测系统对于研究E3泛素连接酶在生长发育中的分子机制十分重要。然而,由于多亚基SCF E3泛素连接酶的组成比较复杂,获得具有活性的E3复合体组分存在较大困难,迄今为止,多亚基SCF E3泛素连接酶的体外活性检测体系尚不成熟。本研究构建SCF泛素连接酶的体外泛素化体系,实现快速检测SCF泛素连接酶中Cullin1蛋白的自泛素化修饰,旨在为研究E3连接酶的机制提供基础平台。

1 材料与方法

1.1 菌株

所用菌株为大肠杆菌BL21(λDE3)和DH5α,其中目标蛋白的异源表达使用大肠杆菌BL21(λDE3),表达质粒的扩繁使用大肠杆菌DH5α。

1.2 分子克隆

引物合成和重组质粒测序由武汉擎科生物有限公司完成,dNTP购买于 New England Biolabs公司,用于分子克隆的PfuTaq酶由华中农业大学作物遗传改良全国重点实验室蛋白质团队提

24。DNA产物回收试剂盒(DP204-02)和质粒小提试剂盒(DP103-02)购自天根生化科技(北京)有限公司。

1.3 蛋白纯化试剂

1)镍亲和层析纯化缓冲液。

(1)细胞裂解液: 25 mmol/L Tris (pH 8.0), 150 mmol/L NaCl。

(2)漂洗缓冲液: 25 mmol/L Tris (pH 8.0), 150 mmol/L NaCl, 15 mmol/L Imidazole (pH 8.0)。

(3)洗脱缓冲液: 25 mmol/L Tris (pH 8.0), 250 mmol/L Imidazole (pH 8.0)。

(4)再生缓冲液: 500 mmol/L Imidazole (pH 8.0), 500 mmol/L NaCl。

2)离子交换柱层析与分子筛试剂。

(1)高盐缓冲液A buffer: 25 mmol/L Tris pH 8.0,1mol/L NaCl。

(2)无盐缓冲液B buffer: 25 mmol/L Tris pH 8.0。

3)离子交换柱层析(Source Q10-100)纯化参数。在蛋白纯化仪(AKTA™ pure 25,GE Healthcare)上用A buffer和B buffer交替平衡层析柱,根据蛋白样品体积设置上样体积,将蛋白样品泵入层析柱,随后A buffer流洗15 mL,设置洗脱体积为100 mL,B buffer范围为0~100%,用1.5 mL EP收集蛋白样品并进行SDS-PAGE凝胶电泳分析。

4)分子筛(Superdex 200)纯化参数。35 mL 分子筛缓冲液(25 mmol/LTris pH 8.0,200 mmol/L NaCl)平衡分子筛,将蛋白样品浓缩至1 mL后用1 mL注射器加入loop环中。运行蛋白纯化仪的程序,分子筛缓冲液流出7 mL后用1.5 mL EP收集蛋白样品并进行SDS-PAGE凝胶电泳分析。

1.4 FITC标记Ub的制备

利用大肠杆菌表达系统表达与纯化N端融合MSAC 4个氨基酸的Ub,将FITC-Cysteine绿色荧光素标记到Ub泛素链接到融合氨基酸的Cys残基上,泛素化修饰反应过程中FITC-Ub被转移到目标蛋白上,使用荧光扫描仪扫描体外泛素化反应蛋白的SDS-PAGE凝胶,实现对反应后Ub修饰情况的可视化表征。FITC标记Ub的制备方法来自华中农业大学作物遗传改良全国重点实验室蛋白质团队,利用马来亚酰胺-巯基特异性的化学反应,其标记效率高、接近100%

26。首先,表达纯化需要标记的Ub蛋白,切掉并去除纯化标签,更换缓冲液条件。将Ub蛋白脱盐至荧光标记缓冲液(磷酸缓冲液pH 7.2~7.3),并对蛋白进行定量。其次,将终浓度为300 μmol/L的FITC-Cysteine染料与终浓度为100 μmol/L的Ub蛋白按照物质的量3∶1的比例混合孵育,于25 ℃标记2 h后加入10 mmol/L DTT终止反应。通过脱盐柱处理去除多余荧光染料,同时将FITC标记的Ub转移至后续反应的缓冲液条件中,进行蛋白浓度定量。

1.5 主要仪器

蛋白纯化仪(AKTA™ pure 25,GE Healthcare)、低温超高压细胞破碎机(广州聚能生物科技股份有限公司,JN-02)、高速冷冻离心机(贝克曼库尔特公司,Avanti JXN-26)、大容量离心机(美国Beckman Coulter公司、J6-M1)、蛋白垂直电泳仪(Bio-Rad,Mini-PROTEAN)、激光共聚焦成像仪(美国cytiva)。

1.6 大肠杆菌培养

从-80 ℃冰箱取出BL21(λDE3)加入1 μL重组质粒混匀,冰上孵育30 min,42 ℃热激90 s,加入200 μL复苏液于37 ℃、200 r/min复苏1 h。后接入10 mL具有载体抗性的液体培养基中,培养过夜;第2天将50%的甘油和菌液以1∶1的体积比混合,-80 ℃冻存,保存菌株。剩余菌液按照菌液∶培养基以1∶100 的体积比于37 ℃、200 r/min培养4.0~4.5 h。大肠杆菌培养至OD600=1~1.2时,培养温度调至16 ℃,1 h后加入终浓度为0.2 mmol/L的IPTG,过夜培养14~16 h。

1.7 蛋白纯化

经过IPTG诱导的大肠杆菌3 300 r/min 离心20 min,弃上清保留沉淀,每1 L菌液的沉淀用20~30 mL 细胞裂解液悬浮。用高压细胞破碎仪破碎菌体,重复进行2次。破碎的菌液加入BeckMan高速离心管中,4 ℃ 14 000 r/min离心1 h,取上清。表达的蛋白N端融合6×His标签蛋白,用Ni柱亲和层析对目的蛋白进行初步纯化,随后进一步使用 SourceQ 10-100进行纯化。纯化的蛋白用于体外泛素化反应。

1.8 体外自泛素化反应

1)Cullin1-Rbx1复合物Nedd8修饰。按照表1将蛋白加入到反应体系中,Nedd8加入蛋白量为Cullin1-Rbx1的2倍反应总体积为200 μL,于室温反应30 min,随后将反应产物经离子交换层析Source Q10-100和分子筛Superdex 200纯化得到Nedd8修饰的Cullin1-Rbx1复合物,收集蛋白用于Cullin1-Rbx1复合物的自泛素化修饰反应。

表1  Cullin1-Rbx1复合物Nedd8修饰反应体系
Table 1  Neddylation modified Cullin1-Rbx1 complex
反应组分Reaction components终浓度/(μmol/L)Final concentration
APPBP1/UBA3 0.4
UBC12 2.0
Cullin1-Rbx1 5.0
Nedd8 10.0
ATP 5 000
MgCl2 10 000

2) Cullin1-Rbx1复合物泛素化修饰按照表2将Nedd8修饰的Cullin1-Rbx1复合物以及其他蛋白加入到反应体系中,总体积为100 μL,37 ℃反应,分别在反应0、15、30、60、90 min取样进行SDS-PAGE凝胶电泳,随后使用激光共聚焦成像仪对蛋白胶进行扫描分析。

表2  Cullin1-Rbx1复合物自泛素化修饰反应体系
Table 2  Self-ubiquitination of the Cullin1-Rbx1 complex
反应组分Reaction components终浓度/(μmol/L)Final concentration
UBA1 1
UBCH7 1
N8-Cullin3-Rbx1 2
FITC-Ub 4
ATP 5 000
MgCl2 10 000

2 结果与分析

2.1 蛋白的表达纯化

大肠杆菌表达系统异源表达纯化Cullin1-Rbx1复合物的自泛素化修饰所需的APPBP1/UBA3、UBC12、Cullin1-Rbx1和Nedd8 4种蛋白如图1所示,大肠杆菌表达的蛋白经镍柱亲和层析和离子交换层析(Source Q 10-100)纯化,4种蛋白纯度较高、性质稳定,可用于Cullin1-Rbx1复合物的体外自泛素化修饰反应。

图1  Cullin1-Rbx1复合物的自泛素化修饰所需蛋白的体外表达纯化

Fig.1  In vitro expression and purification of messenger molecule synthase

A、B、C和D 分别是E1(APPBP1/UBA3,APPBP1和UBA3分子质量分别为86 、52 ku)的离子交换层析峰图和 SDS-PAGE 胶图、E2(UBC12,分子质量为21 ku)的离子交换层析峰图和SDS-PAGE 胶图、Nedd8蛋白(分子质量为48.6 ku)的离子交换层析峰图和SDS-PAGE 胶图、Cullin1-Rbx1(Cullin1分子质量为90 ku,Rbx1分子质量为12.3 ku)复合物的分子筛图和SDS-PAGE 胶图。P:大肠杆菌裂解离心的沉淀;S:大肠杆菌裂解离心的上清; Ft:菌液穿流后的样品;W:流洗的杂蛋白;E:洗脱的蛋白样品;R:重悬介质的样品;In:纯化前的蛋白;M:蛋白 marker。A,B,C and D are E1 (APPBP1/UBA3) in ion exchange chromatography peak image and SDS PAGE (The molecular weight of APPBP1/UBA3 was 86/52 ku), E2 (UBC12) in ion exchange chromatography peak image and SDS PAGE (The molecular weight of UBC12 was 21 ku), Nedd8 protein in ion exchange chromatography peak image and SDS PAGE (The molecular weight of Nedd8 was 48.6 ku), Cullin1-Rbx1 in size exclusion chromatography peak image and SDS PAGE (The molecular weight of Cullin1-Rbx1 was 102.3 ku), respectively.P represents the precipitate after lysis of Escherichia coli; S represents the supernatant obtained after lysis of E. coli; Ft represents the sample after bacterial liquid flow through; W represents the sample obtained when eluting impurity proteins; E represents the eluted protein sample; R indicates samples in resuspended medium;In indicates samples before purification; M indicates protein marker.

2.2 Cullin1-Rbx1复合物的Neddylation修饰

Cullin1-Rbx1复合物功能的活化需要其核心亚基Cullin1发生Neddylation修饰,Cullin1蛋白C端保守的赖氨酸位点被类泛素小分子Nedd8修饰,从而改变Cullin1-Rbx1复合物的构象并激活其泛素连接酶的活性。反应体系中加入Cullin1-Rbx1复合物、E1(APPBP1/UBA3)、E2(UBC12)、Nedd8蛋白以及ATP、MgCl2,室温反应30 min。其SDS-PAGE结果显示,Cullin1-Rbx1复合物中的Cullin1蛋白被Nedd8修饰,被修饰的Cullin1-Rbx1复合物经过阴离子交换层析(Source Q 10-100)和分子筛(Superdex 200)纯化后得到蛋白性质稳定、纯度较高的Nedd8修饰Cullin1-Rbx1复合物。

图2  Neddylation修饰的Cullin1-Rbx1复合物纯化

Fig.2  Purification of Neddylation modified Cullin1-Rbx1 complex

A:Neddylation修饰的Cullin1-Rbx1复合物纯化的离子交换层析峰图和SDS-PAGE 胶图(Cullin1-Rbx1复合物分子质量为138.6 ku),B: Neddylation修饰的Cullin1-Rbx1复合物纯化的分子筛峰图和SDS-PAGE 胶图;In:纯化前的蛋白;M:蛋白 marker。A:Neddylation modified Cullin1-Rbx1 complex in ion exchange chromatography peak image and SDS PAGE gel image (The molecular weight of Neddylation modified Cullin1-Rbx1 was 138.6 ku);B:Neddylation modified Cullin1-Rbx1 complex in size exclusion chromatography peak image and SDS PAGE; In indicates samples before purification ;M indicates protein marker.

2.3 Cullin1-Rbx1复合物的自泛素化修饰

图3  Cullin1-Rbx1复合物的自泛素化修饰

Fig.3  Self-ubiquitination modification of the Cullin1-Rbx1 complex

上图为Cullin1-Rbx1复合物的自泛素化修饰的SDS-PAGE胶图(N8-Cullin1-Rbx1-Ub分子质量为147.2 ku),下图为Cullin1-Rbx1复合物的自泛素化修饰的荧光扫描图;M:蛋白 marker。Self-ubiquitination of the Cullin1-Rbx1 complex in SDS-PAGE (illustrated above); Self-ubiquitination of the Cullin1-Rbx1 complex in immunofluorescence (image below); M indicates protein marker.

为了实现对N8-Cullin1-Rbx1复合物自泛素化修饰的可视化表征,反应体系中使用FITC标记的Ub。SDS-PAGE凝胶考马斯亮蓝染色结果以及激光共聚焦成像仪扫描的SDS-PAGE凝胶荧光图显示,随着反应时间延长,反应体系中N8-Cullin1-Rbx1复合物的单泛素化水平显著升高,而阴性对照组(CK组,反应体系中未加ATP,反应90 min)却没有被泛素化修饰的现象。表明本研究在体外成功构建了SCF泛素连接酶中的Cullin1蛋白的自泛素化体系。

3 讨论

蛋白质泛素化修饰需要E1、E2和E3的协同作用,且反应过程较为复杂。现有研究体外泛素化过程的方法主要是使用Western blot的方法检测蛋白质的泛素化修饰,该方法使用Ub抗体检测修饰在蛋白质上的Ub。然而,Western blot检测周期长、操作过程复

27-30。为了便于研究蛋白质的泛素化,我们以Cullin1-Rbx1蛋白为例,在体外重构了多亚基SCF E3连接酶的自泛素化活性体系,结果表明建立的体外SCF E3自泛素化活性反应体系具有较高的可操作性和便利性,为研究真核生物中E3连接酶的机制提供了实用工具。该方法可以进一步应用于研究SCF E3的自泛素化。SCF E3蛋白的自泛素化修饰是为了使细胞能够快速适应不断变化的生理条件以及细胞周期的不同阶段,而关于SCF E3蛋白的自泛素化修饰机制的研究目前还不充分。本研究建立的方法将为探究真核生物中多亚基SCF E3连接酶的自泛素化机制提供一个有利的平台,同时为研究不同的SCF E3连接酶甚至其他类型的多亚单位E3连接提酶供理论依据。

参考文献References

1

HUA Z H,VIERSTRA R D.The cullin-RING ubiquitin-protein ligases[J].Annual review of plant biology,2011,62:299-334. [百度学术] 

2

ABD-HAMID N A,AHMAD-FAUZI M I,ZAINAL Z,et al.Diverse and dynamic roles of F-box proteins in plant biology[J/OL].Planta,2020,251(3):68[2023-03-30].https://doi.org/10.1007/s00425-020-03356-8. [百度学术] 

3

SAXENA H,NEGI H,SHARMA B.Role of F-box E3-ubiquitin ligases in plant development and stress responses[J].Plant cell reports,2023,42(7):1133-1146. [百度学术] 

4

STONE S L.Ubiquitin ligases at the nexus of plant responses to biotic and abiotic stresses[J].Essays in biochemistry,2022,66(2):123-133. [百度学术] 

5

董杰,NI Weimin,YU Renbo ,等.E3泛素连接酶SCFEBF1/2通过降解PIF3促进植物的光形态建成[J].科学新闻,2018(4):111.DONG J,NI W M ,YU R B,et al.Light-dependent degradation of PIF3 by SCFEBF1/2 promotes a photomorphogenic response in Arabidopsis[J].Science news,2018(4):111 (in Chinese). [百度学术] 

6

CITOVSKY V,ZALTSMAN A,KOZLOVSKY S V,et al.Proteasomal degradation in plant-pathogen interactions[J].Seminars in cell & developmental biology,2009,20(9):1048-1054. [百度学术] 

7

ZENG L R,VEGA-SÁNCHEZ M E,ZHU T,et al.Ubiquitination-mediated protein degradation and modification:an emerging theme in plant-microbe interactions[J].Cell research,2006,16(5):413-426. [百度学术] 

8

CHEN R Z,DENG Y W,DING Y L,et al.Rice functional genomics:decades’ efforts and roads ahead[J].Science China life sciences,2022,65(1):33-92. [百度学术] 

9

SHABEK N,TICCHIARELLI F,MAO H B,et al.Structural plasticity of D3-D14 ubiquitin ligase in strigolactone signalling[J].Nature,2018,563(7733):652-656. [百度学术] 

10

YAO R F,MING Z H,YAN L M,et al.DWARF14 is a non-canonical hormone receptor for strigolactone[J].Nature,2016,536(7617):469-473. [百度学术] 

11

DIKIC I.Proteasomal and autophagic degradation systems[J].Annual review of biochemistry,2017,86:193-224. [百度学术] 

12

WANG Z V,HILL J A.Protein quality control and metabolism:bidirectional control in the heart[J].Cell metabolism,2015,21(2):215-226. [百度学术] 

13

CIECHANOVER A,KWON Y T.Degradation of misfolded proteins in neurodegenerative diseases:therapeutic targets and strategies[J/OL].Experimental & molecular medicine,2015,47(3):e147[2023-03-30].https://doi.org/10.1038/emm.2014.117. [百度学术] 

14

AMBROGGIO X I,REES D C,DESHAIES R J.JAMM:a metalloprotease-like zinc site in the proteasome and signalosome[J].PLoS biology,2004,2(1):113-119. [百度学术] 

15

SMALLE J,VIERSTRA R D.The ubiquitin 26S proteasome proteolytic pathway[J].Annual review of plant biology,2004,55:555-590. [百度学术] 

16

WEISSMAN A M.Themes and variations on ubiquitylation[J].Nature reviews molecular cell biology,2001,2(3):169-178. [百度学术] 

17

BOSU D R,KIPREOS E T.Cullin-RING ubiquitin ligases:global regulation and activation cycles[J/OL].Cell division,2008,3:7[2023-03-30].https://doi.org/10.1186/1747-1028-3-7. [百度学术] 

18

DESHAIES R J.SCF and cullin/ring H2-based ubiquitin ligases[J].Annual review of cell and developmental biology,1999,15:435-467. [百度学术] 

19

PETROSKI M D,DESHAIES R J.Function and regulation of cullin-RING ubiquitin ligases[J].Nature reviews molecular cell biology,2005,6(1):9-20. [百度学术] 

20

HORI T,OSAKA F,CHIBA T,et al.Covalent modification of all members of human cullin family proteins by NEDD8[J].Oncogene,1999,18(48):6829-6834. [百度学术] 

21

PAN Z Q,KENTSIS A,DIAS D C,et al.Nedd8 on cullin:building an expressway to protein destruction[J].Oncogene,2004,23(11):1985-1997. [百度学术] 

22

HOCHSTRASSER M.All in the ubiquitin family[J].Science,2000,289(5479):563-564. [百度学术] 

23

OU C Y,LIN Y F,CHEN Y J,et al.Distinct protein degradation mechanisms mediated by Cul1 and Cul3 controlling Ci stability in Drosophila eye development[J].Genes & development,2002,16(18):2403-2414. [百度学术] 

24

PINTARD L,WILLIS J H,WILLEMS A,et al.The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase[J].Nature,2003,425(6955):311-316. [百度学术] 

25

陈传玉,谭樊杰,殷平,等.酶法体外高效制备信号分子(pp)pGpp[J].华中农业大学学报,2022,41(4):271-278.CHEN C Y,TAN F J,YIN P,et al.Efficient preparation of signal molecule (pp)pGpp in vitro by enzymatic method[J].Journal of Huazhong Agricultural University,2022,41(4):271-278 (in Chinese with English abstract). [百度学术] 

26

LIU Z,DONG X,YI H W,et al.Structural basis for the recognition of K48-linked Ub chain by proteasomal receptor Rpn13[J/OL].Cell discovery,2019,5:19[2023-03-30].https://doi.org/10.1038/s41421-019-0089-7. [百度学术] 

27

LIU H H,LIU S M,YU H,et al.An engineered platform for reconstituting functional multisubunit SCF E3 ligase in vitro[J].Molecular plant,2022,15(8):1285-1299. [百度学术] 

28

ZHOU J Z,LIANG Q,DONG M G,et al.Optimized protocol to detect protein UFMylation in cells and in vitro via immunoblotting[J/OL].STAR protocols,2022,3(1):101074[[2023-03-30]].https://doi.org/10.1016/j.xpro.2021.101074. [百度学术] 

29

赵庆臻,刘利静,谢旗,等.植物蛋白的体外泛素化检测方法[J].植物学报,2019,54(6):764-772.ZHAO Q Z,LIU L J,XIE Q,et al.In vitro ubiquitination assay for plant proteins[J].Chinese bulletin of botany,2019,54(6):764-772 (in Chinese with English abstract). [百度学术] 

30

刘利静, 赵庆臻, 谢旗, 等. 快速高效检测植物体内蛋白泛素化修饰研究方法[J]. 植物学报,2019,54(6):753-763.LIU L J,ZHAO Q Z,XIE Q,et al.An quick and efficient assay for in vivo protein ubiquitination[J].Chinese bulletin of botany,2019,54(6):753-763 (in Chinese with English abstract). [百度学术]