网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

油料作物种子中神经酸含量提升研究进展  PDF

  • 刘晓悦
  • 王盼娣
  • 熊小娟
  • 吴刚
  • 刘芳
中国农业科学院油料作物研究所/农业农村部油料作物生物学与遗传育种重点实验室/农业农村部植物生态环境安全监督检验测试中心,武汉 430062

最近更新:2024-04-02

DOI:10.13300/j.cnki.hnlkxb.2024.02.008

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

神经酸(NA)是一种超长链单不饱和脂肪酸,为大脑神经纤维髓鞘的核心成分,具有修复受损大脑神经纤维、促进神经细胞再生等功能。因此,NA受到越来越多的研究和关注。目前NA主要依赖于从天然物种中提取,难以满足市场需要,限制其进一步发展和应用。近年来,随着基因工程以及合成生物学的发展,通过多基因策略,在现有物种中构建NA代谢路径,可经济且可持续地获得NA,以满足营养、制药和化学工业等领域的需求。本文综述了NA的生物功能、生物来源、合成途径,并比较了基因工程生产NA各底盘的优劣,进一步探讨了十字花科油料作物底盘生产富含NA种子油的影响因素,以期为将来通过转基因技术和分子育种调控NA的生产,获得可再生的NA资源提供一定的思路和策略。

神经酸(nervonic acid,NA)学名为15-二十四碳烯酸(C24∶1),最初在鲨鱼大脑中分离得到,故又名鲨油

1。其分子式为C24H46O2,相对分子质量为366.6,纯品在常温状态下为白色针状固体,溶于醇,不溶于水,是一种ω-9型长链单不饱和脂肪2。在人体中主要以三酰甘油(triacylglycerol,TAG)的形式储3。研究表明,NA与人体多种疾病有关,而人体无法合成NA,必须从食物中获取。探究NA及其衍生物的生理功能、来源及合成途径等对现代基因工程规模化生产NA具有重要价值。本文对NA的生物功能、生物来源、合成途径及基因工程生产NA的研究进展进行综述,以期为将来通过转基因技术和分子育种调控NA的生产、获得可再生的NA资源提供一定的思路和策略。

1 NA的相关功能

NA是一种天然的生物活性脂肪酸,最早以神经鞘脂(nervonic sphingolipids,SLs)形式被发现。早在1972年,英国神经学家就发现NA具有修复鲨鱼受伤脑组织的作

4。NA及其衍生物存在于人体多数组织中,大脑、肝脏及肾脏中较为丰5。NA及其衍生物以自由状态或通过酰胺键与鞘氨醇碱结合形成神经酰胺、鞘6等物质参与众多生物过7-8。Phung9系统总结了NA功能及相关机制,主要包括细胞结构、信号传导、抗炎、脂质动员4个相互关联的功能。人体缺乏NA会引起神经系统发育异常、脱髓鞘疾病、神经退行性疾病、心脑血管疾病、免疫缺陷疾病、肿瘤及抑郁症等多种疾病,机体摄入NA可以协调作用多个靶点,共同缓解机体症状(表1)。

表 1  NA及其衍生物生物学功能
Table 1  Biological functions of NA and its derivatives

生物学功能

Biological functions

机制

Mechanism

涉及疾病

Related diseases

参考文献

References

结构成分

Structural

components

髓鞘核心成分、调节神经元通信 Core component of myelin sheath,regulating neuronal communication 肾上腺脑白质营养不良症、神经系统发育异常Adrenoleukodystrophy,maldevelopment of nervous system [10-13]
促进胆固醇结合、维持膜结构稳定性 Promote cholesterol binding,maintain membrane structure stability 脱髓鞘疾病、多发性硬化症(MS)、阿尔兹海默综合征(AD) Demyelinating diseases,multiple sclerosis,Alzheimer's disease [14-16]
促进髓鞘再生、恢复神经纤维活跃度 Promote myelin regeneration,restore nerve fiber activity 抑郁症、双向情感障碍 Depression,bipolar affective disorder [17-18]
恢复脑脊液正常状态 Restore the normal state of cerebrospinal fluid

信号转导

Signal transduction

调节多巴胺系统、抑制氧化应激 regulate dopamine system,inhibition of oxidative stress AD、帕金森(PD)、术后认知功能障碍(POCD) Alzheimer’s disease,Parkinson’s disease,postoperative cognitive dysfunction [19-21]
诱导凋亡 Induce apoptosis 癌症 Cancer [22-25]

抵抗炎症

Anti-inflammation

内源性抗氧化剂成分 Endogenous antioxidant components

AD,PD,MS

Alzheimer’s disease,Parkinson’s disease,Multiple sclerosis

[26]
激活相应受体、抑制炎症因子表达、调节代谢 Activate corresponding receptors,inhibit the expression of inflammatory factors,regulate metabolism
人类免疫缺陷病毒1型逆转录酶非竞争性抑制剂Noncompetitive inhibitors of human immunodeficiency virus type 1 reverse transcriptase 艾滋病 Acquired immunodeficiency syndrome [27]

脂质动员

Lipid mobilization

调节血糖、血脂 Regulate blood glucose, blood lipids 肥胖及并发症 Obesity and its complications [28-30]
加速脂质动员、降解生成ATP Accelerate lipid mobilization and ATP production

糖尿病 Diabetes

[

31]

调节胰岛素敏感性因子 Regulate insulin sensitivity factor

NA及其衍生物在工业上也有广泛应用,作为生产塑料、化妆品、树脂、尼龙、表面活性剂、生物燃料和润滑剂等产品的原

32。相较于其他工业原料,绿色及具可持续特性的NA及其衍生物,更具有应用和推广价值。

随着社会环境的改变以及人口老龄化程度的加深,我国患心脑血管疾病、神经退行性疾病、癌症以及抑郁症的人数不断攀升。由于这类疾病无特效药,病程极长,治疗及康复过程将占用大量公共资源,成为经济和社会发展的阻碍。我国植物神经酸研究起步较晚,近年来才展现出急起直追之势。国内的研究主要聚焦于工业化提

33、自然资源元宝枫(Acer truncatum Bunge )籽油的工业化生产以及微藻品种的发掘等基础研究。市场上售卖的NA产品主要有国牡元宝枫籽油、汉林牌脑忆康胶囊和寿堂牌纳福希胶囊等,品类少且价格贵。我国亟需开发新型NA资源,加速深层研究,更好地服务大众。

2 NA的生物来源

2.1 动物来源

发达国家最早从鲨鱼脑中提取NA

1,但国际组织明令禁止捕获鲨鱼。近年来,在大西洋鳕、大马哈鱼以及红鲑等鱼类中发现NA及其衍生物,但由于人类过渡捕捞和海洋环境污染,这些鱼类资源的可持续性和安全性受到威胁,限制其作为NA来源进一步开发利34-35。在其他哺乳动物的大脑中也含有神经酸,但其经济产量较低,尚未得到大规模开发应用(表 2)。

表 2  NA的生物来源
Table 2  Biological sources of NA

分类

Classification

物种

Species

NA比例/%

NA content of total fatty acid

现状及存在问题

Current situation and existing problems

参考文献

References

动物

Animals

鱼类 Fish 0.25~50.00 过渡捕捞、濒危、海洋环境污染、安全性存疑 Overfishing,endangered,marine environmental pollution,safety doubts [1,34-35]
哺乳动物 Mammals 0.00~50.00 经济产量低 Low economic output

植物

Plants

蒜头果

Malania oleifera

55.70~67.00 濒临灭绝、资源短缺、分布狭窄、不易繁殖 Endangered,rare,narrow distribution,difficult reproduction [36-37]
元宝枫 Acer truncatum 3.90~7.80 生长周期长 Long growth cycle [38]
盾叶木 Macaranga adenantha 55.90 分布分散、生长条件特殊、采集困难 Scattered distribution,special growth conditions, acquisition difficult [39]
碎米芥 Cardamine graeca 45.00~54.00 生长条件苛刻,要求红色土壤、产量低 Harsh growth conditions,red soil requirements,low yield [40]
旱金莲 Tropaeolum speciosum 40.00~45.40 种子难获得和繁殖 Difficult to obtain seeds and reproduce [41]
银扇草 Lunaria annua 14.00~24.20 产量不稳定、种子易破碎 Yield instability,fragile seed [42]

微生物

Microorganisms

Mychonastes after HSO-3-1 3.78~3.80 含量较低、开发应用繁琐 Low content,cumbersome development and application [43]
Nannochloris sp. QUCCCM31 3.80~9.97 耐高温、广泛盐度 High temperature resistance,broad salinity [44]
Macrophomina phaseolina 16.10~48.80 病原微生物、高致病性 Pathogenic microorganism,high pathogenicity [45]
Francisella tularensis 11.20~19.30 病原微生物、高致病性 Pathogenic microorganism,high pathogenicity [46]
Mortierella capitata RD000969 0.06~6.90 致病性强、含量低、开发应用价值低 High pathogenicity,low content,low development and application value [47]
Mortierella elongata SC-208 1.70~4.90 含量低、开发应用价值低 Low content,low development and application value [48]

2.2 植物来源

一些植物的果实和种子油中含有丰富的NA。截至目前,在13科31个属的38种植物中发现NA

49-50,包含木本及草本两大类,其中应用较广及NA含量较高[NA占总脂肪酸(FA)19%及以上]植物见表 2

木本植株较长的生长周期在很大程度上限制其利用,故只有NA含量高的物种才具有开发利用价值。广东和云南特有物种蒜头果果仁中含有55.7%~67%的NA,为国家二级保护植物,无法作为NA的主要来

36。元宝枫果油中含有6%的NA,不断优化的提取技术将终产品NA含量提高到47%左37-38。盾叶木(Macaranga adenantha)NA含量高,但分布零39。故我国特有物种元宝枫凭借其较为丰富的资源,成为目前提取NA的主要自然植物资37-39

含NA的草本植物十字花科居多,十字花科植物较木本植物生长周期短,繁殖继代快,具有先天的开发利用优

35。碎米荠(Cardamine graeca)NA含量最高,但其苛刻的生长条件限制其大规模扩繁种40。智利独有的多年生草本植物旱金莲(Tropaeolum speciosum),其种子油NA占总FA的40.0%~45.4%,但种子较难获得和繁41。银扇草(Lunaria annua)是2年生草本油料作物,其种子油NA含量相对较低且产量不稳定,无法规模化收获,同时其高达50%的芥酸(erucic acid,EA)无法满足NA油的相关应用要42

2.3 微生物来源

在现有报道中,天然微生物的NA含量和滴度相对较低(表 2)。早在1986年,Nichols

51就在硅藻Nitzshia cylindrus中发现了低含量的NA;近年来,Yuan43在华东地区发现绿色微藻Mychonastes after HSO-3-1(M. HSO-3-1)中含NA,且具有极低的EA含量和较高的亚麻酸(C18∶3)含量。Saadaoui44在波斯湾分离得到1株耐高温和广泛盐度的Nannochloris sp.QUCCCM31,其NA含量占总脂质的9.97%。

除微藻外,少数真菌和细菌也具有合成NA的能力。植物病原丝状真菌Macrophomina phaseolina和细菌Francisella tularensis可产生较高含量的NA,但较高的感染性限制其应

45-46。有学者鉴定,油丝状真菌Mortierella capitata RD000969 和Mortierella elongata SC-208可分别积累占总脂肪酸6.94%及4.9%的NA,但经发酵优化后,NA滴度只能达186.3 和123.7 mg/L,达不到工业应用程47-48

由于天然物种中动物资源的单一性和稀缺性,植物资源的长周期性和难获得性,微生物资源的低NA含量,致使从自然资源中获取NA无法满足市场需求,需进一步改造和筛选新的NA来源。

3 NA的生物合成途径

NA作为超长链脂肪酸再加上其单不饱和的特性,其生物合成主要划分为3

3:在质体脂肪酸合酶复合体作用下,乙酰-CoA从头延伸生成软脂酸-ACP或硬脂酸-ACP;去饱和形成油酸(oleic acid,C18∶1);在内质网脂肪酸延伸酶复合体作用下经缩合、还原、脱水、还原循环3次延伸生成NA52-54图 1)。该复合体包括3-酮酯酰-CoA合酶(3-ketoacyl-CoA synthase,KCS)、3-酮酯酰-CoA还原酶(3-ketoacyl-CoA reductase,KCR)、3-羟酯酰-CoA脱水酶(3-hydroxyacyl-CoA dehydrase,HCD)和羟酯酰-CoA还原酶(enoyl-CoA reductase,ECR),其中KCS是碳链延伸过程的限速酶,结合囊的性状和大小赋予严格的底物及组织特异性,决定最终产物的碳链长55

图 1  植物中神经酸生物合成与积累途径

Fig. 1  Pathways of neuric acid biosynthesis and accumulation in plants

ACCase:乙酰辅酶A羧化酶;MAT:丙二酰辅酶A/ACP转酰基酶;FAS:脂肪酸合酶;KAS:酮酰基ACP合酶;Fat A/B:脂肪酸硫脂酶;LACS:长链酰基辅酶 A 合成酶;KCS:3-酮酯酰-CoA 合酶;KCR:3-酮酯酰-CoA 还原酶;HCD:3-羟酯酰-CoA 脱水酶;ECR:羟酯酰-CoA还原酶;GPAT:甘油磷酸酰基转移酶;LPAAT:溶血卵磷脂酰基转移酶;PAP:磷脂酸磷酸酶;DAGT:二酰基甘油酰基转移酶。ACCase:Acetyl CoA carboxylase;MAT:Malonyl-CoA-ACP transacylase;FAS:Fatty acid synthase;KAS:Ketoacyl ACP synthase;Fat A/B:Fatty acyl-ACP thioesterase;LACS:Long-chain acyl-CoA synthetase;KCS:3-Ketoacyl-CoA synthase;KCR:3-Ketoacyl-CoA reductase;HCD:3-Hydroxyacyl-CoA dehydrase;ECR:Enoyl-CoA reductase;GPAT:Glycerol-3-phosphate acyltransferase;LPAAT:Lysophosphatidic acid acyltransferase;PAP:Phosphatidic acid phosphatase;DAGT:Diacylglycerol acyltransferase.

合成的NA经酰基转移酶作用以甘油三酯(triglycerides,TAGs)的形式储

54-56图1)。值得注意的是,NA在哺乳动物母乳中主要结合于三磷酸甘油(G3P)的sn-2位,而在植物中主要结合sn-1和sn-357

4 基因工程生产NA现状及前景

有学者利用顺-13-二十二碳烯基甲酯化学合成NA,但存在产率较低、副产物较多、制备过程资源消耗高,污染严重等问

58;随着基因工程以及合成生物学技术的蓬勃发展、NA合成和组装相关基因的确定,基因工程生产NA凭借其规模大、耗时短、资源浪费少,吸引了各国科学家的加入。

4.1 底盘选择

由于微生物具有增殖周期短、产量高、条件限制少、遗传转化便捷等特点,科学家最早开发微生物底盘来生产NA。微藻和酵母在改造项目中占据高

59-60。有学者在酵母中异源表达菌株Mychonastes HSO-3-1的KCS61以及Lunaria annuaKCS基因(LaKCS62,转基因品系中产生 NA。夏俊63利用酿酒酵母构建了高产NA工程菌,使得NA产量高达到1.37%。Zhang64Saccharomyces cerevisiae中共表达Crambe hispanica ChFAE1Lunaria annua LaKCS,使得转基因株系产生5%的NA。Wang65在产油酵母Yarrowia lipolytica中构建出植物与非植物相结合的NA合成通路:增加C18∶0作为非植物途径前体的供应,同时删除了β-氧化途径;利用 NA特异性Malania oleifera的MoLpaat替换其内源LPAAT,并增加了辅助因子的供应,最终获得NA含量为23.44%菌株。

科学家在利用植物底盘生成NA的尝试主要集中在十字花科。Huai

52利用拟南芥(Arabidopsis thaliana)中单拷贝的AtKCRAtHCDAtECR组合LaKCS,辅助种子特异性启动子,在亚麻荠(Camelina sativa)中异源表达,研究了所有延长酶组分的组合效应。在AtKCRAtHCD以及AtECR单独结合LaKCS构成的3个双基因共表达系,以及AtKCRAtHCDLaKCS结合的三基因共表达系中,NA均没有进一步增加,再次证明KCS基因在NA延长过程中限速酶的重要地位。Guo62LaKCS基因转移至拟南芥以及高EA埃塞俄比亚芥(Brassica carinata)中表达,结果显示转基因系NA含量较野生型分别增加30和10倍,转基因埃塞俄比亚芥中NA含量更是高达30%。Taylor66在埃塞俄比亚芥中表达Cardamine graecaKCS基因(CgKCS),使得NA比例增加到42.2%。高的NA比例、较高的种子油含量(38%)和田间种子产量(167~200 kg/667 m2)使其成为目前所有NA种子源中表现最好的品35

外源基因的转入可使微生物产生NA,但难免会遇到大型生物发酵设备持续的资金投入问题;相较微生物,选择繁殖快、产量高的十字花科植物生产NA,除前期开发株系需一定资本投入外,后期应用只需根据需求调整种植面积即可。

4.2 可利用基因资源

NA天然物种蒜头

5467、文冠68、元宝69基因组测序的完成及KCS基因家族的鉴定和分类,为基因的选择提供了保障。目前鉴定出的拟南芥、蒜头果、文冠果、元宝枫KCS基因家族成员分别有FAE-like、KCS-like、FDH-like和CER等4个亚族。元宝枫线粒70、叶绿71基因组测序的完成,进一步拓宽了可利用基因的范围。有学者将产油酵母、拟南芥、碎米芥和蒜头果的酰基转移酶序列进行比对,并对酰基转移酶编码基因进行了鉴54。异源酰基转移酶在植物中表达可提高超长链脂肪酸(very long-chain fatty acids, VLCFA)在TAG中的组装效率以及含油72-74。可利用基因资源的不断丰富,促进基因工程生产NA的进一步发展。

4.3 生产NA的植物代谢工程前景

前人已验证在植物中异源表达重组KCS能够显著改变十字花科VLCFA的含量。利用植物代谢工程生产NA的研究思路还可进一步拓展,包括:提高某种超长链脂肪酸底物含量、提高脂肪酸组装效率以及含油量

75。同时综合考虑最终NA产品所需的便捷性、经济性和可持续性,可优选产量大、可持续、易应用的植物种子油为NA载体。借助前人改造十字花科生产NA的经验,采取将KCS基因以及TAGs生物合成相关基因相结合的多基因策略,进一步开发十字花科油料作物生产NA种子油有望实现既得利益最大化。以下探讨影响十字花科油料作物种子油中NA含量的主要因素。

1)KCS基因的选择 。KCS作为NA生物合成过程中的限速酶,具有严格的底物以及组织特异性,决定转基因作物中NA的最终含量。元宝枫Chr4.2307.KCS、Chr4.2308.KCS、Chr4.2311.KCS在NA生成关键时期显著上

76;蒜头果MoKCS11对二十碳烯具有显著底物偏好77FAE-like基因Maole004215.T1在野生酵母中表达产生C22∶0/C221和C240/C241 等4种新的脂肪78

将不同的KCS进行组合,构成代谢链,调动不同底物转化成NA;或选择底物充足的转化底盘,提高底物转化率,以突破单基因调控NA含量增加的有限性。值得注意的是,目前普遍认为摄入EA过多,会引起心脏疾

79-80。转基因植物种子中EA含量与该品种的利用价值呈负相关,增加NA的同时降低EA的含量,也是未来改造的目标之一。

2)提高NA的存储能力。不同十字花科油料作物含油量及NA比例均有所不同,只有含油量超过10%且NA比例高的油料作物才具有开发利用价

35。故在未来改造过程中不仅要提高NA含量还要兼顾作物含油量的提高。TAG是种子油中的主要成分,将KCS基因与提高TAG含量的相关基因共表达,有助于培育高价值新品种。

①促进NA积累。在经典的肯尼迪途径(Kennedy pathway)中,GPAT、LPAAT和DGAT催化G3P主链上连续的酰化反应生成TAG

81-82。在烟草以及马铃薯块茎中,利用强组成型病毒启动子CaMV-35S表达DGAT1,导致TAG增加,并且对植物生长没有显著的负面影83-84。植物内源性酰基转移酶只能将NA并入且不能同时并入TAG的sn-1或sn-3位,sn-2位通常由16C和18C 脂肪酸占5061,限制了NA在植物中的含量。Zou72在高EA油菜中表达酵母的LPAAT 基因SLC1-1,将TAG sn-2位置上的芥酸酰比例提高到41%73。由此推断,TAG sn-2位结合NA的能力和偏好也可以通过异源表达相关的基因来调节。Wang69将来自Malania oleifera MoLPAATYarrowia lipolytica 中进行表达,发现其可替换内源LPAAT发挥功能,并表现出对包括NA在内的超长链单不饱和脂肪酸的偏好性,使得转基因菌株NA含量增加到17.10%。此外,Ma75通过元宝枫的加权基因共表达网络分析验证了转录因子MYB以及bZIP在NA合成过程中的调控作用。

筛选DGAT基因增加TAGs含量,同时应用对NA具有偏好性的内源或外源LPAAT提高TAGsn-1、sn-2以及sn-3位点结合NA的能力,辅助转录因子对NA合成的调控,进一步设计NA代谢路径,能够最大限度地增加NA积累量。

②减少NA降解。在植物中合成的脂肪酸主要通过过氧化物酶体的β-氧化途径分解代谢。Goepfert

85在利用拟南芥探究脂肪酸降解β-氧化途径时,发现β-氧化阻断突变体表现为TAG分解的减少和长链酰基CoA的积累。Xue86在利用Y. lipolytica生产二十碳五烯酸(EPA)时发现,PEX10基因突变会损伤过氧化物酶体的形态和完整性,原菌株β-氧化途径缺陷,导致酶体对VLCFAs的降解能力减弱,EPA滴度较原菌株提高2倍。Wang65将该菌株PEX10敲除,截断脂肪酸β-氧化降解途径,最终NA积累量达到亲本菌株的29倍。另有学者发现删除β-氧化途径可显著增加总脂质含87。参考和拓展脂肪酸降解途径删除或截断策略,可以最大程度地减少NA的降解。

增加NA积累,减少NA氧化降解,提高NA结合效率,逐级递进式增加植物转基因品系中NA的含量。

3)基因表达情况。

①特异性启动子应用。特异性启动子表达目的基因,实现目的基因在目标组织中的高活性而在其他组织中低活性,以减少潜在的负面影响。利用种子特异性启动子表达具有底物特异性的KCS相关基因是生产NA种子油的一个有效策略。种子特异性napin启动子、种子特异性大豆glycinin-1启动子以及大豆优速启动子均被验证能驱动KCS基因在相应受体内表达,并增加NA的含

526278

②基因拷贝数。除依托某特异性或强启动子提高基因转录表达水平外,还需考虑基因在物种内的拷贝数。Guo

62发现在转入LaKCS的转基因品系中,NA含量与LaKCS的拷贝数呈正相关,多拷贝株系中转录物强度更高。因此在选定基因基础上增加拷贝数,或许可以最大化提高终产物含量。

③最优基因组合。在选定目标基因的基础上,还需要考虑基因间的相互作用:相关基因结合构成的代谢链是否会产生不必要的中间产物,该产物是否对终产物的合成有负面影响,在终产物提取及利用过程中是否需要花费大量人力物力来去除,以及相关基因的表达是否影响作物自身正常生长发育。在先前的研究中,就有在拟南芥中表达LaKCS基因,产生7.6%NA的同时产生13.8%的EA,而目前认为较高的EA含量可能对人体具有负面作用,例如可能引发心脏问

79-80 。因此,在后续的研究中应该斟酌该基因的使用或结合新的KCS基因将EA进一步利用转化为NA。

因此,未来在转基因改造过程中,要尽可能规避以上风险问题,并最大化利用特异启动子及基因自身特性,寻找最适配基因组合,增加基因拷贝数,构成NA代谢链,缩减时间及资金成本。

4)受体选择。NA 最终的得率除由NA比例和种子的含油量决定外,还由底盘品种的产量和抗逆性等综合指标共同决定。目前的研究主要关注提高 NA比例,甚少考虑受体自身性状对NA获得的影响。

①受体农艺特性。NA的最终产量由作物产量、含油量以及NA比例共同决定。我国主要的油料作物有大豆、油菜、花生、葵花籽等,NA在这些主要栽培油料作物中含量极低或无。其中油菜是我国第一大油料作物,属于十字花科芸苔属,年播种面积700 hm2以上,年产油达520万t,占国产植物油总量的47%,且年产量与消费量逐年增

88。油菜品种的多样性、较高的含油量、较短生长周期以及高产抗逆的农艺性状,再加上成熟的遗传转化体系可为植物代谢工程生产NA提供最基础、稳妥的保35

②受体底物含量。富含 NA 的油通常混有大量 EA,考虑到 EA 对健康的影响,市场急需高 NA 低 EA 的油。EA作为NA的直接前体物质,以高EA油菜品种为受体,有望提高合成NA的效率并降低EA含量,平衡营养和安全。但目前如何将尽可能多的EA转化成NA缺乏丰富的分子机理研究以及实验证据支持。有学者曾尝试在高EA甘蓝型油菜表达CgKCS,但产量不容乐观,仅为1 500 kg/hm2[

78。另有学者在产油酵母Y. lipolytica中构建NA合成双通路:在植物途径的基础上,增加C18∶0作为非植物途径的NA前68。今后的研究应汲取已有经验,发挥不同油菜品种的潜在价值,促进不同脂肪酸底物转化为NA,实现营养、安全双平衡。

5)生长环境与人工选择的影响。生物体的性状受到基因以及环境的共同作用。种植的时间、地理位置、水文条件等影响种子的出苗情况;生长过程中的施肥状况、人为活动、水源灌溉周期、病虫害等影响作物的生长状

35;收获时期的收种方式、收种时间、收种后的储存方法等影响种系的实际收获率,最终综合影响作物的产量、含油量以及脂肪酸的含量。

在保持适宜且一致的种植模式和收种方法的同时,辅之准确的人工选择,对含有优良目标性状的种系进行选择归类,逐步优化作物的目标性状。在Guo

62的研究中,表达LaKCS的转基因埃塞俄比亚芥经过2代筛选后,最佳NA含量达到30%,达T1代转基因株系NA含量的2倍。逐代选择含油量及NA含量高且EA含量低、产量和抗逆性与野生型没有显著差异的目标植株,可使NA最终产量最大化。

5 结语与展望

NA及其衍生物在人体内广泛分布。作为神经纤维髓鞘的核心成分,NA具有修复受损大脑神经纤维、促进神经细胞再生的功能;作为膜结构的重要成分,NA能够调节胆固醇分布,维持体内膜平衡;作为储存脂质,NA可优先分解氧化,提供能量,支持人体生命活动。缺乏NA会导致多种疾病。NA及其衍生物的酯化形式可作为药物成分和膳食补充剂的原料,以生物递质、前药、奶粉、食用油、饮料、口服乳剂和胶囊等形式应用于日常生活和医疗保健。

我国NA目前主要有2种来源。一种是通过蒜头果、元宝枫等植物直接提取,但可利用植物生长周期长、繁殖速度慢、采集收种困难。另一种是通过基因工程改造现有物种合成NA,但以微生物为底盘生产NA,难以避免大量养殖微藻所带来的环境污染,且提纯设备和工艺复杂,需要持续的资金支持;而以植物为底盘生产NA,目前已表现出较为理想的NA产量,且在生产体系成熟后,种植面积为唯一限制因素。相较而言,植物基因工程生产NA具有更高的应用潜力。

在先前的研究中主要聚焦脂肪酸延长步骤中限速酶基因KCS的表达调控,忽略了NA 在内的油脂合成是一个多基因协同作用的复杂的代谢过程, NA 的最终得率由作物本身产量、含油量和NA比例等多因素共同决定。本文对已有研究进展进行分析比较,将植物基因工程生产NA的改造重点放在十字花科油料作物油菜上,希望借助其成熟的研究体系,以及高产抗逆,高含油量、易遗传转化等优质农艺性状,在保障产量的基础上再根据VLCFA合成规律,采取多基因策略,组合包括调动EA在内的各底物转化为NA的KCS基因,负责提高含油量和将NA组装到TAG各个位置上的相关基因;同时借助种子特异性启动子,将易应用的种子油作为最终的NA载体。以期为将来通过转基因技术和分子育种调控NA的生产,获得可再生的NA资源提供一定的思路和策略,让NA更好地惠及大众、造福人类。

参考文献References

1

TSUJIMOTO M.On new fatty acids in shark liver oil[J].The journal of the Society of Chemical Industry, Japan, 1925, 28(8):835-842. [百度学术] 

2

MERRILL A H,SCHMELZ E M,WANG E,et al.Importance of sphingolipids and inhibitors of sphingolipid metabolism as components of animal diets[J].The journal of nutrition,1997,127(5):830-833. [百度学术] 

3

BATES P D,DURRETT T P,OHLROGGE J B,et al.Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos[J].Plant physiology,2009,150(1):55-72. [百度学术] 

4

SINCLAIR A J,CRAWFORD M A.The incorporation of linolenic acid and docosahexaenoic acid into liver and brain lipids of developing rats[J].FEBS letters,1972,26(1/2):127-129. [百度学术] 

5

MARTÍNEZ M,MOUGAN I.Fatty acid composition of human brain phospholipids during normal development[J].Journal of neurochemistry,1998,71(6):2528-2533. [百度学术] 

6

SASSA T,KIHARA A.Metabolism of very long-chain fatty acids:genes and pathophysiology[J].Biomolecules & therapeutics,2014,22(2):83-92. [百度学术] 

7

POULOS A.Very long chain fatty acids in higher animals:a review[J].Lipids,1995,30(1):1-14. [百度学术] 

8

KIKAS P,CHALIKIAS G,TZIAKAS D.Cardiovascular implications of sphingomyelin presence in biological membranes[J].European cardiology,2018,13(1):42-45. [百度学术] 

9

PHUNG N V,RONG F,XIA W Y,et al.Nervonic acid and its sphingolipids:biological functions and potential food applications[J/OL].Critical reviews in food science and nutrition,2023,4:2203753[2023-10-10].https://doi.org/10.1080/10408398.2023.2203753. [百度学术] 

10

GROTHEER M,ROSENKE M,WU H,et al.White matter myelination during early infancy is linked to spatial gradients and myelin content at birth[J/OL]. Nat Commun, 2022,13(1):997[2023-10-10]. https://doi.org/10.1038/s41467-022-28326-4. [百度学术] 

11

YU J H,YUAN T L,ZHANG X H,et al.Quantification of nervonic acid in human milk in the first 30 days of lactation:influence of lactation stages and comparison with infant formulae[J/OL].Nutrients,2019,11(8):1892[2023-10-10].https://doi.org/10.3390/nu11081892. [百度学术] 

12

BATHELT J,SCERIF G,NOBRE A C,et al.Whole-brain white matter organization,intelligence,and educational attainment[J].Trends in neuroscience and education,2019,15:38-47. [百度学术] 

13

RUBINOV M,SPORNS O.Complex network measures of brain connectivity:uses and interpretations[J].NeuroImage,2010,52(3):1059-1069. [百度学术] 

14

COUPLAND K,LANGLEY N A.Use of nervonic acid and long chain fatty acids for the treatment of demyelinating disorders:US5194448[P].1993-03-16. [百度学术] 

15

MANNI M M,SOT J,ARRETXE E,et al.The fatty acids of sphingomyelins and ceramides in mammalian tissues and cultured cells:Biophysical and physiological implications[J].Chemistry and physics of lipids,2018,217:29-34. [百度学术] 

16

LEWKOWICZ N,PIĄTEK P,NAMIECIŃSKA M,et al.Naturally occurring nervonic acid ester improves myelin synthesis by human oligodendrocytes[J/OL].Cells,2019,8(8):786[2023-10-10].https://doi.org/10.3390/cells8080786. [百度学术] 

17

KAGEYAMA Y,DEGUCHI Y,HATTORI K,et al.Nervonic acid level in cerebrospinal fluid is a candidate biomarker for depressive and manic symptoms:a pilot study[J/OL].Brain and behavior,2021,11(4):e02075[2023-10-10].https://doi.org/10.1002/brb3.2075. [百度学术] 

18

KAGEYAMA Y,KASAHARA T,NAKAMURA T,et al.Plasma nervonic acid is a potential biomarker for major depressive disorder:a pilot study[J].International journal of neuropsychopharmacology,2018,21(3):207-215. [百度学术] 

19

BLANCHARD J W,AKAY L A,DAVILA-VELDERRAIN J,et al.APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes[J].Nature,2022,611(7937):769-779. [百度学术] 

20

HUYNH K,LIM W L F,GILES C,et al.Concordant peripheral lipidome signatures in two large clinical studies of Alzheimer’s disease[J/OL].Nature communications,2020,11:5698[2023-10-10].https://doi.org/10.1038/s41467-020-19473-7. [百度学术] 

21

胡丹东,崔玉娟,张继.神经酸对帕金森病小鼠运动障碍的改善及保护作用[J].中国药理学通报,2021,37(11):1524-1529.HU D D,CUI Y J,ZHANG J.Amelioration and protection of nervonic acid on motor disorder in mice with Parkinson’s disease[J].Chinese pharmacological bulletin,2021,37(11):1524-1529 (in Chinese with English abstract). [百度学术] 

22

GULBINS E.Regulation of death receptor signaling and apoptosis by ceramide[J].Pharmacological research,2003,47(5):393-399. [百度学术] 

23

SISKIND L J.Mitochondrial ceramide and the induction of apoptosis[J].Journal of bioenergetics and biomembranes,2005,37(3):143-153. [百度学术] 

24

YAMANE M,MORIYA S,KOKUBA H.Visualization of ceramide channels in lysosomes following endogenous palmitoyl-ceramide accumulation as an initial step in the induction of necrosis[J].Biochemistry and biophysics reports,2017,11:174-181. [百度学术] 

25

ZHANG X W,SAKAMOTO W,CANALS D,et al.Ceramide synthase 2-C24:1-ceramide axis limits the metastatic potential of ovarian cancer cells[J/OL].FASEB journal:official publication of the Federation of American Societies for Experimental Biology,2021,35(2):e21287[2023-10-10].https://doi.org/10.1096/fj.202001504RR. [百度学术] 

26

WANG X Q,LIANG T Y,MAO Y,et al.Nervonic acid improves liver inflammation in a mouse model of Parkinson’s disease by inhibiting proinflammatory signaling pathways and regulating metabolic pathways[J/OL].Phytomedicine,2023,117:154911[2023-10-10].https://doi.org/10.1016/j.phymed.2023.154911. [百度学术] 

27

KASAI N,MIZUSHINA Y,SUGAWARA F,et al.Three-dimensional structural model analysis of the binding site of an inhibitor,nervonic acid,of both DNA polymerase beta and HIV-1 reverse transcriptase[J].Journal of biochemistry,2002,132(5):819-828. [百度学术] 

28

LIVINGSTONE K M,LOVEGROVE J A,GIVENS D I.The impact of substituting SFA in dairy products with MUFA or PUFA on CVD risk:evidence from human intervention studies[J].Nutrition research reviews,2012,25(2):193-206. [百度学术] 

29

CONSOLE L,SCALISE M,GIANGREGORIO N,et al.The link between the mitochondrial fatty acid oxidation derangement and kidney injury[J/OL].Frontiers in physiology,2020,11:794[2023-10-10].https://doi.org/10.3389/fphys.2020.00794. [百度学术] 

30

KHAWAJA Y,SCRANO L A,BUFO S,et al. A new equation for calculating the number of ATP molecules generated from fatty acids[J]. World journal of pharmaceutical sciences,2015,4(7):175-185. [百度学术] 

31

LEONARDINI A,LAVIOLA L,PERRINI S,et al.Cross-talk between PPAR gamma and insulin signaling and modulation of insulin sensitivity[J/OL].PPAR research,2009,2009:818945[2023-10-10].https://doi.org/10.1155/2009/818945. [百度学术] 

32

DODOS G S,KARONIS D,ZANNIKOS F,et al.Renewable fuels and lubricants from Lunaria annua l[J].Industrial crops and products,2015,75:43-50. [百度学术] 

33

候镜德,袁晓悟,胡伟,等.金属盐沉淀法分离神经酸[J].生物技术,1996,6(1):39-41.HOU J D,YUAN X W,HU W,et al.Separation of nervonic acid by metal salt precipitation method[J].Biotechnology,1996,6(1):39-41(in Chinese). [百度学术] 

34

BAVHURE B.Fatty acid composition of Lebrunia bushiae staner and Tephrosia vogelii hook.f.seed oils[J].European journal of medicinal plants,2014,4(7):844-853. [百度学术] 

35

LIU F,WANG P D,XIONG X J,et al.A review of nervonic acid production in plants:prospects for the genetic engineering of high nervonic acid cultivars plants[J/OL].Frontiers in plant science,2021,12:626625[2023-10-10].https://doi.org/10.3389/fpls.2021.626625. [百度学术] 

36

欧乞鍼.一个重要脂肪酸cis-tetracos-15-enoic的新存在:蒜头果油[J].云南植物研究,1981,3(2):181-184.OU Q Z.A new presence of important fatty acid (cis-tetracos-15-enoic)-oil of malania olefera Chun et Lee[J].Acta botanica Yunnanica,1981,3(2):181-184 (in Chinese with English abstract). [百度学术] 

37

王性炎,樊金栓,王姝清.中国含神经酸植物开发利用研究[J].中国油脂,2006,31(3):69-71.WANG X Y,FAN J S,WANG S Q.Development situation and outlook of nervonic acid plants in China[J].China oils and fats,2006,31(3):69-71 (in Chinese with English abstract). [百度学术] 

38

史宣明,陈燕,张骊,等.从元宝枫油中提取神经酸并制备生物柴油的技术研究[J].中国油脂,2013,38(2):61-65.SHI X M,CHEN Y,ZHANG L,et al.Preparation of nervonic acid and biodiesel from Acer truncatum Bunge seed oil[J].China oils and fats,2013,38(2):61-65 (in Chinese with English abstract). [百度学术] 

39

马柏林,梁淑芳,赵德义,等.含神经酸植物的研究[J].西北植物学报,2004,24(12):2362-2365.MA B L,LIANG S F,ZHAO D Y,et al.Study on plants containing nervonic acid[J].Acta botanica boreali-occidentalia sinica,2004,24(12):2362-2365 (in Chinese with English abstract). [百度学术] 

40

JART A.The fatty acid composition of various cruciferous seeds[J].Journal of the American Oil Chemists’ Society,1978,55(12):873-875. [百度学术] 

41

LITCHFIELD C.Tropaeolum speciosum seed fat:a rich source of cis-15-tetracosenoic andcis-17-hexacosenoic acids[J].Lipids,1970,5(1):144-146. [百度学术] 

42

MASTEBROEK H D,MARVIN H J P.Breeding prospects of Lunaria annua L[J].Industrial crops and products,2000,11(2/3):139-143. [百度学术] 

43

YUAN C,LIU J H,FAN Y,et al.Mychonastes afer HSO-3-1 as a potential new source of biodiesel[J/OL].Biotechnology for biofuels,2011,4(1):47[2023-10-10].https://doi.org/10.1186/1754-6834-4-47. [百度学术] 

44

SAADAOUI I,AL GHAZAL G,BOUNNIT T,et al.Evidence of thermo and halotolerant Nannochloris isolate suitable for biodiesel production in Qatar Culture Collection of Cyanobacteria and Microalgae[J].Algal research,2016,14:39-47. [百度学术] 

45

WASSEF M K,AMMON V,WYLLIE T D.Polar lipids ofMacrophomina phaseolina[J].Lipids,1975,10(3):185-190. [百度学术] 

46

JANTZEN E,BERDAL B P,OMLAND T.Cellular fatty acid composition of Francisella tularensis[J].Journal of clinical microbiology,1979,10(6):928-930. [百度学术] 

47

UMEMOTO H,SAWADA K,KURATA A,et al.Fermentative production of nervonic acid by Mortierella capitata RD000969[J].Journal of oleo science,2014,63(7):671-679. [百度学术] 

48

CHAUDHURI S,GHOSH S,BHATTACHARYYA D K,et al.Effect of mustard meal on the production of arachidonic acid by Mortierella elongata SC-208[J].Journal of the American oil chemists’ society,1998,75(8):1053-1055. [百度学术] 

49

FAN Y,MENG H M,HU G R,et al.Biosynthesis of nervonic acid and perspectives for its production by microalgae and other microorganisms[J].Applied microbiology and biotechnology,2018,102(7):3027-3035. [百度学术] 

50

MA B,LIANG S,ZHAO D,et al.Study on plants containing nervonic acid[J].Agricultural and food sciences,environmental science,2004,24:2362-2365. [百度学术] 

51

NICHOLS P D,PALMISANO A C,SMITH G A,et al.Lipids of the Antarctic Sea ice diatom Nitzschia cylindrus[J].Phytochemistry,1986,25(7):1649-1653. [百度学术] 

52

HUAI D X,ZHANG Y Y,ZHANG C Y,et al.Combinatorial effects of fatty acid elongase enzymes on nervonic acid production in Camelina sativa[J/OL].PLoS One,2015,10(6):e0131755[2023-10-10].https://doi.org/10.1371/journal.pone.0131755. [百度学术] 

53

YANG T Q,YU Q,XU W,et al.Transcriptome analysis reveals crucial genes involved in the biosynthesis of nervonic acid in woody Malania oleifera oilseeds[J/OL].BMC plant biology,2018,18(1):247[2023-10-10].https://doi.org/10.1186/s12870-018-1463-6. [百度学术] 

54

FAN Y,GAO G,XUE Y,et al.Research progress on plant nervonic acid[J].Current biotechnology,2022,12(5):664-672. [百度学术] 

55

JOUBÈS J,RAFFAELE S,BOURDENX B,et al.The VLCFA elongase gene family in Arabidopsis thaliana:phylogenetic analysis,3D modelling and expression profiling[J].Plant molecular biology,2008,67(5):547-566. [百度学术] 

56

KENNEDY E P,WEISS S B.The function of cytidine coenzymes in the biosynthesis of phospholipides[J].The journal of biological chemistry,1956,222(1):193-214. [百度学术] 

57

SCARTH R,TANG J H.Modification of Brassica oil using conventional and transgenic approaches[J].Crop science,2006,46(3):1225-1236. [百度学术] 

58

雷泽,付正启,温晓江,等.一种神经酸的化学合成方法:CN103396304A[P].2013-11-20.LEI Z,FU Z Q,WEN X J,et al.Nervonic acid chemosynthesis method:CN103396304A[P].2013-11-20(in Chinese). [百度学术] 

59

MICHALAK I,CHOJNACKA K.Algae as production systems of bioactive compounds[J].Engineering in life sciences,2015,15(2):160-176. [百度学术] 

60

YUAN C,ZHENG Y L,ZHANG W L,et al.Lipid accumulation and anti-rotifer robustness of microalgal strains isolated from Eastern China[J].Journal of applied phycology,2017,29(6):2789-2800. [百度学术] 

61

FAN Y,YUAN C,JIN Y,et al.Characterization of 3-ketoacyl-coA synthase in a nervonic acid producing oleaginous microalgae Mychonastes afer[J].Algal research,2018,31:225-231. [百度学术] 

62

GUO Y M,MIETKIEWSKA E,FRANCIS T,et al.Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L.3-ketoacyl-CoA synthase(KCS) gene[J].Plant molecular biology,2009,69(5):565-575. [百度学术] 

63

夏俊杰.高产神经酸工程菌的构建及发酵条件的优化[D].北京:北京化工大学,2020.XIA J J.Construction and optimization of fermentation conditions for high-yielding engineered nervonic acid bacteria[D].Beijing:Beijing University of Chemical Technology,2020 (in Chinese with English abstract). [百度学术] 

64

ZHANG Y,YANG C,XIA J J,et al.Overproducing nervonic acid by synergism of fatty acid elongases in engineered Saccharomyces cerevisiae[J].Process biochemistry,2022,122:341-346. [百度学术] 

65

WANG K F,LIN L,WEI P,et al.Combining orthogonal plant and non-plant fatty acid biosynthesis pathways for efficient production of microbial oil enriched in nervonic acid in Yarrowia lipolytica[J/OL].Bioresource technology,2023,378:129012[2023-10-10].https://doi.org/10.1016/j.biortech.2023.129012. [百度学术] 

66

TAYLOR D C,FRANCIS T,GUO Y M,et al.Molecular cloning and characterization of a KCS gene from Cardamine graeca and its heterologous expression in Brassica oilseeds to engineer high nervonic acid oils for potential medical and industrial use[J].Plant biotechnology journal,2009,7(9):925-938. [百度学术] 

67

YANG T Q,ZHANG R G,TIAN X L,et al.The chromosome-level genome assembly and genes involved in biosynthesis of nervonic acid of Malania oleifera[J/OL].Scientific data,2023,10:298[2023-10-10].https://doi.org/10.1038/s41597-023-02218-8. [百度学术] 

68

LIANG Q,LIU J N,FANG H C,et al.Genomic and transcriptomic analyses provide insights into valuable fatty acid biosynthesis and environmental adaptation of yellowhorn[J/OL].Frontiers in plant science,2022,13:991197[2023-10-10].https://doi.org/10.3389/fpls.2022.991197. [百度学术] 

69

WANG R K,LIU P,FAN J S,et al.Comparative transcriptome analysis two genotypes of Acer truncatum Bunge seeds reveals candidate genes that influences seed VLCFAs accumulation[J/OL].Scientific reports,2018,8:15504[2023-10-10].https://doi.org/10.1038/s41598-018-33999-3. [百度学术] 

70

MA Q Y,WANG Y X,LI S S,et al.Assembly and comparative analysis of the first complete mitochondrial genome of Acer truncatum Bunge:a woody oil-tree species producing nervonic acid[J/OL].BMC plant biology,2022,22(1):29[2023-10-10].https://doi.org/10.1186/s12870-021-03416-5. [百度学术] 

71

MA Q Y,WANG Y N,ZHU L,et al.Characterization of the complete chloroplast genome of Acer truncatum bunge (Sapindales:Aceraceae):a new woody oil tree species producing nervonic acid[J/OL].BioMed research international,2019,2019:7417239[2023-10-10].https://doi.org/10.1155/2019/7417239. [百度学术] 

72

ZOU J,KATAVIC V,GIBLIN E M,et al.Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast Sn-2 acyltransferase gene[J].The plant cell,1997,9(6):909-923. [百度学术] 

73

KATAVIC V,FRIESEN W,BARTON D L,et al.Improving erucic acid content in rapeseed through biotechnology:what can the Arabidopsis FAE1 and the yeast SLC1-1 genes contribute[J].Crop science,2001,41(3):739-747. [百度学术] 

74

TAYLOR D C,KATAVIC V,ZOU J T,et al.Field testing of transgenic rapeseed cv.Hero transformed with a yeast Sn-2 acyltransferase results in increased oil content,erucic acid content and seed yield[J].Molecular breeding,2002,8(4):317-322. [百度学术] 

75

TAYLOR D C,SMITH M A,FOBERT P,et al.Metabolic engineering of higher plants to produce bio-industrial oils[M]//Comprehensive Biotechnology.Amsterdam:Elsevier,2011:67-85. [百度学术] 

76

MA Q Y,SUN T L,LI S S,et al.The Acer truncatum genome provides insights into nervonic acid biosynthesis[J].The Plant journal,2020,104(3):662-678. [百度学术] 

77

LI Z W,MA S J,SONG H,et al.A 3-ketoacyl-CoA synthase 11 (KCS11) homolog from Malania oleifera synthesizes nervonic acid in plants rich in 11Z-eicosenoic acid[J].Tree physiology,2021,41(2):331-342. [百度学术] 

78

DAI H,ZHANG Y Y,JIN P,et al.Identification of KCS gene family and functional analysis of FAE-like genes from Malania oleifera[J].Oil crop science,2021,6(1):35-40. [百度学术] 

79

HEIJENSKJÖLD L,ERNSTER L.Studies of the mode of action of erucic acid on heart metabolism[J].Acta medica scandinavica.supplementum,1975,585:75-83. [百度学术] 

80

DAS S,ROSCOE T J,DELSENY M,et al.Cloning and molecular characterization of the fatty acid elongase 1 (FAE 1) gene from high and low erucic acid lines of Brassica campestris and Brassica oleracea[J].Plant science,2002,162(2):245-250. [百度学术] 

81

WESELAKE R J,TAYLOR D C,RAHMAN M H,et al.Increasing the flow of carbon into seed oil[J].Biotechnology advances,2009,27(6):866-878. [百度学术] 

82

KENNEDY E P.Biosynthesis of complex lipids[J].J Clin Invest,1961,40(6):925-932. [百度学术] 

83

VANHERCKE T,EL TAHCHY A,LIU Q,et al.Metabolic engineering of biomass for high energy density:oilseed-like triacylglycerol yields from plant leaves[J].Plant biotechnology journal,2014,12(2):231-239. [百度学术] 

84

LIU Q,GUO Q G,AKBAR S,et al.Genetic enhancement of oil content in potato tuber (Solanum tuberosum L.) through an integrated metabolic engineering strategy[J].Plant biotechnology journal,2017,15(1):56-67. [百度学术] 

85

GOEPFERT S,POIRIER Y.β-Oxidation in fatty acid degradation and beyond[J].Current opinion in plant biology,2007,10(3):245-251. [百度学术] 

86

XUE Z X,SHARPE P L,HONG S P,et al.Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica[J].Nature biotechnology,2013,31(8):734-740. [百度学术] 

87

WANG K F,SHI T Q,WANG J P,et al.Engineering the lipid and fatty acid metabolism in Yarrowia lipolytica for sustainable production of high oleic oils[J].ACS synthetic biology,2022,11(4):1542-1554. [百度学术] 

88

何平,王会,罗莉霞,等.油菜品种登记现状分析[J].中国种业,2021(8):26-29.HE P,WANG H,LUO L X,et al.Analysis on current situation of oilseed rape variety registration[J].China seed industry,2021(8):26-29 (in Chinese). [百度学术]