摘要
为探究解冻方法对秭归脐橙、宜昌蜜桔、椪柑3个品种速冻柑橘果肉品质的影响,采用冰箱解冻、自然解冻、流水解冻、水浴解冻、超声波解冻和微波解冻6种方法对柑橘果肉进行处理,测定了速冻柑橘果肉的解冻时间、汁液流失率、常规品质指标、色泽、硬度、总酚含量、抗氧化活性的变化,并进行感官评价。结果表明,不同解冻处理对秭归脐橙、宜昌蜜桔和椪柑果肉品质的影响呈现显著差异(P<0.05)。秭归脐橙、宜昌蜜桔、椪柑3个品种微波解冻的时间最短,分别是0.82、0.89、0.81 min;汁液流失率最低,分别是0.25%、0.16%、0.15%;微波和超声波解冻的常规品质指标保存的较好;微波解冻的色泽影响最小,ΔE分别为8.48、7.52、4.71,且硬度损失率最小,分别降低了36.10%、52.03%和36.48%;总酚含量、抗氧化活性较高,感官方面与新鲜果肉样品最接近。以上结果表明,相比于其他5种解冻方式,微波解冻可以在1 min内完成果肉的解冻,有效减缓果肉颜色变化和硬度损失,较好地保留速冻柑橘果肉的食用品质和营养品质。
柑橘是中国产量最高的水果,因其鲜亮的果皮、酸甜多汁的果肉和独特的营养价值而深受人们喜爱。柑橘类水果含有丰富的有机酸、维生素、多糖等物
解冻工艺是速冻柑橘制品在食用或加工前不可或缺的重要环节,是促进柑橘制品产业发展的关键。传统的解冻方法,包括室温和水浴解冻,由于其投资少、操作简单,在工业加工中得到了广泛的应
秭归脐橙(Citrus sinensis L. Osbeck)、宜昌蜜桔(Citrus reticulata Blanco)和椪柑(Citrus reticulata Blanco)均购自湖北省宜昌市果园。
秭归脐橙、宜昌蜜桔和椪柑分别进行手工剥皮、分瓣,挑取大小一致的橘瓣,装袋后在-80 ℃的低温速冻柜中速冻,用温湿度记录仪插入橘瓣的几何中心检测温度,并将数据记录仪连接到计算机进行记录。每10 s记录1次样品温度,直至温度达到-18 ℃。速冻柑橘果肉在检测前进行解冻,新鲜果肉为对照处理。
从-18 ℃冰箱取出速冻柑橘果肉,每份果肉质量约150 g,分成6组进行解冻处理,解冻方法包括4 ℃冰箱解冻、(25.0±0.5) ℃自然解冻、23.5 ℃流水解冻、50 ℃水浴解冻、[(25.0±0.5) ℃、100 W、40 kHz]超声波解冻、400 W微波解冻,样品中心温度达到4 ℃时解冻完成,记录解冻时间,重复测定3次。
取速冻柑橘,解冻前称质量(),解冻后用滤纸擦净表面的汁液,然后称质量()。计算二者的质量差与解冻前质量的比值,得出柑橘解冻的汁液流失率(RJL),计算方法如式(1)所示:
(1) |
依照GB/T 8210—2011《柑橘鲜果检验方法》,对VC含量采用2,6-二氯靛酚滴定法测定;可滴定酸采用酸碱滴定法测定;还原糖采用3,5-二硝基水杨酸比色法;可溶性固形物含量采用阿贝折光仪测定。
用色差仪测定速冻果肉的亮度值
(2) |
参照文献[
总酚的提取:取3 g匀浆加入6 mL 80%甲醇,至60 ℃水浴中超声60 min,取出、冷却、离心,残渣再提取,上清液混合定容于10 mL容量瓶。
总酚含量测定参照文献[
1) 2,2’-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt,ABTS)自由基清除能力的测定。参照文献[
2) 1, 1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基清除能力的测定。参照文献[
3) 铁离子还原能力(ferric ion reducing antioxidant power,FRAP)的测定。参照文献[
将新鲜和每个处理组的果肉匀浆离心,取滤液用于电子舌测试。在测试前,对电子舌传感器进行活化,确保在可靠、稳定的试验条件下进行数据采集。本试验在25 ℃室温下进行,参比电极和7个传感器的测量时间为120 s,冲洗时间为60
由10名经过培训的评估员从颜色、味道、质地和风味4个方面对不同解冻方法的果肉进行感官评价。
由
品种 Variety | 解冻方法 Thawing method | 解冻时间/min Thawing time | 汁液流失率/% Juice leakage rates |
---|---|---|---|
秭归脐橙 Zigui navel orange | 冰箱解冻 Refrigerator thawing | 492.33±12.50a | 0.88±0.09c |
自然解冻 Natural thawing | 92.67±11.68b | 2.56±0.17a | |
流水解冻 Flowing water thawing | 38.67±4.04c | 1.89±0.23b | |
水浴解冻 Warm water thawing | 28.00±3.61cd | 1.71±0.23b | |
超声波解冻 Ultrasonic thawing | 22.00±2.65d | 0.72±0.10c | |
微波解冻 Microwave thawing | 0.82±0.15e | 0.25±0.08d | |
宜昌蜜桔 Yichang mandarin | 冰箱解冻 Refrigerator thawing | 437.33±14.47a | 1.35±0.36c |
自然解冻 Natural thawing | 59.33±1.15b | 3.84±0.30a | |
流水解冻 Flowing water thawing | 20.00±2.65c | 1.67±0.11bc | |
水浴解冻 Warm water thawing | 15.00±1.00c | 1.78±0.23b | |
超声波解冻 Ultrasonic thawing | 11.67±1.04c | 0.70±0.12d | |
微波解冻 Microwave thawing | 0.89±0.10d | 0.16±0.07e | |
椪柑 Ponkan tangerine | 冰箱解冻 Refrigerator thawing | 412.00±15.87a | 0.75±0.09c |
自然解冻 Natural thawing | 56.33±1.53b | 2.16±0.23a | |
流水解冻 Flowing water thawing | 22.33±1.53c | 1.06±0.07b | |
水浴解冻 Warm water thawing | 17.33±1.53c | 0.98±0.16b | |
超声波解冻 Ultrasonic thawing | 17.00±1.00c | 0.42±0.06d | |
微波解冻 Microwave thawing | 0.81±0.13d | 0.15±0.03e |
注: 不同小写字母表示同一品种内不同处理间差异显著(P<0.05)。下同。Note: Different lowercase letters indicate significant differences between different treatments within the same variety (P<0.05). The same as follows.
不同解冻方法下3个柑橘品种的汁液流失率呈现显著差异(P<0.05)。秭归脐橙、宜昌蜜桔和椪柑果肉经微波解冻的汁液流失率最低,分别为0.25%、0.16%、0.15%,与其他解冻方法差异显著(P<0.05);其次是超声波解冻,分别为0.72%、0.70%、0.42%;冰箱解冻仅次于超声波解冻,分别为0.88%、1.35%和0.75%;流水解冻和水浴解冻的汁液流失率没有显著性差异(P>0.05);自然解冻的汁液流失率最高,分别为2.56%、3.84%、2.16%。
由
品种 Variety | 解冻方法 Thawing method | 维生素C含量/(mg/100 g) Vitamin C content | 还原糖含量/% Reducing sugar content | 可滴定酸含量/(mg/100 mL) Titratable acid content | 可溶性固形物 含量/% Total solublesolid content |
---|---|---|---|---|---|
秭归脐橙Zigui navel orange | 新鲜对照 Fresh control | 49.23±1.74a | 9.18±0.25a | 0.54±0.04c | 10.53±0.10a |
冰箱解冻 Refrigerator thawing | 41.27±0.80b | 8.67±0.48a | 0.59±0.02bc | 9.90±0.23bc | |
自然解冻 Natural thawing | 33.63±0.99d | 8.64±0.14a | 0.59±0.01b | 9.58±0.08d | |
流水解冻 Flowing water thawing | 37.26±1.26c | 7.71±0.34b | 0.58±0.02bc | 9.17±0.08e | |
水浴解冻 Warm water thawing | 29.01±2.18e | 7.68±0.33b | 0.59±0.04bc | 9.17±0.13e | |
超声波解冻 Ultrasonic thawing | 44.08±1.94b | 8.89±0.33a | 0.65±0.02a | 10.07±0.20b | |
微波解冻 Microwave thawing | 44.23±2.16b | 8.94±0.33a | 0.65±0.01a | 9.73±0.13cd | |
宜昌蜜桔 Yichang mandarin | 新鲜对照 Fresh control | 15.07±0.47a | 6.98±0.17a | 0.43±0.01d | 9.38±0.10a |
冰箱解冻 Refrigerator thawing | 13.56±1.29a | 5.45±0.26b | 0.52±0.01b | 9.08±0.08b | |
自然解冻 Natural thawing | 8.33±0.57b | 4.52±0.19d | 0.45±0.01d | 7.98±0.08d | |
流水解冻 Flowing water thawing | 8.03±0.57b | 5.05±0.15c | 0.49±0.01c | 8.65±0.15c | |
水浴解冻 Warm water thawing | 7.04±1.42b | 5.06±0.14c | 0.49±0.02c | 8.98±0.08b | |
超声波解冻 Ultrasonic thawing | 14.16±1.37a | 5.45±0.17b | 0.57±0.01a | 9.10±0.05b | |
微波解冻 Microwave thawing | 13.93±1.48a | 5.24±0.19bc | 0.53±0.02b | 9.37±0.08a | |
椪柑 Ponkan tangerine | 新鲜对照 Fresh control | 16.96±0.35a | 7.79±0.43a | 0.38±0.02c | 9.20±0.05a |
冰箱解冻 Refrigerator thawing | 12.50±0.68c | 6.71±0.35bc | 0.49±0.02a | 9.15±0.05ab | |
自然解冻 Natural thawing | 10.15±0.95d | 6.53±0.26c | 0.43±0.01b | 8.52±0.08e | |
流水解冻 Flowing water thawing | 12.50±0.60c | 6.66±0.19bc | 0.44±0.01b | 8.80±0.10d | |
水浴解冻 Warm water thawing | 10.07±0.69d | 6.94±0.13bc | 0.46±0.01ab | 9.02±0.03c | |
超声波解冻 Ultrasonic thawing | 14.01±0.80b | 7.56±0.23a | 0.49±0.05a | 9.10±0.05abc | |
微波解冻 Microwave thawing | 14.01±1.17b | 7.24±0.49ab | 0.49±0.02a | 9.07±0.03bc |
由
品种 Variety | 解冻方法 Thawing method | 亮度值 The value of | 红绿色度值 The value of | 黄蓝色度值 The value of | 总色差ΔE Total color difference ΔE |
---|---|---|---|---|---|
秭归脐橙 Zigui navel orange | 新鲜对照 Fresh control | 57.35±1.56a | 3.94±0.11a | 26.08±1.64a | - |
冰箱解冻 Refrigerator thawing | 45.15±1.71c | 2.96±0.41b | 24.11±2.35abcd | 12.72±2.82a | |
自然解冻 Natural thawing | 45.92±2.41c | 2.32±0.49c | 23.79±1.19bcd | 11.97±2.25ab | |
流水解冻 Flowing water thawing | 45.76±1.96c | 3.20±0.54b | 24.80±1.75abc | 11.83±2.83ab | |
水浴解冻 Warm water thawing | 44.37±2.02c | 1.92±0.47d | 22.39±2.79d | 13.87±3.04a | |
超声波解冻 Ultrasonic thawing | 48.58±1.06b | 3.35±0.37b | 23.20±2.33cd | 9.81±1.81bc | |
微波解冻 Microwave thawing | 49.19±2.78b | 3.28±0.39b | 25.85±1.59ab | 8.48±2.95c | |
宜昌蜜桔 Yichang mandarin | 新鲜对照 Fresh control | 50.30±1.91a | 7.42±0.60a | 33.80±1.30a | - |
冰箱解冻 Refrigerator thawing | 46.87±1.41b | 6.70±0.49bc | 26.54±1.29bc | 8.26±1.58b | |
自然解冻 Natural thawing | 46.17±1.58b | 6.74±0.40bc | 26.80±1.25bc | 8.32±1.66b | |
流水解冻 Flowing water thawing | 45.85±1.68b | 6.50±0.35c | 25.98±1.48cd | 9.16±1.95b | |
水浴解冻 Warm water thawing | 44.21±2.02c | 6.34±0.58c | 24.92±1.12d | 11.08±2.05a | |
超声波解冻 Ultrasonic thawing | 46.65±1.70b | 7.00±0.37ab | 27.51±0.95b | 7.66±2.04b | |
微波解冻 Microwave thawing | 47.29±1.30b | 7.08±0.40ab | 27.28±1.38bc | 7.52±2.14b | |
椪柑 Ponkan tangerine | 新鲜对照 Fresh control | 48.37±2.71a | 8.42±0.72a | 26.71±1.88a | - |
冰箱解冻 Refrigerator thawing | 45.00±1.61bc | 7.50±0.69b | 22.32±1.56b | 6.57±1.86b | |
自然解冻 Natural thawing | 44.96±1.18bc | 7.45±0.64b | 21.87±1.55b | 6.67±2.22b | |
流水解冻 Flowing water thawing | 44.63±1.78bc | 6.70±0.40c | 22.55±1.33c | 6.39±1.97b | |
水浴解冻 Warm water thawing | 43.46±1.85c | 6.84±0.87c | 19.51±1.58b | 9.23±2.60a | |
超声波解冻 Ultrasonic thawing | 45.68±1.76b | 7.86±0.33ab | 22.85±1.31b | 5.79±1.84b | |
微波解冻 Microwave thawing | 45.60±1.44b | 8.16±0.52a | 25.84±1.37a | 4.71±1.96b |
由

图1 不同解冻方法下速冻柑橘果肉硬度的变化
Fig. 1 Changes of the hardness of quick-frozen citrus pulp under different thawing methods
FC:新鲜对照 Fresh control;RT:冰箱解冻 Refrigerator thawing;NT:自然解冻 Natural thawing;FWT:流水解冻 Flowing water thawing;WWT:水浴解冻 Warm water thawing;UT:超声波解冻 Ultrasonic thawing;MT:微波解冻 Microwave thawing. 不同小写字母表示同一品种内不同处理间差异显著(P<0.05)。下同。Different lowercase letters indicate significant differences between different treatments within the same variety (P<0.05). The same as follows.
由

图2 不同解冻方法下速冻柑橘果肉总酚含量 (A)、ABTS (B)、DPPH (C)和FRAP (D) 的变化
Fig. 2 Changes of total phenolic content (A), ABTS (B), DPPH (C) and FRAP (D) of quick-frozen citrus pulp under different thawing methods
由

图3 不同解冻方法下速冻秭归脐橙 (A)、宜昌蜜桔 (B) 和椪柑 (C) 果肉电子舌PCA分析
Fig. 3 PCA analysis of electron tongue in quick-frozen citrus pulp of Zigui navel orange (A)、Yichang mandarin (B) and Ponkan tangerine (C) under different thawing methods
新鲜果肉和不同解冻方法解冻后果肉的感官分析如

图4 不同解冻方法下速冻秭归脐橙 (A)、宜昌蜜桔 (B) 和椪柑 (C) 果肉感官评价
Fig. 4 Sensory evaluation of quick-frozen citrus pulp of Zigui navel orange (A)、Yichang mandarin (B) and Ponkan tangerine (C) under different thawing methods
本研究综合评价了6种解冻方法对秭归脐橙、宜昌蜜桔、椪柑3种速冻柑橘果肉品质的影响。结果表明,不同解冻方法对速冻柑橘果肉的解冻时间、汁液流失率、常规品质指标、色泽、硬度、总酚含量、抗氧化活性和感官均有显著影响。其中,微波解冻的时间最短,汁液流失率最低,色泽和硬度保持得最好,超声波解冻次之,这是因为微波解冻可以使食物吸收微波激发水分子,同时加热柑橘果肉的表面和内部,加速解冻过程,减少汁液流失率;而超声波解冻是将超声波与水浴解冻的效果叠加,使热量能够在柑橘果肉内部迅速衰减,产生的热量顺利地通过果肉内部,减少解冻时间和汁液流失
柑橘果实富含多酚类物质,具有抗氧化、降血糖、清除自由基等功能活性。多酚含量和抗氧化活性二者存在密切关系,酚类物质发生褐变后,生成的褐变物质会导致抗氧化能力降低和果肉品质发生劣变。Celli
主成分分析法(PCA)能保留原始数据的大部分信息,利用主成分分析对电子舌的响应值进行分析,可以确定不同解冻方法果肉的风味是否存在差
综上所述,微波解冻可以有效地减少柑橘果肉的颜色变化,降低果肉的硬度损失,保留柑橘果肉的生物活性物质和感官品质,极大程度地缩短解冻时间,降低解冻成本,超声波的解冻效果仅次于微波解冻。这2种解冻方法都可以较好地维持速冻柑橘果肉解冻后的品质稳定性。
参考文献 References
STINCO C M,ESCUDERO-GILETE M L,HEREDIA F J,et al.Multivariate analyses of a wide selection of orange varieties based on carotenoid contents,color and in vitro antioxidant capacity[J].Food research international,2016,90:194-204. [百度学术]
KIM S S,PARK K J,AN H J,et al.Phytochemical,antioxidant,and antibacterial activities of fermented Citrus unshiu byproduct[J].Food science and biotechnology,2017,26(2):461-466. [百度学术]
TAO N G,LIU Y J,ZHANG J H,et al.Chemical composition of essential oil from the peel of Satsuma mandarin[J].African journal of biotechnology,2008,7(9):1261-1264. [百度学术]
李勋兰,洪林,杨蕾,等.11个柑橘品种果实营养成分分析与品质综合评价[J].食品科学,2020,41(8):228-233.LI X L,HONG L,YANG L,et al.Analysis of nutritional components and comprehensive quality evaluation of Citrus fruit from eleven varieties[J].Food science,2020,41(8):228-233 (in Chinese with English abstract). [百度学术]
WU X F,ZHANG M,ADHIKARI B,et al.Recent developments in novel freezing and thawing technologies applied to foods[J].Critical reviews in food science and nutrition,2017,57(17):3620-3631. [百度学术]
GUZIK P,KULAWIK P,ZAJĄC M,et al.Microwave applications in the food industry:an overview of recent developments[J].Critical reviews in food science and nutrition,2022,62(29):7989-8008. [百度学术]
LIU L,LÜ C M,MENG X J,et al.Effects of different thawing methods on flavor compounds and sensory characteristics of raspberry[J].Flavour and fragrance journal,2020,35(5):478-491. [百度学术]
BHARGAVA N,MOR R S,KUMAR K,et al.Advances in application of ultrasound in food processing:a review[J/OL].Ultrasonics sonochemistry,2021,70:105293 [2023-12-06].https://doi.org/10.1016/j.ultsonch.2020.105293. [百度学术]
汪楠,张甫生,阚建全,等.不同解冻方式对速冻方竹笋品质的影响[J].食品科学,2022,43(11):180-185.WANG N,ZHANG F S,KAN J Q,et al.Effect of different thawing methods on the quality of quick frozen Chimonobambusa quadrangularis shoot[J].Food science,2022,43(11):180-185 (in Chinese with English abstract). [百度学术]
GU Y X,SHI W Q,LIU R,et al.Cold plasma enzyme inactivation on dielectric properties and freshness quality in bananas[J/OL].Innovative food science & emerging technologies,2021,69:102649 [2023-12-06].https://doi.org/10.1016/j.ifset.2021.102649. [百度学术]
赵金红,胡锐,刘冰,等.渗透脱水前处理对芒果冻结速率和品质的影响[J].农业机械学报,2014,45(2):220-227.ZHAO J H,HU R,LIU B,et al.Effect of osmotic dehydration pre-treatment on freezing rate and quality attributes of frozen mango[J].Transactions of the CSAM,2014,45(2):220-227 (in Chinese with English abstract). [百度学术]
KWAW E,MA Y K,TCHABO W,et al.Effect of lactobacillus strains on phenolic profile,color attributes and antioxidant activities of lactic-acid-fermented mulberry juice[J].Food chemistry,2018,250:148-154. [百度学术]
ŽLABUR J Š,MIKULEC N,DOŽDOR L,et al.Preservation of biologically active compounds and nutritional potential of quick-frozen berry fruits of the genus Rubus[J/OL].Processes,2021,9(11):1940 [2023-12-06].https://doi.org/10.3390/pr9111940. [百度学术]
王磊,李国龙,唐志书,等.不同生长时期酸枣果肉多糖相对分子质量分布和单糖组成及抗氧化活性研究[J/OL].食品工业科技,2023,44:1-15[2023-12-06].https://doi.org/10.13386/j.issn1002-0306.2023060269.WANG L,LI G L,TANG Z S,et al. Study on the relative molecular mass, monosaccharide composition and antioxidant effects of Ziziphus jujuba flesh polysaccharide at different periods[J/OL].Science and technology of food industry,2023,44:1-15[2023-12-06].https://doi.org/10.13386/j.issn1002-0306.2023060269 (in Chinese with English abstract). [百度学术]
TLILI I,HDIDER C,LENUCCI M S,et al.Bioactive compounds and antioxidant activities of different watermelon (Citrullus lanatus (Thunb.) Mansfeld) cultivars as affected by fruit sampling area[J].Journal of food composition and analysis,2010,24(3):307-314. [百度学术]
REN T Y,LI B,XU F Y,et al.Research on the effect of oriental fruit moth feeding on the quality degradation of chestnut rose juice based on metabolomics[J/OL].Molecules,2023,28(20):7170 [2023-12-06].https://doi.org/10.3390/molecules28207170. [百度学术]
王雪松,谢晶.不同解冻方式对冷冻竹荚鱼品质的影响[J].食品科学,2020,41(23):137-143.WANG X S,XIE J.Effects of different thawing methods on the quality of frozen horse mackerel[J].Food science,2020,41(23):137-143 (in Chinese with English abstract). [百度学术]
HOLZWARTH M,KORHUMMEL S,CARLE R,et al.Evaluation of the effects of different freezing and thawing methods on color,polyphenol and ascorbic acid retention in strawberries (Fragaria × ananassa Duch.)[J].Food research international,2012,48(1):241-248. [百度学术]
刘雪梅,孟宪军,李斌,等.不同解冻方法对速冻草莓品质的影响[J].食品科学,2014,35(22):276-281.LIU X M,MENG X J,LI B,et al.Effects of different thawing methods on quality characteristics of quick-frozen strawberries[J].Food science,2014,35(22):276-281 (in Chinese with English abstract). [百度学术]
姜怡彤,接伟光,徐飞,等.解冻方式对速冻菠萝蜜果肉品质的影响[J].食品工业科技,2020,41(1):266-271.JIANG Y T,JIE W G,XU F,et al.Effect of thawing methods on pulp quality of quick-frozen jackfruit[J].Science and technology of food industry,2020,41(1):266-271 (in Chinese with English abstract). [百度学术]
PENG Y,ZHAO J H,WEN X,et al.The comparison of microwave thawing and ultra-high-pressure thawing on the quality characteristics of frozen mango[J/OL].Foods,2022,11(7):1048 [2023-12-06]. https://doi.org/10.3390/foods11071048. [百度学术]
CELLI G, GHANEMA, BROOKS M S L.Influence of freezing process and frozen storage on the quality of fruits and fruit products[J].Food reviews international,2016,32(3):280-304. [百度学术]
RICKMAN J C,BARRETT D M,BRUHN C M.Nutritional comparison of fresh,frozen and canned fruits and vegetables.Part 1.Vitamins C and B and phenolic compounds[J].Journal of the science of food and agriculture,2007,87(6):930-944. [百度学术]
张瑜,赵金红,丁洋,等.不同解冻技术对冷冻香菇(L. edodes)品质的影响[J].现代食品科技,2016,32(9):241-247.ZHANG Y,ZHAO J H,DING Y,et al.Effects of different thawing methods on the quality attributes of frozen Lentinus edodes cubes[J].Modern food science and technology,2016,32(9):241-247 (in Chinese with English abstract). [百度学术]
CHEN H Z,ZHANG M,BHANDARI B,et al.Evaluation of the freshness of fresh-cut green bell pepper (Capsicum annuum var.grossum) using electronic nose[J].LWT,2018,87:77-84. [百度学术]
胡中海,孙谦,马亚琴,等.不同解冻方法对速冻温州蜜柑橘瓣品质的影响[J].食品工业科技,2015,36(14):123-126.HU Z H,SUN Q,MA Y Q,et al.Effect of different thawing methods on the quality of quick-freezing Satsuma mandarin (Citrus unshiu) segment[J].Science and technology of food industry,2015,36(14):123-126 (in Chinese with English abstract). [百度学术]