摘要
针对现有油菜基质块苗移栽机开沟装置作业存在沟宽稳定性差、沟底面平整度低、土壤扰动大等现象,导致立苗率低、覆土作业难度大等问题,基于船式开沟器腔体大以及芯铧式开沟器作业构建宽苗床、平沟底特点,结合类铧式曲面衔接过度,设计了一种适用于油菜基质块苗移栽机苗床构建的苗床带整备装置。建立了土壤与整备装置互作力学模型,确定了苗床带整备装置构建稳定苗床的主要结构参数。以整备装置作业速度、作业深度、类铧式曲面前端宽度、刃口角为因素,以土壤扰动量、沟宽变异系数为评价指标,利用EDEM开展四因素三水平二次正交组合仿真试验,试验结果显示:作业深度为41 mm、作业速度为0.52 m/s、类铧式曲面前端宽度为40 mm、刃口角为61º时土壤扰动量较小且沟宽变异系数较小;较优参数组合下台架试验得出土壤扰动量为13.01 c
油菜是我国重要的油料作物,其种植面积和产量均居世界前列,冬油菜种植区主要集中在长江中下
国内外学者为提高开沟质量,对开沟器进行了深入研究。刘晓鹏
本研究针对现有油菜基质块苗移栽机采用船式开沟器作业时,存在沟形稳定性差、沟底平整度低、土壤扰动大等问题,结合芯铧式开沟器沟幅宽、平沟底作业特点及入土隙角与圆弧腔底面高度差契合的结构特点与船式开沟器腔体大的结构特点,结合类铧式曲面组合船式开沟器与芯铧式开沟器设计一种适用于基质块苗机械移栽的苗床带整备装置,通过EDEM二次正交组合仿真试验得到整备装置最优参数组合,并通过田间试验检验安装苗床带整备装置的油菜基质块苗移栽机工作性能,旨在为油菜基质块苗移栽机苗床构建装置的设计提供参考。
1)总体结构。油菜基质块苗移栽机(

图1 油菜基质块苗移栽机整机图
Fig.1 Sketch of rape substrate block seedings transplanter
1.直线滑台Straight slide;2.电源Power supply;3.旋耕机Rotary cultivator;4.空气压缩机Air compressor;5.控制箱Control box;6.横向送苗装置Horizontal seedling feeding device;7.纵向送苗装置Longitudinal seedling feeding device;8.苗床带整备装置Seedling bed belt preparation device;9.取苗装置Pick-up mechanism.
苗床带整备装置安装在移栽单元尾端,将分取苗装置包覆于内(

图2 苗床带整备装置示意图
Fig.2 Schematic diagram of continuous seedbed belt preparer
A:移栽单元部分结构图Part structure diagram of transplanting unit;B:苗床带整备装置Seedbed belt preparation device;1.仿形装置Profiling device;2.分取苗装置Separating seedling device;3.机架Rack;4.苗床带整备装置Seedbed belt preparation device;5.尾翼板Tail plate;6.类铧式曲面Share-like surface;7.连接耳Connecting ear;8.腔底面Cavity bottom;9.分流板Splitter plate;10.滑刀Slide knife.
2)工作过程。移栽作业时,包覆分取苗装置的苗床带整备装置与旋耕后土壤接触构建连续苗床,整备装置与土壤间相互作用阶段分别为土壤分流、沟型挤压、平整沟底。移栽机作业时,滑刀切开土壤形成U型断面沟槽完成土壤分流阶段;土壤在分流板左、右两侧及腔底面作用下形成“槽钢”型断面,类铧式曲面是苗床带整备装置实现开沟成型功能的主要曲面,土垡沿曲面运动,按休止角堆积在苗沟两侧,完成沟型挤压阶段;整备装置底面的土壤通过腔底面法向挤压力作用被挤压抹平,完成平整沟底阶段。油菜载苗基质块通过分取苗装置铺放在沟底平整且连续的苗床带上,铺放阶段尾翼板与土壤接触点沿法线方向挤压土壤,避免土壤回流苗沟,保护载苗基质块铺放过程不受土壤干扰,保证载苗基质块入土稳定性,提高载苗基质块直立度。

图3 苗床带整备装置工作示意图
Fig.3 Working diagram of continuous seedbed belt preparation
1.载苗基质块Seedling matrix block;2.苗床Seedbed;3.移栽单元Transplanting unit;4.苗床带整备装置Seedbed belt preparation device;5.旋耕土壤Rotary tillage soil.
1)苗床带整备装置构建。苗床带整备装置由滑刀、类铧式曲面、圆弧腔底面等组成,采用芯铧式开沟器开沟芯铧替代船式开沟器开沟楔角,可有效减少整备装置前端对土壤的挤压,同时实现入土隙角与腔底面圆弧前端契合,结合腔底面对苗床底面土壤进行抹压,保证苗床底面平整度。苗床带整备装置通过对土壤分流、沟形挤压、沟底平整3个过程构建沟形稳定、沟底平整、土壤扰动少的苗床。
①苗床带整备装置土壤分流阶段。移栽机分取苗装置被苗床带整备装置包覆在土壤中作业,滑刀分流是防止开沟作业过程土壤运动至整备装置内部干扰分取苗装置运动的关键。滑刀刃口分流应保证开沟时降低土壤扰动、减少整备装置前端土壤堆积。刃口角偏小可有效降低牵引阻力但强度较低容易折刃;刃口角偏大可增加强度但牵引阻力增

图4 土壤运动受力简图
Fig.4 Schematic diagram of working forces for soil
A:坐标系建立 Establishment of coordinate system;B:xOy平面土垡受力简图 xOy plane soil stress diagram.
以土壤为研究对象,受力为:
(1) |
(2) |
②苗床带整备装置沟形挤压阶段。整备装置前后幅宽一致,导致整备装置与土壤相互作用集中在装置前端,对土壤局部扰动大,整备装置土壤扰动量较大。设计类铧式曲面过度衔接开沟滑刀与尾翼板,保证整备装置整体幅宽由前向后变小,减少前端作用集中,同时土壤在类铧式几何形状约束下运动减少扰动。苗床带整备装置类铧式曲面形成原理如

图5 类铧式曲面形成原理图
Fig.5 Schematic diagrams of plough surface
苗床带整备装置对土壤挤压可看作曲面对土壤的侧向倒置挤压,选取曲面上任一点土垡A为研究对象。以犁体前进方向为x轴,垂直向上为z轴,垂直x、z平面为y轴建立如

图6 类铧式曲面挤压力学分析
Fig.6 Extrusion mechanical analysis of plough-like surface
A:空间受力分析Spatial force analysis; B:y1Oz1平面受力分析y1Oz1 plane stress analysis; C:x1Oy1平面受力分析x1Oy1 plane stress analysis.
土壤在y1Oz1平面受力为:
(3) |
土壤在x1Oy1平面受力为:
(4) |
(5) |
由
③苗床带整备装置沟底平整阶段。腔底面是苗床带整备装置满足沟底面平整度关键部件,运动至苗沟底部的稻坂田团聚土壤,影响载苗基质块入土栽植过程重心位置。为保证载苗基质块不发生倾翻,设计前后具有一定高度差的腔底面对沟底团聚土壤进行抹压完成沟底平整,降低土壤颗粒顶端到沟底面的距离,进而提高沟底面平整度。以整备装置前进方向为x轴,垂直前进方向为y轴建立坐标系,如
(6) |

图7 土壤质点挤压原理图
Fig.7 Schematic diagram of soil particle extrusion
(7) |
由
2)苗床整备装置关键参数。①苗床整备装置高度。为确定整备装置稳定作业参数,建立整备装置成型作业过程中土壤堆积模型,整备装置与土壤相互作用过程忽略被挤压土壤体积变化。整备装置前进方向垂直截面土壤堆积模型(

图8 开沟过程土壤模型
Fig.8 Soil model of ditching process
1.分取苗装置Separated seedling device;2.油菜载苗基质块Rapeseed seedling matrix block;3.苗床带整备装置Seedbed belt preparation device.
整备装置作业过程中满足土壤体积守恒,为便于分析,假设苗床消失部分土壤体积与苗沟两侧堆积体积一
(8) |
(9) |
考虑取苗装置结构尺寸,取LED为110 mm;载苗基质块高度为40 mm,取LB1D为40 mm。带入
②刃口曲线参数。刃口曲线设计常采用直线、圆弧曲线、抛物线、指数曲

图9 刃口曲线设计示意图
Fig.9 Sketch of blade curve
刃口曲线方程为:
(10) |
考虑到系数b、c仅影响抛物线对称轴相对位置,不会改变抛物线其线型,为便于分析以y轴为对称轴,令系数b=c=0。则刃口曲线方程为:
(11) |
由
(12) |
(13) |
由于α、β互为余角,即
(14) |
(15) |
由
③类铧式曲面参数。苗床带整备装置作业时,类铧式曲面参数是影响整备装置作业性能的关键因素,参照文献[
(16) |
曲元线直径偏小,类铧式曲面偏短难以构建稳定苗沟;曲元线直径偏大,类铧式曲面较平直,对土壤作用减小,取曲元线前端与分流板面相切,后端与尾翼板相连,得到曲元线半径为1 330 mm。曲元线犁体对土壤进行侧面挤压,为保证整备装置分流板与类铧式曲面过度平滑,设置γmin为0°,参考文献[
④苗床带整备装置尺寸参数。为降低整备装置牵引阻力,保证曲面间组合平滑过度,对整备装置结构参数进行分析(

图10 苗床带整备装置
Fig.10 Continuous seedbed belt preparer
A:整备装置总体尺寸 The overall size of the finishing device;B:整备装置局部放大图 Local amplification diagram of the whole device.
由
(17) |
(18) |
腔底面前端离地间隙是决定整备装置作业质量的关键因素,间隙偏大,苗沟底面坚实度增加,影响载苗基质块后期田间生长;间隙偏小,开沟抹压效果差沟底面平整度低。入土隙角ψ与腔底面离地尺寸间隙相互配合。入土间隙角一般为5°~10°,为保证滑刀底面与腔底面弧面前端匹配精度,即离地间隙与入土隙角尺寸匹配,取L8=15 mm,则ψ=9.5°。带入式(
由
(19) |
由
为确定苗床带整备装置最佳组合参数,结合上述分析,以整备装置作业深度、作业速度、类铧式曲面前端宽度(简称前端宽度)、刃口角为影响作业效果的主要因素,以整备装置土壤扰动量、沟宽变异系数为评价指标进行仿真回归正交试验,确定其最佳参数组合。采用Hertz Mindlin(no slip)土壤接触模型建立EDEM土壤离散元模型,土壤颗粒半径为5 mm,土壤泊松比为0.3,剪切模量为2.51

图11 苗床带整备装置仿真过程
Fig.11 Simulation process of continuous seedbed belt preparer
土壤扰动量主要用于衡量整备装置对土壤的扰动性。如
(20) |

图12 土壤沟型轮廓
Fig.12 Soil gully profile
(21) |
对苗床带整备装置作业深度(X1)、作业速度(X2)、前端宽度(X3)、刃口角(X4)进行四元二次回归正交组合试验(
编码 Code | X1/mm Working depth | X2/(m/s) Working speed | X3/(º) Front width | X4/(º)Cutting edge angle |
---|---|---|---|---|
-1 | 40 | 0.4 | 40 | 60 |
0 | 50 | 0.5 | 50 | 65 |
1 | 60 | 0.6 | 60 | 70 |
1)仿真试验结果。各试验方案与评价指标结果如
序号 Number | X1 | X2 | X3 | X4 | Y1/c | Y2/% |
---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 1 | 39.24 | 9.00 |
2 | 0 | 0 | 0 | 0 | 35.12 | 7.99 |
3 | 0 | 0 | 1 | -1 | 21.62 | 13.06 |
4 | 1 | 0 | -1 | 0 | 34.36 | 8.02 |
5 | -1 | -1 | 0 | 0 | 12.40 | 18.45 |
6 | 0 | 1 | 0 | -1 | 36.80 | 6.94 |
7 | 1 | -1 | 0 | 0 | 23.56 | 13.09 |
8 | 0 | 0 | 0 | 0 | 36.42 | 8.57 |
9 | 1 | 1 | 0 | 0 | 47.16 | 7.08 |
10 | 0 | 0 | -1 | 1 | 24.28 | 10.37 |
11 | -1 | 0 | -1 | 0 | 17.60 | 8.14 |
12 | 0 | -1 | 0 | -1 | 18.64 | 18.10 |
13 | 0 | 1 | 0 | 1 | 47.70 | 9.33 |
14 | 0 | -1 | 0 | 1 | 17.76 | 17.35 |
15 | 1 | 0 | 1 | 0 | 41.50 | 9.65 |
16 | 0 | 0 | 1 | 1 | 33.68 | 13.57 |
17 | 0 | 0 | -1 | -1 | 22.38 | 9.01 |
18 | 0 | 0 | 0 | 0 | 37.62 | 9.76 |
19 | 0 | 0 | 0 | 0 | 34.48 | 8.85 |
20 | -1 | 0 | 0 | 1 | 28.42 | 16.61 |
21 | 0 | 1 | -1 | 0 | 33.50 | 9.55 |
22 | -1 | 1 | 0 | 0 | 26.70 | 11.21 |
23 | -1 | 0 | 0 | -1 | 16.84 | 11.59 |
24 | 0 | -1 | 1 | 0 | 17.54 | 17.69 |
25 | 1 | 0 | 0 | -1 | 26.94 | 7.67 |
26 | 0 | 0 | 0 | 0 | 38.92 | 7.80 |
27 | 0 | -1 | -1 | 0 | 17.16 | 10.78 |
28 | -1 | 0 | 1 | 0 | 20.04 | 15.74 |
29 | 0 | 1 | 1 | 0 | 39.82 | 7.43 |
Y1=36.51+7.56X1+10.38X2+2.08X3+
项目Item | Y1扰动面积 Disturbance area | Y2沟宽变异系数 Coefficient of variation of ditch width | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
平方和 Sum of squares | 自由度 Free degree | 均方差 Mean squareerror | F值 F value | P值P value | 平方和 Sum of squares | 自由度 Free degree | 均方差 Mean squareerror | F值F value | P值P value | |
模型 Model | 2 654.65 | 14 | 189.62 | 20.89 |
< 0.000 | 357.34 | 14 | 25.52 | 1.13 |
<0.000 |
X1 | 686.45 | 1 | 686.45 | 75.63 |
< 0.000 | 61.82 | 1 | 61.82 | 0.11 |
<0.000 |
X2 | 1 294.18 | 1 | 1 294.18 | 142.58 |
< 0.000 | 160.75 | 1 | 160.75 | 1.31 |
<0.000 |
X3 | 51.75 | 1 | 51.75 | 5.70 |
0.031 | 37.70 | 1 | 37.70 | 0.000 08 |
0.000 |
X4 | 190.88 | 1 | 190.88 | 21.03 |
0.000 | 8.10 | 1 | 8.10 | 0.20 |
0.039 |
X1X2 | 21.62 | 1 | 21.62 | 2.38 | 0.145 0 | 0.38 | 1 | 0.38 | 0.23 | 0.631 8 |
X1X3 | 5.52 | 1 | 5.52 | 0.61 | 0.448 4 | 8.91 | 1 | 8.91 | 5.17 |
0.032 |
X1X4 | 0.13 | 1 | 0.13 | 0.014 | 0.906 6 | 3.40 | 1 | 3.40 | 5.65 | 0.163 7 |
X2X3 | 8.82 | 1 | 8.82 | 0.97 | 0.341 0 | 20.39 | 1 | 20.39 | 0.78 |
0.002 |
X2X4 | 34.69 | 1 | 34.69 | 3.82 | 0.070 8 | 2.46 | 1 | 2.46 | 0.17 | 0.231 5 |
X3X4 | 25.81 | 1 | 25.81 | 2.84 | 0.113 9 | 0.18 | 1 | 0.18 | 0.24 | 0.739 9 |
X | 111.50 | 1 | 111.50 | 12.28 |
0.003 | 7.72 | 1 | 7.72 | 0.50 |
0.044 |
X | 86.35 | 1 | 86.35 | 9.51 |
0.008 | 38.47 | 1 | 38.47 | 0.83 |
0.000 |
X | 200.23 | 1 | 200.23 | 22.06 |
0.000 | 3.06 | 1 | 3.06 | 0.05 | 0.185 3 |
X | 114.61 | 1 | 114.61 | 12.63 |
0.003 | 23.04 | 1 | 23.04 | 0.38 |
0.001 |
残差 Residual | 127.07 | 14 | 9.08 | 22.06 | 14 | 1.58 | ||||
失拟项 Lack of fit | 113.97 | 10 | 11.40 | 3.48 | 0.120 4 | 19.64 | 10 | 1.96 | 3.24 | 0.134 0 |
误差 Error | 13.10 | 4 | 3.28 | 2.42 | 4 | 0.61 | ||||
总和Sum | 2 781.72 | 28 | 379.40 | 28 |
注: **表示影响极显著,P<0.01,*表示影响显著,P<0.05。Note: * * indicates extremely significant impact, P<0.01, * indicates significant impact, P<0.05.
(22)
②沟宽变异系数显著性分析。由
Y2=9.04-2.27X1-3.66X2+1.77X3+0.84X4-1.49X1X3-2.26X2X3+0.96X
2)参数优化设计与试验。由
(24) |
运用Design-Expert 8.0.6软件对约束指标分析,求得较优参数组合为作业深度40.55 mm、前进速度0.52 m/s、前端宽度40 mm、刃口角60.35°,此时土壤扰动量为12.40 c
为进一步验证苗床带整备装置田间作业性能,于2022年9月7日在华中农业大学现代农业示范基地进行苗床带整备装置(材质为65Mn)与船式开沟器(相同刃口曲线、刃口角61º、作业宽度110 mm)田间对比试验(

图13 田间试验
Fig.13 Field experiment
立苗率是基质块苗移栽机作业质量指标,是影响移栽对象产量的重要原因。立苗是栽植后秧苗主茎与底面的夹角大于30°的秧苗。立苗率计算公式为:
(25) |
试验结果表明:安装苗床带整备装置移栽单元立苗率为91.68%(
整备装置类型Type of servicing device | 行编号Number | 单行立苗率/%Single row seedling rate | 立苗率/%Seedling rate | 沟宽变异系数/%Coefficient of variation of ditch width | 土壤扰动量/c | 沟底面紧实度/kPa Tightness of ditch bottom surface |
---|---|---|---|---|---|---|
苗床带整备装置Nursery bed belt preparation device | 1 | 90.65 | 91.68 | 9.58 | 14.79 | 79.927 |
3 | 92.19 | |||||
5 | 92.19 | |||||
船式开沟器Boat type trencher | 2 | 89.06 | 89.59 | 11.05 | 18.69 | 62.119 |
4 | 89.06 | |||||
6 | 90.65 |
苗床带整备装置沟宽变异系数为9.58%、土壤扰动量为14.79 c
本研究设计了一种油菜基质块苗移栽机苗床带整备装置,通过分析苗床带整备土壤分流阶段、沟型挤压阶段、沟底平整阶段等苗床带构建过程,建立土壤与整备装置相互作用力学模型,确定了作业深度、作业速度、类铧式曲面前端宽度、刃口角对土壤扰动量、沟宽变异系数为影响整备装置关键因素,并确定了苗床带整备装置部分结构参数。
结合EDEM开展了作业深度、作业速度、类铧式曲面前端宽度、刃口角对土壤扰动量、沟宽变异系数影响的四因素三水平二次正交组合试验,结果表明:作业深度41 mm、作业速度0.52 m/s、类铧式曲面前端宽度40 mm、刃口角61°时效果最优。较优参数组合下土壤扰动量13.01 c
田间移栽对比试验表明,安装苗床带整备装置的基质块苗移栽机单元比安装船式开沟器的移栽单元,载苗基质块立苗率提高2.09百分点,沟宽变异系数减少13.3%,土壤扰动量减少20.9%,沟底面紧实度增加28.7%,苗床带整备装置满足油菜机械化移栽对苗床带的农艺要求。
由于油菜基质块苗机械化移栽对苗床带提出沟宽稳定、沟底面平整度、土壤扰动小等农艺要求,开沟器对基质块苗机械化移栽苗床带农艺要求适应差,本研究设计的苗床带整备装置能够满足油菜基质块苗移栽机苗床带农艺要求。
参考文献 References
廖庆喜,刘明峰,张照,等.油菜钵苗移栽机双五杆栽植机构多目标优化设计[J].农业机械学报,2015,46(11):49-56.LIAO Q X,LIU M F,ZHANG Z,et al.Multi-objective optimization design of double five-bar transplanting mechanism for rape pot seedling[J].Transactions of the CSAM,2015,46(11):49-56(in Chinese with English abstract). [百度学术]
王永维,何焯亮,王俊,等.旱地蔬菜钵苗自动移栽机栽植性能试验[J].农业工程学报,2018,34(3):19-25.WANG Y W,HE Z L,WANG J,et al.Experiment on transplanting performance of automatic vegetable pot seedling transplanter for dry land[J].Transactions of the CSAE,2018,34(3):19-25(in Chinese with English abstract). [百度学术]
廖庆喜,雷小龙,廖宜涛,等.油菜精量播种技术研究进展[J].农业机械学报,2017,48(9):1-16.LIAO Q X,LEI X L,LIAO Y T,et al.Research progress of precision seeding for rapeseed[J].Transactions of the CSAM,2017,48(9):1-16(in Chinese with English abstract). [百度学术]
廖庆喜,胡先朋,张照,等.油菜移栽机分苗装置分苗过程与钵苗钵体完整性分析[J].农业工程学报,2015,31(16):22-29.LIAO Q X,HU X P,ZHANG Z,et al.Analysis on detaching process of detaching device and seedling pot integrity about rape transplanter[J].Transactions of the CSAM,2015,31(16):22-29(in Chinese with English abstract). [百度学术]
YANG Q Z,XU L,SHI X Y,et al.Design of seedlings separation device with reciprocating movement seedling cups and its controlling system of the full-automatic plug seedling transplanter[J].Computers and electronics in agriculture,2018,147:131-145. [百度学术]
PETRE S N,PELE M,DRAGHICI E M.Influence of perlite and jiffy substrates on cucumber fruit productivity and quality[J].Journal of agricultural science,2015,7(8):89-93. [百度学术]
DOMINGUES SALVADOR E,EGIL HAUGEN L,RAGNAR GISLERØD H.Compressed coir as substrate in ornamental plants growing - partⅢ:physical analysis[J].Acta horticulturae,2005(683):215-222. [百度学术]
MENGESHA A,AYENEW B,TADESSE T.Acclimatization of in vitro propagated pineapple (Ananas comosuss (L.),var.smooth cayenne) plantlets to ex vitro condition in Ethiopia[J].American journal of plant sciences,2013,4(2):317-323. [百度学术]
RENISON D,CINGOLANI A,SCHINNER D.Optimizing restoration of Polylepis australis woodlands:when,where and how to transplant seedlings to the mountains?[J].Society for tropical ecology,2002,8:219-224. [百度学术]
刘晓鹏,肖文立,马磊,等.油菜联合直播机组合式船型开沟器设计与开沟质量试验[J].农业机械学报,2017,48(11):79-87.LIU X P,XIAO W L,MA L,et al.Design and ditching quality experiment on combined ship type opener of direct rapeseed seeder[J].Transactions of the CSAM,2017,48(11):79-87(in Chinese with English abstract). [百度学术]
刘瑞,李衍军,刘春晓,等.铲式宽苗带燕麦播种开沟器设计与试验[J].农业机械学报,2021,52(9):89-96.LIU R,LI Y J,LIU C X,et al.Design and experiment of shovel type wide seedling belt oat seeding furrow opener[J].Transactions of the CSAM,2021,52(9):89-96(in Chinese with English abstract). [百度学术]
赵淑红,刘汉朋,侯磊涛,等.基于离散元法的免耕深施肥分段式玉米播种开沟器研制[J].农业工程学报,2021,37(13):1-10.ZHAO S H,LIU H P,HOU L T,et al.Development of deep fertilizing no-tillage segmented maize sowing opener using discrete element method[J].Transactions of the CSAE,2021,37(13):1-10(in Chinese with English abstract). [百度学术]
王磊,廖宜涛,张青松,等.油麦兼用型精量宽幅免耕播种机仿形凿式开沟器研究[J].农业机械学报,2019,50(11):63-73.WANG L,LIAO Y T,ZHANG Q S,et al.Design on profiling chisel opener of precision broad width no-tillage planter for rapeseed and wheat[J].Transactions of the CSAM,2019,50(11):63-73(in Chinese with English abstract). [百度学术]
SOLHJOU A,FIELKE J M,DESBIOLLES J M A.Soil translocation by narrow openers with various rake angles[J].Biosystems engineering,2012,112(1):65-73. [百度学术]
SOLHJOU A,DESBIOLLES J M A,FIELKE J M.Soil translocation by narrow openers with various blade face geometries[J].Biosystems engineering,2013,114(3):259-266. [百度学术]
SOLHJOU A,FIELKE J M,DESBIOLLES J M A,et al.Soil translocation by narrow openers with various bent leg geometries[J].Biosystems engineering,2014,127:41-49. [百度学术]
NANDEDE B M , RAHEMAN H , DEORE H V . Selection of suitable furrow opener and furrow closer for vegetable transplanter[J].Agricultural mechanization in Asia,Africa and Latin America,2014,45(2):40-47. [百度学术]
赵淑红,王加一,陈君执,等.保护性耕作拟合曲线型深松铲设计与试验[J].农业机械学报,2018,49(2):82-92.ZHAO S H,WANG J Y,CHEN J Z,et al.Design and experiment of fitting curve subsoiler of conservation tillage[J].Transactions of the CSAM,2018,49(2):82-92(in Chinese with English abstract). [百度学术]
王徐建,宋建农,刘彩玲,等.甘草倾斜移栽开沟器的设计与试验[J].农业工程学报,2016,32(13):16-23.WANG X J,SONG J N,LIU C L,et al.Design and experiment on licorice tilt transplanting furrow opener[J].Transactions of the CSAE,2016,32(13):16-23(in Chinese with English abstract). [百度学术]
第一机械部机械研究院.农业机械设计手册[M].北京:中国农业科学技术出版社,1973.Mechanical Research Institute of the First Machinery Department. Design manual of agricultural machinery[M].Beijing:China Agricultural Science and Technology Press,1973(in Chinese). [百度学术]
刘晓鹏,张青松,刘立超,等.基于微分几何与EDEM的船型开畦沟装置触土曲面优化[J].农业机械学报,2019,50(8):59-69.LIU X P,ZHANG Q S,LIU L C,et al.Surface optimization of ship type ditching system based on differential geometry and EDEM simulation[J].Transactions of the CSAM,2019,50(8):59-69(in Chinese with English abstract). [百度学术]
魏国粱,张青松,刘立超,等.犁旋组合式油菜直播机扣垡装置设计与试验[J].农业机械学报,2020,51(6):38-46.WEI G L,ZHANG Q S,LIU L C,et al.Design and experiment of plowing and rotary tillage buckle device for rapeseed direct seeder[J].Transactions of the CSAM,2020,51(6):38-46(in Chinese with English abstract). [百度学术]
卜祥利,廖庆喜,孙文成,等.油菜种床整备开畦沟仿靴形锐角开沟犁设计与试验[J].华中农业大学学报,2021,40(2):77-84.BU X L,LIAO Q X,SUN W C,et al.Design and test of a boot-like acute angle furrow plough for preparing ditch of rapeseed seedbed[J].Journal of Huazhong Agricultural University,2021,40(2):77-84(in Chinese with English abstract). [百度学术]
王洋,张青松,胡乔磊,等.油菜基质块苗移栽机倾斜式分苗装置设计与稳定性分析[J].华中农业大学学报,2020,39(4):147-155.WANG Y,ZHANG Q S,HU Q L,et al.Design and stability analyses of inclined detach device for rapeseed substrate seedling transplanter[J].Journal of Huazhong Agricultural University,2020,39(4):147-155(in Chinese with English abstract). [百度学术]
张青松,廖宜涛,陶威,等.油菜垄作精量联合直播机起垄装置设计与试验[J].甘肃农业大学学报,2020,55(3):181-189.ZHANG Q S,LIAO Y T,TAO W,et al.Design and experiment for ridge lifting device of rapeseed planter[J].Journal of Gansu Agricultural University,2020,55(3):181-189(in Chinese with English abstract). [百度学术]