摘要
为探究苦草型清水态养殖水深的适宜控制范围,依据池塘中苦草自然分布水深,设置全日光光强的5%(L1)、15%(L2)、25%(L3)和35%(L4)4个光强梯度组(L1为适宜光强组, L2、L3和L4为强光组),对应池塘水下深度分别为1.0~1.1、0.6~0.8、0.4~0.6和0.3~0.4倍透明度,研究自然光照周期和强度下苦草(Vallisneria natans)的生长、抗氧化和净化能力。结果显示:自然光照周期下,苦草总生物量随光照强度增强(5%~35%全日光范围)而显著增加,叶片长度最大值出现在L2组;L2、L3和L4组丙二醛(MDA)含量和超氧化物歧化酶(SOD)活性均显著低于L1组;水中溶解氧(DO)含量和pH值L3和L4组显著高于L1组,而叶绿素a(Chl a)含量相反;各组铵态氮(NH
近年来,针对传统池塘养殖废弃物过度积累、水体有毒氮素超标严重、养殖效率和效益不高等问
苦草(Vallisneria natans)为多年生无茎沉水植物,有耐候好、寿命长、植株高和根系泌氧等优
试验所用苦草采自湖北武汉周边池塘,选取大小一致、健康的苦草植株洗干净之后备用。水和沉积物采自华中农业大学水产学院养殖教学实践基地集约化养殖池塘。从池塘采集的水直接用作试验用水[总氮质量浓度(6.08±0.43) mg/L, 总磷质量浓度(0.40±0.05) mg/L],而沉积物经自然风干,去除大颗粒杂质及动植物残体,研磨过孔径0.15 mm筛后,充分混匀用作试验底泥[总氮含量(244.60±30.12) mg/kg, 总磷含量(474.52±52.70) mg/kg]。
依据池塘中苦草自然分布水深,确定试验光照强度范围为全日光强度的5%~35%。按等间距分布原则,设定4个试验光照梯度组:全日光强度的5%(L1)、15%(L2)、25%(L3)和35%(L4)(

图1 光照强度的变化
Fig.1 Changes in light intensity
A. 试验期间上午10:00平均光照强度; B. 2022年9月4日白天光照强度; C. 2022年9月1日白天光照强度。红色虚线表示苦草光饱和点,灰色虚线表示苦草光补偿点(该数据来自文献[
试验于2022年9-11月间在华中农业大学水产学院教学实践基地室外模拟进行。试验装置如

图2 试验装置示意图
Fig.2 Schematic of experimental apparatus
试验期间,每周监测2次水下光合有效辐照度(photosynthetic active radiation,PAR)、水温(water temperature,WT)、溶解氧(dissolve oxygen,DO)和pH值等指标,每周测定1次水体三态氮(NH
使用水下光合辐照计(SM206,中国)测定每个试验桶水层下方10 cm左右处PAR,使用YSI多参数水质监测仪测定WT、DO及pH值。NH
使用直尺和电子天平测定苦草平均总生物量和叶片长度。苦草叶片内丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、谷氨酸合成酶(Fd-GOGAT)活性、谷氨酰胺合成酶(GS)活性和碱性磷酸酶(AKP)活性测定采用中国南京建成生物工程研究所和格锐思生物科技有限公司的检测试剂盒,操作步骤详见试剂盒说明书。
利用公式(
T0 = Tend - Tinitial | (1) |
L0 = Lend - Linitial | (2) |
测定结果显示,各试验组苦草平均总生物量和生物量平均总积累量与光照强度均呈显著正相关关系(P<0.05),L4组平均总生物量及总积累量达最高[分别为(484.66±69.86) g/

图3 苦草生物量(A、B)和叶片长度(C、D)的变化
Fig.3 Changes in biomass(A,B) and leaf length(C,D) of Vallisneria natans
字母不同表示组间存在显著性差异(P<0.05);下同。Values with the same letters shows no significantly different (P<0.05); the same as below.
由

图4 苦草抗氧化指标变化
Fig.4 Changes in antioxidant indicators of Vallisneria natans
A:丙二醛含量 MDA content; B:超氧化物歧化酶活性 SOD activity; C:过氧化氢酶活性 CAT activity.
由

图5 苦草氮磷代谢指标变化
Fig.5 Changes in nitrogen and phosphorus metabolism indicators of Vallisneria natans
A:谷氨酸合成酶活性Fd-GOGAT activity;B:谷氨酰胺合成酶活性GS activity;C:碱性磷酸酶活性AKP activity.
试验期间,各组间WT无显著差异(P>0.05),均值为22.5 ℃(变化范围为13.9~31.5 ℃)(

图6 水环境因子变化
Fig.6 Changes in water environmental factors
A:水温WT;B:酸碱度 pH;C:溶解氧质量浓度DO concentration;D:叶绿素a含量Chl a content.阴影区域代表试验误差。Shaded area represents experimental error. *:P<0.05.
试验开始第1周,苦草处于快速生长期,各组Chl a质量浓度快速下降;7~21 d,L2组Chl a质量浓度出现快速反弹,于21 d时达到最高点[(6.90±1.32) μg/L],之后持续下降,至49 d时降至最低点[(1.88±0.57) μg/L];7~49 d,其他试验组Chl a质量浓度在较低水平波动;各组49 d时的Chl a质量浓度均显著低于试验初始浓度(P<0.05)(
试验前3周,各组NH

图7 不同光照强度条件下的水体铵态氮(A)、亚硝态氮(B)、硝态氮(C)、正磷酸盐(D)、总氮(E)、总磷(F)质量浓度和氮磷移除率(G、H)
Fig.7 Ammonium nitrogen (A), nitrite nitrogen (B), nitrate nitrogen (C), orthophosphate (D),total nitrogen (E), total phosphorus (F) concentrations and nitrogen and phosphorus removal rates (G, H) in water to different light intensity condition
*表示强光试验组与L1组各项指标差异显著,P<0.05。* represents significant difference in indicators between the strong light experimental group and L1 group, P<0.05.
试验结束时,强光组(L2、L3和L4试验组)NO
光照及其可利用性是影响植物生长的重要因子,能够显著影响苦草形态和生物量的分配策
本研究中,自然光周期条件下,强光照(全日光的15%~35%)能使苦草体内产生的脂质过氧化产物降低,减少氧化应激反应。弱光条件下苦草虽能维持生长,但复杂的生存环境往往使它需要额外的光合产物来抵御风险,一般需要10%~20%的表面辐照度完成其生活
试验开始2~3周后,各组水体中NH
磷作为沉水植物生长的必需元素,在环境中以不同的形式存在,但水下植物只能吸收无机磷,因此,通过碱性磷酸酶(AKP)催化水溶性有机磷转化为无机磷,才能供沉水植物生长吸收利
综上所述,自然光周期和一定强度条件下(在5%~35%全日光范围内),提高光照强度,能促进苦草生长量增加且不会引起氧化应激反应、提升苦草氮磷吸收能力、有效改善水环境质量(提高DO质量浓度,降低Chl a含量)。因此,苦草型清水态养殖水体实际应用中,25%~35%全日光光强有利于苦草生长及水体氮磷去除。
参考文献References
WANJA D W,MBUTHIA P G,WARUIRU R M,et al.Fish husbandry practices and water quality in central Kenya:potential risk factors for fish mortality and infectious diseases[J/OL].Veterinary medicine international,2020,2020:6839354[2023-11-28]. https://doi.org/10.1155/2020/6839354. [百度学术]
BOSMA R H,VERDEGEM M C J.Sustainable aquaculture in ponds:principles,practices and limits[J].Livestock science,2011,139(1/2):58-68. [百度学术]
何绪刚,侯杰.池塘圈养模式研究进展[J].华中农业大学学报,2021,40(3):21-29.HE X G,HOU J.Research progress on pond Juanyang mode[J].Journal of Huazhong Agricultural University,2021,40(3):21-29 (in Chinese with English abstract). [百度学术]
王磊,贾松鹏,舒锐,等.陆基推水集装箱式水产养殖模式解析及发展展望[J].中国水产,2020(11):51-53.WANG L,JIA S P,SHU R,et al.Analysis and development prospect of land-based water pushing container aquaculture model[J].China fisheries,2020(11):51-53 (in Chinese). [百度学术]
NI M,LIU M,LOU J F,et al.Stocking density alters growth performance,serum biochemistry,digestive enzymes,immune response,and muscle quality of largemouth bass (Micropterus salmoides) in in-pond raceway system[J].Fish physiology and biochemistry,2021,47(4):1243-1255. [百度学术]
王建富,辛玮光,张超,等.人工湖草型清水态生态系统构建技术研究与实践:以西北某新建人工湖为例[J].环境工程技术学报,2022,12(4):1105-1113.WANG J F,XIN W G,ZHANG C,et al.Research and practice on the construction technology of macrophytes-dominated clear water ecosystem in the artificial lake:taking a new artificial lake in the northwest as an example[J].Journal of environmental engineering technology,2022,12(4):1105-1113 (in Chinese with English abstract). [百度学术]
张友德,张甜甜,何建军,等.沉水植物对城市景观水体净化机理及影响因素的研究进展[J].绿色科技,2021,23(22):142-146,150.ZHANG Y D,ZHANG T T,HE J J,et al.Research progress on purification mechanism and influencing factors of submerged macrophytes on urban landscape water[J].Journal of green science and technology,2021,23(22):142-146,150 (in Chinese with English abstract). [百度学术]
张群,宋晴,朱义,等.7种沉水植物人工条件下的越冬能力研究[J].上海交通大学学报(农业科学版),2015,33(2):85-89.ZHANG Q,SONG Q,ZHU Y,et al.Researchon overwintering abilities of seven submerged plants under artificial conditions[J].Journal of Shanghai Jiao Tong University (agricultural science),2015,33(2):85-89 (in Chinese with English abstract). [百度学术]
汤鹏,于鲁冀,彭赵旭,等.水生植物化感作用抑藻研究进展[J].生物学杂志,2021,38(4):104-108.TANG P,YU L J,PENG Z X,et al.Research progresses on algae inhibition by allelopathy of aquatic plants[J].Journal of biology,2021,38(4):104-108 (in Chinese with English abstract). [百度学术]
CHEN J F,CHOU Q C,REN W J,et al.Growth,morphology and C/N metabolism responses of a model submersed macrophyte,Vallisneria natans, to various light regimes[J/OL].Ecological indicators,2022,136:108652[2023-11-28].https://doi.org/10.1016/j.ecolind.2022.108652. [百度学术]
王磊,胡效卿,张卓伦,等.不同水深和基质下苦草(Vallisneria natans)的生理生态适应策略[J].生态学杂志,2021,40(8):2421-2430.WANG L,HU X Q,ZHANG Z L,et al.Physiological and ecological adaptation strategies of Vallisneria natans to different water depths and sediments[J].Chinese journal of ecology,2021,40(8):2421-2430 (in Chinese with English abstract). [百度学术]
黄瑾,宋玉芝,秦伯强.不同营养水平下苦草对附着和浮游藻类的影响[J].环境科学与技术,2010,33(11):17-21.HUANG J,SONG Y Z,QIN B Q.Effect of Vallisneria natans on periphytic algae and phytoplankton with different nutrients[J].Environmental science & technology,2010,33(11):17-21 (in Chinese with English abstract). [百度学术]
苏文华,张光飞,张云孙,等.5种沉水植物的光合特征[J].水生生物学报,2004,28(4):391-395.SU W H,ZHANG G F,ZHANG Y S,et al.The photosynthetic characteristics of five submerged aquatic plants[J].Acta hydrobiologica sinica,2004,28(4):391-395 (in Chinese with English abstract). [百度学术]
国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.State Environmental Protection Administration. Standard methods for examination of water and wastewater [M].4th edition. Beijing:China Environmental Science Press,2002(in Chinese). [百度学术]
CHEN J F,CAO T,ZHANG X L,et al.Differential photosynthetic and morphological adaptations to low light affect depth distribution of two submersed macrophytes in lakes[J/OL].Scientific reports,2016,6:34028[2023-11-28].http:// doi.org/10.1038/srep34028. [百度学术]
PENG H,GE D B,YUAN G X,et al.Effect of clonal fragmentation on the growth of Vallisneria natans (Lour.) Hara at contrasting nutrient and light conditions[J].Hydrobiologia,2021,848(4):903-912. [百度学术]
YUAN G X,FU H,ZHONG J Y,et al.Growth and C/N metabolism of three submersed macrophytes in response to water depths[J].Environmental and experimental botany,2016,122:94-99. [百度学术]
CHOU Q C,ZHANG W,CHEN J F,et al.Phenotypic responses of a submerged macrophyte (Vallisneria natans) to low light combined with water depth[J/OL].Aquatic botany,2022,176:103462[2023-11-28]. https://doi.org/10.1016/j.aquabot.2021.103462. [百度学术]
DONG B L,ZHOU Y Q,JEPPESEN E,et al.Response of community composition and biomass of submerged macrophytes to variation in underwater light,wind and trophic status in a large eutrophic shallow lake[J].Journal of environmental sciences,2021,103:298-310. [百度学术]
FU H,YUAN G X,CAO T,et al.An alternative mechanism for shade adaptation:implication of allometric responses of three submersed macrophytes to water depth[J].Ecological research,2012,27(6):1087-1094. [百度学术]
徐昇,李欣,钟萍,等.苦草根系对硝氮和氨氮的吸收[J].生态科学,2012,31(3):312-317.XU S,LI X,ZHONG P,et al.The uptake of nitrate and ammonium by the root of Vallisneria natans[J].Ecological science,2012,31(3):312-317 (in Chinese with English abstract). [百度学术]
崔建伟,李金凤,崔键,等.6种水生植物去除污水中总磷的实验研究[J].湿地科学,2023,21(3):430-438.CUI J W,LI J F,CUI J,et al.Experimental study on removing total phosphorus in sewage by six kinds of aquatic plants[J].Wetland science,2023,21(3):430-438 (in Chinese with English abstract). [百度学术]
GOLDSBOROUGH W J,KEMP W M.Light responses of a submersed macrophyte:implications for survival in turbid tidal waters[J].Ecology,1988,69(6):1775-1786. [百度学术]
CHEN J F,LIU Z G,XIAO S,et al.Effects of benthivorous fish disturbance on chlorophyll a contents in water and the growth of two submersed macrophytes with different growth forms under two light regimes[J/OL].Science of the total environment,2020,704:135269[2023-11-28].https://doi.org/10.1016/j.scitotenv.2019.135269. [百度学术]
CHEN J F,REN W J,CHOU Q C,et al.Alterations in biomass allocation indicate the adaptation of submersed macrophytes to low-light stress[J/OL].Ecological indicators,2020,113:106235[2023-11-28].http://dx.doi.org/10.1016/j.ecolind.2020.106235. [百度学术]
周娜娜,冯素萍,高新生,等.植物光合作用的光抑制研究进展[J].中国农学通报,2019,35(15):116-123.ZHOU N N,FENG S P,GAO X S,et al.Photoinhibition of plants photosynthesis:research progress[J].Chinese agricultural science bulletin,2019,35(15):116-123 (in Chinese with English abstract). [百度学术]
张松贺,王佳阳,牟小颖,等.不同水体沉水植物叶面微生物群落特征[J].河海大学学报(自然科学版),2022,50(6):66-74.ZHANG S H,WANG J Y,MU X Y,et al.Characteristics of microbial community on leaf surface of submerged plants in different water bodies[J].Journal of Hohai University (natural sciences),2022,50(6):66-74 (in Chinese with English abstract). [百度学术]
FALKOWSKI P G,STONE D P.Nitrate uptake in marine phytoplankton:energy sources and the interaction with carbon fixation[J].Marine biology,1975,32(1):77-84. [百度学术]
TURPIN D H,VANLERBERGHE G C,AMORY A M,et al.The inorganic carbon requirements for nitrogen assimilation[J].Canadian journal of botany,1991,69(5):1139-1145. [百度学术]
WANG S R,JIAO L X,YANG S W,et al.Effects of organic matter and submerged macrophytes on variations of alkaline phosphatase activity and phosphorus fractions in lake sediment[J].Journal of environmental management,2012,113:355-360. [百度学术]
王立志,王国祥.衰亡期沉水植物对水和沉积物磷迁移的影响[J].生态学报,2013,33(17):5426-5437.WANG L Z,WANG G X.Influence of submerged macrophytes on phosphorus transference between sediment and overlying water in decomposition period[J].Acta ecologica sinica,2013,33(17):5426-5437 (in Chinese with English abstract). [百度学术]