摘要
为探究不同芥菜基因型和培养条件对小孢子培养效果的影响,建立适合芥菜小孢子培养及染色体加倍的最佳方案,对芥菜8个不同变种的34份自交系进行小孢子培养,比较不同热激时间、活性炭浓度、小孢子密度对出胚率的影响。结果显示,基因型对芥菜小孢子培养成功与否影响较大,34份材料中11份材料成功培养出胚状体;不同材料间出胚效果差异明显,其中,大头菜出胚率最高,可达23.85胚/蕾;芥菜小孢子出胚最佳条件为32 ℃热激1~2 d,培养基含活性炭3~5 g/L,小孢子密度为1.5×1
双单倍体(double haploid, DH)对于快速获得纯系、提高育种效率具有重要意
芥菜(Brassica juncea)是全世界广泛种植的一种十字花科作物,是重要的蔬菜、油料和调料作物,其遗传背景复杂、变种众多、用途广泛。芥菜具有明显的杂种优势,生产上常利用杂种优势进行新品种选育。因此,纯合亲本的选育对芥菜育种工作至关重
小孢子培养受到各种因素的影响,基因型和培养条件都会影响小孢子培养效
根据芥菜的性状特征,芥菜分为16个变
编号 Code | 变种类型 Variety types | 编号 Code | 变种类型 Variety types |
---|---|---|---|
A1 | Brassica juncea var. multiceps Tsen et Lee | A18 | Brassica juncea var. multiceps Tsen et Lee |
A2 | Brassica juncea var. multiceps Tsen et Lee | A19 | Brassica juncea var. multiceps Tsen et Lee |
A3 | Brassica juncea var. crassicaulis Chen et Yang | A20 | Brassica juncea var. multiceps Tsen et Lee |
A4 | Brassica juncea var. latipa Li | A21 | Brassica juncea var. strumata Tsen et Lee |
A5 | Brassica juncea var. tumida Tsen et Lee | A22 | Brassica juncea var. strumata Tsen et Lee |
A6 | Brassica juncea var. rugosa Bailey | A23 | Brassica juncea var. megarrhiza Tsen et Lee |
A7 | Brassica juncea var. rugosa Bailey | A24 | Brassica juncea var. megarrhiza Tsen et Lee |
A8 | Brassica juncea var. megarrhiza Tsen et Lee | A25 | Brassica juncea var. rugosa Bailey |
A9 | Brassica juncea var. megarrhiza Tsen et Lee | A26 | Brassica juncea var. rugosa Bailey |
A10 | Brassica juncea var. capitata Hort | A27 | Brassica juncea var. rugosa Bailey |
A11 | Brassica juncea var. megarrhiza Tsen et Lee | A28 | Brassica juncea var. capitata Hort |
A12 | Brassica juncea var. capitata Hort | A29 | Brassica juncea var. multiceps Tsen et Lee |
A13 | Brassica juncea var. latipa Li | A30 | Brassica juncea var. latipa Li |
A14 | Brassica juncea var. capitata Hort | A31 | Brassica juncea var. latipa Li |
A15 | Brassica juncea var. megarrhiza Tsen et Lee | A32 | Brassica juncea var. rugosa Bailey |
A16 | Brassica juncea var. megarrhiza Tsen et Lee | A33 | Brassica juncea var. tumida Tsen et Lee |
A17 | Brassica juncea var. megarrhiza Tsen et Lee | A34 | Brassica juncea var. tumida Tsen et Lee |
芥菜花期FAA固定花蕾24 h,固定后更换至75%乙醇中浸泡保存。选择不同长度(1.0~2.0、2.0~3.0、3.0~4.0、4.0~5.0 mm)的花蕾进行DAPI染色,具体方法参照文献[
小孢子培养过程与培养基配方参照甘蓝型油菜和白菜的小孢子培养方
采用流式细胞仪(Parte
取芥菜单倍体和双倍体新鲜的花蕾进行TTC染色实验,用镊子夹取花药置于载玻片上,加入2滴TTC染料,用镊子挤压释放花粉粒,花粉与TTC染料溶液在37 ℃下充分反应15 min后,在显微镜下观察染色情况并拍照。
利用秋水仙素对单倍体植株进行染色体加
选取不同长度的花蕾,用DAPI荧光染液染色后在荧光显微镜下观察其小孢子发育情况。结果显示,小孢子发育可明显观察到4个特征发育阶段,单核期(

图1 小孢子发育的过程
Fig. 1 The process of microspore development
A:单核期Uninucleate stage; B:单核靠边期Late-uninucleate stage; C:双核期Binucleate stage; D:三核期Trinucleate stage.
分别对34份芥菜材料进行小孢子培养,结果如
编号 Code | 变种类型 Variety types | 子叶型胚状体数 Cotyledonous embryoids No. | 畸形胚状体数 Deformed embryoids No. | 总胚状体数 Total embryoids No. | 出胚率/(胚/蕾) Number of embryoids per bud |
---|---|---|---|---|---|
A8 | Brassica juncea var. megarrhiza Tsen et Lee | 132.90±38.38a | 10.20±2.74a | 143.10±39.10a | 23.85±6.52a |
A23 | 79.20±12.20b | 5.90±1.37b | 85.10±13.16b | 14.18±2.19b | |
Brassica juncea var. megarrhiza Tsen et Lee | |||||
A33 | Brassica juncea var. tumida Tsen et Lee | 12.50±3.37cd | 3.70±1.49c | 16.20±4.64c | 2.70±0.77c |
A25 | Brassica juncea var. rugosa Bailey | 14.00±0.42c | 3.20±1.03c | 17.20±3.71c | 2.87±0.62c |
A6 | Brassica juncea var. rugosa Bailey | 0.20±0.42d | 0.00±0.00e | 0.20±0.42d | 0.03±0.07d |
A27 | 0.10±0.32d | 0.00±0.00e | 0.10±0.32d | 0.02±0.05d | |
Brassica juncea var. rugosa Bailey | |||||
A19 | Brassica juncea var. multiceps Tsen et Lee | 0.40±0.52d | 0.20±0.42e | 0.60±0.84d | 0.10±0.14d |
A28 | Brassica juncea var. capitata Hort | 1.70±0.95d | 1.40±0.70de | 3.10±1.29d | 0.52±0.21d |
A14 | 0.30±0.48d | 0.30±0.48de | 0.60±0.97d | 0.10±0.16d | |
Brassica juncea var. capitata Hort | |||||
A31 | Brassica juncea var. latipa Li | 1.60±1.35d | 1.00±0.94de | 2.60±1.35d | 0.43±0.22d |
A22 | Brassica juncea var. strumata Tsen et Lee | 0.60±0.70d | 0.60±0.52de | 1.20±0.63d | 0.20±0.10d |
注: 不同小写字母表示不同材料间差异显著(P<0.05)。Note: Different lowercase letters indicate significant differences between different materials (P<0.05).
将小孢子培养诱导获得的胚状体转入B5-3培养基进行光照培养,胚状体子叶一端逐渐转变为绿色呈叶片状,另一端生出根系,具体过程如

图2 胚状体发育及植株再生过程
Fig. 2 Embryoid body development and plant regeneration processes
A~D:胚状体发育过程 Process of embryoid body development;E:初代培养 Primary culture under dark condition;F:继代培养 Green transformation culture;G:子叶型胚 Cotyledonous embryoid;H:生根培养 Rooting culture.
选取出胚率较高的4个变种材料,大头菜A8、根瘤芥A33、结 球芥A28和宽柄芥A31进行后续研究。由
编号 Code | 处理时间/d Processing days | 子叶型胚状体数 Cotyledonous embryoids No. | 畸形胚状体数 Deformed embryoids No. | 总胚状体数 Total embryoids No. | 出胚率/(胚/蕾) Number of embryoids per bud |
---|---|---|---|---|---|
A8 | 0 | 0.00±0.00c | 0.00±0.00c | 0.00±0.00c | 0.00±0.00c |
1 | 139.00±3.61b | 17.00±2.00b | 156.00±5.20b | 26.00±0.87b | |
2 | 167.00±6.56a | 21.00±1.00a | 188.00±5.57a | 31.33±0.93a | |
3 | 0.00±0.00c | 0.00±0.00c | 0.00±0.00c | 0.00±0.00c | |
A33 | 0 | 0.00±0.00c | 0.00±0.00b | 0.00±0.00c | 0.00±0.00c |
1 | 14.00±1.00a | 2.00±1.00a | 16.00±1.00a | 2.67±0.17a | |
2 | 11.33±1.53b | 0.67±0.58b | 12.00±1.00a | 2.00±0.17b | |
3 | 0.00±0.00c | 0.00±0.00b | 0.00±0.00c | 0.00±0.00c | |
A28 | 0 | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b |
1 | 5.33±2.52a | 0.67±0.58a | 6.00±3.00a | 1.00±0.50a | |
2 | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b | |
3 | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b | |
A31 | 0 | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b |
1 | 6.33±1.53a | 2.00±1.00a | 8.33±1.15a | 1.39±0.19a | |
2 | 0.67±0.58b | 0.33±0.58b | 1.00±1.00b | 0.17±0.17b | |
3 | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b |
注: 不同小写字母表示不同处理间差异显著(P<0.05),下同。Note: Different lowercase letters indicate significant difference between different treatments at 0.05 level (P<0.05), the same as follows.
活性炭浓度对小孢子培养物胚胎发生的影响结果如
编号 Code | 处理质量浓度/(g/L) Concentration | 子叶型胚状体数 Cotyledonous embryoids No. | 畸形胚状体数 Deformed embryoids No. | 总胚状体数 Total embryoids No. | 出胚率/(胚/蕾) Number of embryoids per bud |
---|---|---|---|---|---|
A8 | 0 | 81.00±14.80b | 6.33±0.58b | 87.33±14.22b | 14.56±2.37b |
1 | 98.67±11.02ab | 10.67±1.53a | 109.33±11.68ab | 18.22±1.94ab | |
3 | 149.00±43.09a | 14.33±3.21a | 163.33±46.31a | 27.22±7.72a | |
5 | 116.00±21.79ab | 12.67±1.53a | 128.67±22.30ab | 21.45±3.72ab | |
7 | 8.00±1.00c | 2.33±0.58c | 10.33±1.53c | 1.72±0.25c | |
A33 | 0 | 0.33±0.58c | 0.33±0.58b | 0.67±1.15b | 0.11±0.19b |
1 | 1.67±1.15c | 0.33±0.58b | 2.00±1.00b | 0.33±0.17b | |
3 | 16.33±0.58b | 2.67±0.58a | 19.00±1.00a | 3.17±0.17a | |
5 | 18.67±2.08a | 2.00±1.00a | 20.67±2.89a | 3.45±0.48a | |
7 | 0.33±0.58c | 0.00±0.00b | 0.33±0.58b | 0.00±0.00b | |
A28 | 0 | 1.00±1.73b | 0.33±0.58b | 1.33±2.31b | 0.22±0.39b |
1 | 8.67±1.08a | 6.00±1.00a | 14.67±3.06a | 2.44±0.51a | |
3 | 11.33±3.06a | 7.33±1.15a | 18.67±3.06a | 3.11±0.51a | |
5 | 7.00±1.73a | 7.00±1.00a | 14.00±2.65a | 2.33±0.44a | |
7 | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b | |
A31 | 0 | 1.00±1.00c | 0.33±0.58b | 1.33±1.53c | 0.22±0.25c |
1 | 6.00±1.73b | 3.00±1.00a | 9.00±2.65b | 1.50±0.44b | |
3 | 9.67±1.53a | 4.00±1.00a | 13.67±1.53a | 2.28±0.25a | |
5 | 1.67±0.58c | 0.67±0.58b | 2.33±0.58c | 0.39±0.10c | |
7 | 0.00±0.00c | 0.00±0.00b | 0.00±0.00c | 0.00±0.00c |
小孢子密度对出胚效果的影响结果如
编号 Code | 密度/(个/mL) Concentration | 子叶型胚状体数 Cotyledonous embryoids No. | 畸形胚状体数 Deformed embryoids No. | 总胚状体数 Total embryoids No. |
---|---|---|---|---|
A8 |
0.5×1 | 0.00±0.00c | 0.00±0.00b | 0.00±0.00c |
1.0×1 | 85.33±7.02b | 13.33±2.31a | 98.67±5.03b | |
1.5×1 | 135.00±14.53a | 15.67±1.53a | 150.67±16.01a | |
2.0×1 | 134.33±11.02a | 13.00±1.00a | 147.33±11.50a | |
3.0×1 | 0.67±0.58c | 0.67±0.58b | 1.33±1.15c | |
4.0×1 | 0.00±0.00c | 0.00±0.00b | 0.00±0.00c | |
A33 |
0.5×1 | 0.00±0.00d | 0.00±0.00d | 0.00±0.00c |
1.0×1 | 5.00±1.73c | 1.00±0.00c | 6.00±1.73b | |
1.5×1 | 12.67±1.15a | 2.33±0.58b | 15.00±1.00a | |
2.0×1 | 10.00±2.65b | 3.33±0.58a | 13.33±3.21a | |
3.0×1 | 1.33±1.15d | 0.67±0.58cd | 2.00±1.73c | |
4.0×1 | 0.00±0.00d | 0.00±0.00d | 0.00±0.00c | |
A28 |
0.5×1 | 0.00±0.00c | 0.00±0.00c | 0.00±0.00c |
1.0×1 | 3.33±1.53b | 3.33±1.53b | 6.67±0.58b | |
1.5×1 | 6.00±1.00a | 4.67±1.15ab | 10.67±1.53a | |
2.0×1 | 6.67±1.15a | 6.67±2.31a | 13.33±3.06a | |
3.0×1 | 6.00±1.00a | 5.56±1.53ab | 11.67±2.08a | |
4.0×1 | 0.00±0.00c | 0.00±0.00c | 0.00±0.58c | |
A31 |
0.5×1 | 0.00±0.00c | 0.00±0.00c | 0.00±0.00c |
1.0×1 | 3.33±0.58b | 4.67±0.58b | 8.00±1.00b | |
1.5×1 | 6.00±1.00a | 6.00±1.00a | 12.00±1.73a | |
2.0×1 | 6.00±1.73a | 4.67±0.58b | 10.67±0.58a | |
3.0×1 | 0.33±0.58c | 0.33±0.58c | 0.67±0.58c | |
4.0×1 | 0.00±0.00c | 0.00±0.00c | 0.00±0.00c |
以双倍体植株作为对照,分析植株倍性情况,结果显示,大头菜A8培养所获得的172株再生植株中,有132株为单倍体植株,自然加倍率为23.26%;单倍体植株流式细胞仪鉴定植株峰图的横坐标细胞DNA总量是双倍体植株的一半(

图3 倍性鉴定和花粉染色观察
Fig. 3 Ploidy identification and pollen viability observation
A:双倍体鉴定植株峰图 Peak map of diploid identified plants;B:单倍体鉴定植株峰图 Peak map of haploid identified plants;C:双倍体和单倍体植株形态 Diploid and haploid plant morphology;D:双倍体与单倍体花器官的比较 Comparison between diploid and haploid floral organs;E:双倍体花器官 Diploid floral organs;F:单倍体花器官 Haploid floral organs;G:双倍体花粉活力 Pollen viability of diploid pollen;H:单倍体花粉活力 Pollen viability of haploid pollen.
采用不同浓度梯度和处理时间的秋水仙素对单倍体大头菜A8的茎尖进行浸泡处理,结果如
秋水仙素质量 浓度/(g/L)Concentration of colchicine | 处理时间/h Treatment duration | 株数Numberof plants | 染色体加倍数 Chromosomal ploidy level | 嵌合体率/% Mixed-ploidyrate | 加倍效率/% Efficiency of chromosome doubling | |||
---|---|---|---|---|---|---|---|---|
单倍体Haploid | 双倍体Diploid | 嵌合体Mixed-ploidy | 单倍体 Haploid | 双倍体 Diploid | ||||
0.5 | 1 | 12 | 7 | 3 | 2 | 16.67 | 58.33 | 25.00 |
2 | 12 | 6 | 3 | 3 | 25.00 | 50.00 | 25.00 | |
4 | 12 | 6 | 4 | 2 | 16.67 | 50.00 | 33.33 | |
1.0 | 1 | 12 | 3 | 8 | 1 | 8.33 | 25.00 | 66.67 |
2 | 12 | 2 | 8 | 2 | 16.67 | 16.67 | 66.67 | |
4 | 12 | 0 | 7 | 5 | 41.67 | 0.00 | 58.33 | |
2.0 | 1 | 12 | 1 | 8 | 3 | 25.00 | 8.33 | 66.67 |
2 | 12 | 1 | 7 | 4 | 33.33 | 8.33 | 58.33 | |
4 | 12 | 0 | 5 | 7 | 58.33 | 0.00 | 41.67 |
芥菜作为一种异源四倍体,具有复杂的遗传背景和很强的杂种优势,纯合材料的获得对其育种具有重要意义。通过小孢子培养技术获得DH系被认为是最为便捷有效的方法。小孢子培养过程中小孢子的发育阶段、基因型、热激处理、活性炭和小孢子密度等许多因素对小孢子培养至关重
培养条件是影响小孢子培养的主要因素之一,培养条件不适可能会导致胚状体数量减少,甚至导致完全无法产生胚状体。本研究发现,热激处理对芥菜胚状体的产生是必需的,未经热激处理的小孢子无法形成胚状体(
前人研究表明活性炭可以吸收一些由小孢子生长过程产生的生长素和细胞分裂
小孢子培养产生的单倍体不能自花授粉产生种子,需要对单倍体进行染色体加倍才能自交收种,从而使优良性状得到固定,因此染色体加倍技术的应用对于单倍体育种至关重要。本研究利用1 g/L秋水仙素浸泡茎尖1 h取得了良好的效果,加倍效率高且产生嵌合植株较少;而随着浸泡时间和浓度的增加所获得的单倍体植株数目逐渐变少,这与石淑稳
综上所述,本研究系统探究了基因型、热激处理时间、活性炭浓度和小孢子密度对芥菜小孢子培养的影响,成功建立了可应用于芥菜的小孢子培养和染色体加倍技术。目前,影响小孢子培养效率的相关基因尚未被发掘,小孢子培养的成功率受到基因型限制较大,小孢子胚胎发生机制也还不明确,仍需要进一步研究胚状体发生所涉及的影响因素及其作用机制,以促进高效通用型培养体系的建立。
参考文献 References
WANG N,WANG H,ZHANG A,et al.Genomic prediction across years in a maize doubled haploid breeding program to accelerate early-stage testcross testing[J].Theoretical and applied genetics,2020,133(10):2869-2879. [百度学术]
ZHAO X,XU X W,XIE H X,et al.Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers[J].Plant physiology,2013,163(2):721-731. [百度学术]
万丽丽,王转茸,徐义,等.甘蓝型油菜小孢子培养子叶形胚发育成苗研究[J].湖北农业科学,2021,60(16):15-20.WAN L L,WANG Z R,XU Y,et al.Study on seedling development of cotyledon embryo in microspore culture of Brassica napus L.[J].Hubei agricultural sciences,2021,60(16):15-20 (in Chinese with English abstract). [百度学术]
贾俊香.基于小孢子培养的白菜类蔬菜种质创新[D].沈阳:沈阳农业大学,2019.JIA J X.Creation of the germplasm in Brassica rapa via microspore culture[D].Shenyang:Shenyang Agricultural University,2019 (in Chinese with English abstract). [百度学术]
万正杰,范永红,孟秋峰,等.中国芥菜种业发展与展望[J].中国蔬菜,2020(12):1-6.WAN Z J,FAN Y H,MENG Q F,et al.Development and prospect of Chinese mustard seed industry[J].China vegetables,2020(12):1-6 (in Chinese). [百度学术]
杨美翠,赵诗慧,高源,等.油菜双单倍体诱导育种技术研究进展[J].生物技术进展,2022,12(5):655-663.YANG M C,ZHAO S H,GAO Y,et al.Advances on double haploid induction breeding technology in rapeseed[J].Current biotechnology,2022,12(5):655-663 (in Chinese with English abstract). [百度学术]
韩笑,刘希玲,文正华.热激处理对花椰菜小孢子培养的影响[J].天津农林科技,2012(2):9-11.HAN X,LIU X L,WEN Z H.Effect of heat shock treatment on microspore culture of cauliflower[J].Science and technology of Tianjin agriculture and forestry,2012(2):9-11 (in Chinese). [百度学术]
SHUMILINA D,KORNYUKHIN D,DOMBLIDES E,et al.Effects of genotype and culture conditions on microspore embryogenesis and plant regeneration in Brassica rapa ssp.rapa L.[J/OL].Plants,2020,9(2):278[2023-09-19].https://doi.org/10.3390/plants9020278. [百度学术]
邓英,唐兵,付文苑,等.叶用芥菜小孢子培养技术体系的完善及DH系创制[J].中国农业大学学报,2018,23(9):60-67.DENG Y,TANG B,FU W Y,et al.Opertimization of the isolated microspore culture system of leaf mustard and double haploid line producing[J].Journal of China Agricultural University,2018,23(9):60-67 (in Chinese with English abstract). [百度学术]
于锡宏,张艳梅,蒋欣梅,等.秋水仙素诱导榨菜四倍体的效应[J].东北农业大学学报,2013,44(10):88-92.YU X H,ZHANG Y M,JIANG X M,et al.Study on effects of colchicines on tetraploid inducement of tuber mustard[J].Journal of Northeast Agricultural University,2013,44(10):88-92 (in Chinese with English abstract). [百度学术]
杨以耕,刘念慈,陈学群,等.芥菜分类研究[J].园艺学报,1989,16(2):114-121.YANG Y G,LIU N C,CHEN X Q,et al.A study on classification of mustard[J].Acta horticulturae sinica,1989,16(2):114-121 (in Chinese with English abstract). [百度学术]
赵娟,沈佳,李海梅,等.MTG-DAPI双染色法观察黄瓜花粉细胞半薄切片中线粒体DNA的研究[J].南京农业大学学报,2015,38(1):27-32.ZHAO J,SHEN J,LI H M,et al.The research of detecting the mitochondrial DNA in semi-thin sliced pollen grains of Cucumis sativus L. by MTG-DAPI double-staining method[J].Journal of Nanjing Agricultural University,2015,38(1):27-32 (in Chinese with English abstract). [百度学术]
唐兵,陶莲,卢松,等.白菜游离小孢子培养高频胚诱导技术体系优化[J].热带作物学报,2017,38(10):1913-1920.TANG B,TAO L,LU S,et al.Optimization of high frequency embryo induction system for isolated microspore culture in Chinese cabbage[J].Chinese journal of tropical crops,2017,38(10):1913-1920 (in Chinese with English abstract). [百度学术]
刘晓东,孟川,王明秋,等.一种利用流式细胞仪快速检测大白菜倍性的方法: CN110849795B [P]. 2022-04-26. LIU X D,MENG C,WANG M Q,et al.Method for rapidly detecting ploidy of Chinese cabbages by using flow cytometry:CN110849795B[P].2022-04-26 (in Chinese). [百度学术]
石淑稳,周永明,吴江生.秋水仙碱处理油菜离体小孢子的染色体加倍效应[J].华中农业大学学报,2002,21(4):329-333.SHI S W,ZHOU Y M,WU J S.Chromosome doubling of Brassica napus L. haploid by treating in vitro microspores with colchicine[J].Journal of Huazhong Agricultural University,2002,21(4):329-333 (in Chinese with English abstract). [百度学术]
LI Q F,CHEN Y G,YUE F,et al.Microspore culture reveals high fitness of B.napus-like gametes in an interspecific hybrid between Brassica napus and B.oleracea[J/OL].PloS One,2018,13(3):e0193548[2023-09-19].https://doi.org/10.1371/journal.pone.0193548. [百度学术]
ZHAO Y,ZHENG W F,LI J,et al.Effects of genotype and sodium p-nitrophenolate on microspore embryogenesis and plant regeneration in broccoli (Brassica oleracea L. var. italica)[J/OL].Scientia horticulturae,2022,293:110711[2023-09-19].https://doi.org/10.1016/j.scienta.2021.110711. [百度学术]
TAKAHASHI Y,YOKOI S,TAKAHATA Y.Effects of genotypes and culture conditions on microspore embryogenesis and plant regeneration in several subspecies of Brassica rapa L.[J].Plant biotechnology reports,2012,6(4):297-304. [百度学术]
WANG T T,LI H X,ZHANG J H,et al.Initiation and development of microspore embryogenesis in recalcitrant purple flowering stalk (Brassica campestris ssp. chinensis var. purpurea Hort.) genotypes[J]. Scientia horticulturae,2009,121(4):419-424. [百度学术]
顾祥昆.芥菜游离小孢子培养研究[D].北京:中国农业科学院,2013.GU X K.Investigation of microspore culture in Brassica juncea [D].Beijing:Chinese Academy of Agricultural Sciences Dissertation,2013 (in Chinese with English abstract). [百度学术]
王萌.根用芥菜(Brassica juncea var. megarrhiza Tsen et Lee)花药培养与游离小孢子培养技术体系研究[D].武汉:华中农业大学,2011. WANG M. Studies on the technical system of anther and isolated microspore culture in root mustard (Brassica juncea var. megarrhiza Tsen et Lee) [D].Wuhan:Huazhong Agricultural University, 2011 (in Chinese with English abstract). [百度学术]
CUSTERS J B M,CORDEWENER J H G,NÖLLEN Y,et al.Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus[J].Plant cell reports,1994,13(5):267-271. [百度学术]
WEATHERHEAD M A,BURDON J,HENSHAW G G.Some effects of activated charcoal as an additive to plant tissue culture media[J].Zeitschrift für pflanzenphysiologie,1978,89(2):141-147. [百度学术]
JOHANSSON L.Effects of activated charcoal in anther cultures[J].Physiologia plantarum,1983,59(3):397-403. [百度学术]
邓英.芥菜(Brassica juncea Coss.)游离小孢子培养诱导胚状体发生因素研究[D].重庆:西南大学,2010.DENG Y. Study on induction factors of embryogenesis of isolated microspore culture of mustard[D].Chongqing:Southwest University,2010 (in Chinese with English abstract). [百度学术]