摘要
新污染物(emerging contaminants,ECs)具有浓度低、毒性大等特点,是饮用水和再生水水质安全的重要威胁。生物炭因制备成本低、处理效率高等特点,在水环境ECs的去除领域受到广泛关注。为了推进生物炭在水环境新污染物去除的应用,本文从水环境中ECs污染现状、生物炭的性质、生物炭在水环境ECs去除过程中的研究和应用等方面进行综述,分别总结生物炭作为吸附剂、高级氧化催化剂与微生物固定化载体对ECs的去除研究进展,并提出展望。
新污染物(emerging contaminants,ECs)是指在环境中以痕量形式存在的有机污染物,主要包括持久性有机污染物、内分泌干扰物和抗生素等,对人类与动植物具有潜在危

图1 基于“Web of Science”搜索的1999-2021年间关于“EDCs或PPCPs+water”关键词的文章数量
Fig.1 Number of scientific articles on ‘EDCs’, ‘PPCPs’ and ‘water’ from 1999 to 2021, as can be found through a literature research in Web of Science
我国高度重视新污染物的管控与防治,“十四五”期间新污染物治理成为生态环保工作的重点。2020年10月,党的十九届五中全会明确提出要“重视新污染物治理”。2021年3月,十三届全国人大四次会议明确“健全有毒有害化学物质环境风险管理体制”。2022年5月,国务院办公厅发布《新污染物治理行动方案》,指出“十四五”期间将对一批重点管控新污染物开展专项治理,并规划于2025年底前初步建立新污染物环境调查监测体系。为贯彻落实《新污染物治理行动方案》,2022年12月,生态环境部等六部门联合发布《重点管控新污染物清单(2023年版)》,将14种新污染物纳入重点管控清单,严格实施禁止、限制、限排等管控措施。新污染物治理已成为当前环境保护工作的核心任务。
目前,去除水环境中ECs的方法主要有物理化学
生物炭(biochar,BC)是一种具有广泛应用前景的材料,具有较大的比表面
鉴于当前缺少对生物炭去除水环境新污染物的系统总结,本文以近年来生物炭在水环境中去除新污染物的研究成果为基础,系统梳理了生物炭在水环境中去除新污染物的应用研究进展。首先,通过分析当前新污染物的污染现状,揭示其对水环境的潜在危害。接着,对生物炭的性质和特点进行了深入探讨。在此基础上总结了生物炭在水环境中去除新污染物方面的研究进展,包括其作为吸附剂、高级氧化催化剂和微生物固定化载体的特点及优势。最后,对未来相关研究提出展望,以期为水环境中新污染物的防治提供参考和指导,促进生物炭在环境治理领域的应用和发展。
近些年,不同种类ECs已先后在世界各地范围内地表水、饮用水和地下水中检出,涉及的ECs包括药品和个人护理产品(PPCPs)、内分泌干扰物(EDCs)、微塑料、杀虫剂、工业化学品等。污、废水的直接与间接排放是水环境ECs污染的主要来源。Kasprzyk-Hordern
ECs污染种类及污染量与含ECs制品的消费量密切相关。王慧
地点 Location | 年份 Year | 赋存水平/(ng/L) Occurrence level | 参考文献 Reference |
---|---|---|---|
日本(江户川、荒川、玉川河),中国(珠江、西江),韩国(汉江、洛东江、荣山江),印度(Adyar河、Buckingham运河、Cooum河、Korttalaiyer河) Japan (Edogawa, Arakawa, Yukawa River), China (the Pearl River, Xijiang River), South Korea (Han River,Luodong River, Rongshan River), India (Adyar River, Buckingham Canal, Cooum River, Korttaaiyer River) | 2014 | 16.7~14 800.0 |
[ |
珠江三角洲Pearl River Delta | 2010、2015 | 8.7~639.0 |
[ |
北太湖(龚湾、美良湾、珠山湾区域) North Taihu River Basin (Gongwan, Meiliang Bay, Zhushan Bay area) | 2015 | 64.4 |
[ |
巴西里约格兰德河流域 Rio Grande do Rio de Janeiro | 2016-2017 | 0~517 |
[ |
无锡太湖和滆湖 Taihu Lake and Ge Lake | 2019 | 47.8~63.3 |
[ |
黄浦江上游 Upper Huangpu River | 2020 | 26.00~64.32 |
[ |
孟加拉湾 Bay of Bengal | 2021 | 40~446 |
[ |
生物炭是一种由生物质在缺氧或低氧条件下进行干法碳化、热解或气化形成的多孔碳质固
虽然不同种类生物质在不同热解方法或不同热解温度条件下所生成的生物炭在结构与性质上具有一定差异,但仍然存在着许多共同特性:第一,生物炭主要由碳、氢、氧等元素组成,其中碳的占比高达50%~90
将废弃生物质转化为生物炭应用于环境污染治理符合可持续发展的理念。回顾近几十年来利用生物炭去除ECs的相关研究,我们发现通常可将生物炭用作吸附剂、高级氧化催化剂、微生物固定化载体等应用于水环境中ECs去除。总结生物炭作为吸附剂、高级氧化催化剂与微生物固定化载体对ECs的去除研究进展如
类型Type | 作用原理Mechanism | 优/缺点Advantages/Disadvantages | 应用 Application | 处理效果Results | 参考文献Reference |
---|---|---|---|---|---|
吸附剂 Absorbents | 静电相互作用、疏水效应、氢键和孔隙填充等 |
优点:操作简单、成本低、应用范围广 缺点:去除率较低、受环境条件影响大 | 活性污泥法、原位覆盖技术等 | 50%~75% |
[ |
高级氧化催化剂 Advanced oxidation catalysts | 自由基作用、非自由基作用 |
优点:适用范围广、反应速率快、氧化能力强、适用于处理含难降解有机物废水 缺点:成本较高 | 实验室阶段 | 95%~100% |
[ |
微生物固定化载体 Microbial immobilization carriers | 吸附固定:使微生物吸附于表面或嵌入其多孔内部结构 |
优点:微生物与污染物接触面积大、生物降解效率高 缺点:吸附固定较松散,微生物损失量较大 | 活性污泥法、生物膜法等 | 65%~98% |
[ |
包埋固定利用一些高分子凝胶物质将生物炭与生长繁殖于生物炭载体内部的微生物包埋在内部进行固定化 |
优点:微生物损失量低、存活率高、耐受程度高,材料重复利用率较高,去除效率较高 缺点:操作复杂 | 原位修复技术等 | 80%~99% |
[ |

图2 生物炭在水环境ECs(如BPA)去除过程中的应用
Fig.2 Application of biochar in removing ECs (such as BPA) from aquatic environment
物理化学吸附去除ECs是一种操作性高、低成本和高效率的方法。例如,BPA等污染物在污水处理中主要是通过活性污泥的吸附作用而实现,其去除率可达到50%~75
生物炭可通过静电相互作用、疏水效应、氢键和孔隙填充等途径吸附ECs,通过固液分离技术可将已吸附ECs的生物炭与水体分离,再进行解吸附作用即可实现生物炭的再
生物炭对ECs吸附效果主要受水质条
与传统水处理技术相比,高级氧化法(advanced oxidation process,AOPs)因具有适用范围广、反应速率快、氧化能力强的优点,在处理含有难降解有机物的废水方面具有巨大潜
近些年新兴的硫酸盐基高级氧化工艺(SR-AOP)主要通过活化过硫酸盐(persulfate,PS)或过氧单硫酸盐(peroxymonosulfate,PMS)产生·SO
(1)·SO
·SO
(2)·SO
·SO
(3)发生单电子转移反应:

高级氧化剂PMS与PS的活化过程是影响SR-AOP去除污染物效果的决定性因素,主要方法包括能量活化(如热活化、紫外线辐射、超声波
生物炭表面存在的活性位点与持久性自由基,可以激活高级氧化剂反应产生强氧化性的自由基,也能通过单线态氧

图3 生物炭活化高级氧化剂机制
Fig.3 Mechanism in activating advanced oxidants by biochar
Li
为提高材料表面PFRs含量并改善多孔结构,研究者对生物炭进行掺杂或改性处理,提高了生物炭对氧化剂的催化作用。Xu
通过耦合高级氧化与生物降解过程,能够显著提升有机污染物的去除效果。高级氧化产生强氧化自由基,能够氧化难以生物降解的污染物。随后,微生物能够迅速利用并矿化可生物降解的中间体,从而更有效地完成有机污染物的去
ECs的生物降解法指利用从自然界中筛选分离或经过人工培养得到的微生物菌群降解水环境中的ECs的处理方
保证微生物的数量与活性是生物降解高效去除ECs的关键,而当微生物单独存在于污染水体时,受环境影响大导致易损失、易失活,进而降低微生物对ECs的去除效果。研究发现使用微生物固定化技术,将游离细胞附着于载体上,有利于提高微生物活性、耐毒性且固定化微生物具有更好的可重复使用性,是解决上述问题的有效途径。1967年,Parkhurst
1)吸附固定法。生物炭能使微生物吸附于表面或嵌入其多孔内部结构,为微生物生长繁殖提供优良场所。而且生物炭也能吸附ECs,有助于其表面附着的细菌捕获溶液中的ECs、促进营养物质传输和释放微量元素,提高生物降解ECs效
由生物炭的吸附-解吸平衡可知,吸附作用一方面缓解了ECs对微生物的毒性作用,促进生物降解;另一方面微生物降解吸附在生物炭中的ECs,生物炭解吸得到再生,恢复对ECs吸附能
将生物炭改性或与纳米材料相结合能促进微生物代谢作用。Qin
2)包埋固定法。生物炭包埋固定法指利用高分子凝胶物质将生物炭与生长繁殖于生物炭载体内部的微生物包埋在内部进行固定化。在实际应用中,由于水环境中水流速度的不确定性与水质的复杂性,与生物炭对微生物的松散吸附固定相比,包埋固定能进一步降低微生物损失与失活量,在提高生物降解率的同时增加材料的重复利用
近年来,越来越多研究人员应用生物炭-天然高分子凝胶包埋微生物。由于藻酸盐、壳聚糖能够聚合形成聚电解质膜,可增强固定化菌球的稳定性和延长使用寿命,所以利用藻酸盐、壳聚糖与生物炭复合包埋微生物备受关注。藻酸盐凝胶可以通过凝胶微网格能够很好地嵌入生物炭中,生物炭在凝胶材料中又提高了孔隙率,降低了扩散阻力。Wang
“十四五”是我国实现“双碳”目标的关键时期,也是促进绿色低碳高质量发展的深刻变革期。随着工业化进程不断推进,大量ECs不可避免地释放入水环境。生物炭能够通过物理化学吸附、催化高级氧化、增强生物降解等作用促进水环境中ECs去除,将生物炭应用于环境治理中还可以起到固碳效益,是“打好污染防治攻坚战,实现减污降碳协同效应”的关键环节,具有广阔的应用前景。
生物炭技术可以通过物理化学、氧化还原、偶联生物法去除水环境ECs,活性位点数量有限、孔隙度结构低是限制原始生物炭实际应用的重要因素。对生物炭改性优化有助于提升生物炭氧化还原能力、促进电子转移、提高孔隙率、增加自由基,从而强化ECs去除,是解决生物炭高效应用的重要途径。
同时,单一的去除方法作用效果有限,利用生物炭与其他技术的协同增效作用,探究不同方法联用的效价与机制,将是提高ECs去除效率的一条有效途径。如耦合纳米材料提高ECs吸附性能、利用生物炭构建“高级氧化-生物降解耦合技术”解决难降解ECs去除瓶颈、改善生物炭-天然高分子凝胶包埋微生物提高体系环境适应性等,对实现开发ECs高效去除技术具有重要的理论和实践意义,将是值得今后持续关注的重要研究方向。
参考文献References
SEMBLANTE G U,HAI F I,HUANG X,et al.Trace organic contaminants in biosolids:impact of conventional wastewater and sludge processing technologies and emerging alternatives[J].Journal of hazardous materials,2015,300:1-17. [百度学术]
LOOS R,LOCORO G,COMERO S,et al.Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water[J].Water research,2010,44(14):4115-4126. [百度学术]
LUO Y,XU L,RYSZ M,et al.Occurrence and transport of tetracycline,sulfonamide,quinolone,and macrolide antibiotics in the Haihe River Basin,China[J].Environmental science & technology,2011,45(5):1827-1833. [百度学术]
ZHANG M,SHEN J L,ZHONG Y C,et al.Sorption of pharmaceuticals and personal care products (PPCPs) from water and wastewater by carbonaceous materials:a review[J].Critical reviews in environmental science and technology,2022,52(5):727-766. [百度学术]
CHOI J,CUI M C,LEE Y,et al.Hydrodynamic cavitation and activated persulfate oxidation for degradation of bisphenol A:kinetics and mechanism[J].Chemical engineering journal,2018,338:323-332. [百度学术]
CHENG Y X,CHEN J,WU D,et al.Highly enhanced biodegradation of pharmaceutical and personal care products in a novel tidal flow constructed wetland with baffle and plants[J/OL].Water research, 2021, 193:116870[2023-08-07].https://doi.org/10.1016/j.watres.2021.116870. [百度学术]
LENG L J,XIONG Q,YANG L H,et al.An overview on engineering the surface area and porosity of biochar[J/OL].Science of the total environment, 2021, 763:144204[2023-08-07].https://doi.org/10.1016/j.scitotenv.2020.144204. [百度学术]
SROCKE F,HAN L W,DUTILLEUL P,et al.Synchrotron X-ray microtomography and multifractal analysis for the characterization of pore structure and distribution in softwood pellet biochar[J].Biochar,2021,3(4):671-686. [百度学术]
KLÜPFEL L,KEILUWEIT M,KLEBER M,et al.Redox properties of plant biomass-derived black carbon (biochar)[J].Environmental science & technology,2014,48(10):5601-5611. [百度学术]
WANG Z J,LIN Y Q,ZHOU H J,et al.Boosting persulfate activation via paper mill sludge-based biochar for efficient degradation of bisphenol A:inherent multiple active sites[J/OL].Chemical engineering journal,2023,455:140795[2023-08-07].https://doi.org/10.1016/j.cej.2022.140795. [百度学术]
李晓娜,张睿含,张倩影,等.生物质炭服务农田生态系统 “碳中和” 的机制和潜力研究进展[J].环境科学研究,2023,36(2):381-392.LI X N,ZHANG R H,ZHANG Q Y,et al.Mechanisms and potential of biochar to serve‘carbon neutrality’in agroecosystem:a review[J].Research of environmental sciences,2023,36(2):381-392 (in Chinese with English abstract). [百度学术]
KASPRZYK-HORDERN B,DINSDALE R M,GUWY A J.The occurrence of pharmaceuticals,personal care products,endocrine disruptors and illicit drugs in surface water in South Wales,UK[J].Water research,2008,42(13):3498-3518. [百度学术]
YAMAZAKI E,YAMASHITA N,TANIYASU S,et al.Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan,China,Korea and India[J].Ecotoxicology and environmental safety,2015,122:565-572. [百度学术]
MA L,LIU Y F,YANG Q,et al.Occurrence and distribution of pharmaceuticals and personal care products (PPCPs) in wastewater related riverbank groundwater[J/OL].Science of the total environment,2022,821:153372[2023-08-07].https://doi.org/10.1016/j.scitotenv.2022.153372. [百度学术]
王慧,王晨,田业超,等.城市污水处理厂及其受纳水体中典型PPCPs的分布特征及其生态风险评价[J].环境科学学报,2023,43(4):339-349.WANG H,WANG C,TIAN Y C,et al.Distribution characters and ecological risk assessment of typical PPCPs in sewage treatment plant and its receiving water[J].Acta scientiae circumstantiae,2023,43(4):339-349 (in Chinese with English abstract). [百度学术]
杨晨,唐晓东,李晶晶,等.双酚A型环氧树脂合成技术进展[J].中国塑料,2023,37(2):106-112.YANG C,TANG X D,LI J J,et al.Research progress in synthetic technology of bisphenol-A epoxy resin[J].China plastics,2023,37(2):106-112 (in Chinese with English abstract). [百度学术]
VANDENBERG L N,CHAHOUD I,HEINDEL J J,et al.Urinary,circulating,and tissue biomonitoring studies indicate widespread exposure to bisphenol A[J].Environmental health perspectives,2010,118(8):1055-1070. [百度学术]
龚剑,黄文,杨娟,等.珠江河流胶体中的典型内分泌干扰物[J].中国环境科学,2015,35(2):617-623.GONG J,HUANG W,YANG J,et al.Occurrence of colloid-bound endocrine-disrupting chemicals in the Pearl River,China[J].China environmental science,2015,35(2):617-623 (in Chinese with English abstract). [百度学术]
王凌云,张锡辉,陶益.城市污水处理厂内分泌干扰物浓度分布和去除规律[J].环境科学学报,2012,32(11):2741-2747.WANG L Y,ZHANG X H,TAO Y.Occurrence and removal of typical endocrine disrupting chemicals in sewage treatment plants[J].Acta scientiae circumstantiae,2012,32(11):2741-2747 (in Chinese with English abstract). [百度学术]
PETEFFI G P,FLECK J D,KAEL I M,et al.Ecotoxicological risk assessment due to the presence of bisphenol A and caffeine in surface waters in the Sinos River Basin - Rio Grande do Sul - Brazil[J/OL].Brazilian journal of biology,2019,79(4):712[2023-08-07].https://doi.org/10.1590/1519-6984.189752. [百度学术]
JIN H B,ZHU L Y.Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake,China[J].Water research,2016,103:343-351. [百度学术]
黄文平,鲍轶凡,胡霞林,等.黄浦江上游水源地中31种内分泌干扰物的分布特征以及生态风险评价[J].环境化学,2020,39(6):1488-1495.HUANG W P,BAO Y F,HU X L,et al.Occurrence and ecological risk assessment of 31 endocrine disrupting chemicals in the water source of upstream Huangpu River[J].Environmental chemistry,2020,39(6):1488-1495 (in Chinese with English abstract). [百度学术]
CHAKRABORTY P,SHAPPELL N W,MUKHOPADHYAY M,et al.Surveillance of plasticizers,bisphenol A,steroids and caffeine in surface water of River Ganga and Sundarban wetland along the Bay of Bengal:occurrence,sources,estrogenicity screening and ecotoxicological risk assessment[J/OL].Water research,2021,190:116668[2023-08-07].https://doi.org/10.1016/j.watres.2020.116668. [百度学术]
LIBRA J A,RO K S,KAMMANN C,et al.Hydrothermal carbonization of biomass residuals:a comparative review of the chemistry,processes and applications of wet and dry pyrolysis[J/OL].Biofuels,2011,2(1):71-106[2023-08-07].https://doi.org/10.4155/bfs.10.81. [百度学术]
ZUO W G,WANG S J,ZHOU Y X,et al.Conditional remediation performance of wheat straw biochar on three typical Cd-contaminated soils[J/OL].Science of the total environment,2023,863:160998[2023-08-07].https://doi.org/10.1016/J.scitotenv.2022.160998. [百度学术]
LIANG C,SUN H W,LING C C,et al.Pyrolysis temperature-switchable Fe-N sites in pharmaceutical sludge biochar toward peroxymonosulfate activation for efficient pollutants degradation[J/OL].Water research,2023,228:119328[2023-08-07].https://doi.org/10.1016/J.watres.2022.119328. [百度学术]
ALHELAL A,JEELANI S,RANGARI V.Elemental analysis of spent coffee ground derived biochar using SEM/EDS[J].Microscopy and microanalysis,2022,28(S1):648-649. [百度学术]
ALI A H A,NI L X,SHAGHALEH H,et al.Effect of carbon content in wheat straw biochar on N2O and CO2 emissions and pakchoi productivity under different soil moisture conditions[J/OL].Sustainability,2023,15(6):5100[2023-08-07].https://doi.org/10.3390/SU15065100. [百度学术]
KIM H B,KIM J G,KIM T,et al.Interaction of biochar stability and abiotic aging:influences of pyrolysis reaction medium and temperature[J/OL].Chemical engineering journal,2021,411:128441[2023-08-07].https://doi.org/10.1016/j.cej.2021.128441. [百度学术]
YANG X C,LIU D P,FU Q,et al.Characteristics of greenhouse gas emissions from farmland soils based on a structural equation model:regulation mechanism of biochar[J/OL].Environmental research,2022,206:112303[2023-08-07].https://doi.org/10.1016/J.envres.2021.112303. [百度学术]
WANG J Y,ZHANG M,XIONG Z Q,et al.Effects of biochar addition on N2O and CO2 emissions from two paddy soils[J].Biology and fertility of soils,2011,47(8):887-896. [百度学术]
杜勇.生物炭固定化微生物去除水中苯酚的研究[D].重庆:重庆大学,2012.DU Y.Study of biochar immobilized bacteria and its phenol removal[D].Chongqing: Chongqing University, 2012(in Chinese with English abstract). [百度学术]
ZHAO L,XIAO D L,LIU Y,et al.Biochar as simultaneous shelter,adsorbent,pH buffer,and substrate of Pseudomonas citronellolis to promote biodegradation of high concentrations of phenol in wastewater[J/OL].Water research,2020,172:115494[2023-08-07].https://doi.org/10.1016/j.watres.2020.115494. [百度学术]
WU J W,WANG T,WANG J W,et al.A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar:enhanced the ion exchange and precipitation capacity[J/OL].Science of the total environment,2021,754:142150[2023-08-07].https://doi.org/10.1016/j.scitotenv.2020.142150. [百度学术]
TAN X F,LIU Y G,ZENG G M,et al.Application of biochar for the removal of pollutants from aqueous solutions[J].Chemosphere,2015,125:70-85. [百度学术]
FANG G D,GAO J,LIU C,et al.Key role of persistent free radicals in hydrogen peroxide activation by biochar:implications to organic contaminant degradation[J].Environmental science & technology,2014,48(3):1902-1910. [百度学术]
SENTHIL C,LEE C W.Biomass-derived biochar materials as sustainable energy sources for electrochemical energy storage devices[J/OL].Renewable and sustainable energy reviews,2021,137:110464[2023-08-07].https://doi.org/10.1016/j.rser.2020.110464. [百度学术]
BRAGA O,SMYTHE G A,SCHAFER A I,et al.Steroid estrogens in primary and tertiary wastewater treatment plants[J].Water science and technology,2005,52(8):273-278. [百度学术]
REN Y X,NAKANO K,NOMURA M,et al.A thermodynamic analysis on adsorption of estrogens in activated sludge process[J].Water research,2007,41(11):2341-2348. [百度学术]
杨鹤云,郑兴.高级氧化法降解有机污染物的应用及研究进展[J].水处理技术,2021,47(12):13-18.YANG H Y,ZHENG X.Application and research progress of advanced oxidation process for degradation of organic pollutants[J].Technology of water treatment,2021,47(12):13-18 (in Chinese with English abstract). [百度学术]
CAI Y F,ZHU M M,MENG X Y,et al.The role of biochar on alleviating ammonia toxicity in anaerobic digestion of nitrogen-rich wastes:a review[J/OL].Bioresource technology,2022,351:126924[2023-08-07].https://doi.org/10.1016/J.biortech.2022.126924. [百度学术]
WANG W B,GONG T T,LI H,et al.The multi-process reaction model and underlying mechanisms of 2,4,6-trichlorophenol removal in lab-scale biochar-microorganism augmented ZVI PRBs and field-scale PRBs performance[J/OL].Water research,2022,217:118422[2023-08-07].https://doi.org/10.1016/J.watres.2022.118422. [百度学术]
LI R,WANG B,NIU A P,et al.Application of biochar immobilized microorganisms for pollutants removal from wastewater:a review[J/OL].Science of the total environment,2022,837:155563[2023-08-07].https://doi.org/10.1016/j.scitotenv.2022.155563. [百度学术]
DA S V D A A,DE F T,DA S M G C,et al.Synthesis of a novel magnetic composite based on graphene oxide,chitosan and organoclay and its application in the removal of bisphenol A,17α-ethinylestradiol and triclosan[J/OL].Journal of environmental chemical engineering,2022,10(1):107071[2023-08-07].https://doi.org/10.1016/j.jece.2021.10707. [百度学术]
SHIMABUKU K K,KEARNS J P,MARTINEZ J E,et al.Biochar sorbents for sulfamethoxazole removal from surface water,stormwater,and wastewater effluent[J].Water research,2016,96:236-245. [百度学术]
CHOUDHARY V,PHILIP L.Sustainability assessment of acid-modified biochar as adsorbent for the removal of pharmaceuticals and personal care products from secondary treated wastewater[J/OL].Journal of environmental chemical engineering,2022,10(3):107592[2023-08-07].https://doi.org/10.1016/J.JECE.2022.107592. [百度学术]
LUO Z R,YAO B,YANG X,et al.Novel insights into the adsorption of organic contaminants by biochar:a review[J/OL].Chemosphere,2022,287:132113[2023-08-07].https://doi.org/10.1016/J.chemosphere.2021.132113. [百度学术]
ZHOU L,RICHARD C,FERRONATO C,et al.Investigating the performance of biomass-derived biochars for the removal of gaseous ozone,adsorbed nitrate and aqueous bisphenol A[J/OL].Chemical engineering journal,2018,334:2098-2104[2023-08-07].https://doi.org/10.1016/j.cej.2017.11.145. [百度学术]
张恒峰,MAWULI D,王晓昌,等.竹基生物炭湿地基质对双酚A和磺胺甲恶唑的吸附特性研究[J].水处理技术,2023,49(4):67-72.ZHANG H F, MAWULI D,WANG X C,et al.The adsorption characteristics of bisphenol A and aulfamethoxazole onto bamboo-based biochar wetland substrates[J].Technology of water treatment,2023,49(4): 67-72(in Chinese with English abstract). [百度学术]
WANG Y,WANG L,FANG G D,et al.Enhanced PCBs sorption on biochars as affected by environmental factors:humic acid and metal cations[J/OL].Environmental pollution,2013,172:86-93[2023-08-07].https://doi.org/10.1016/j.envpol.2012.08.007. [百度学术]
AI T,JIANG X J,LIU Q Y,et al.Daptomycin adsorption on magnetic ultra-fine wood-based biochars from water:kinetics,isotherms,and mechanism studies[J].Bioresource technology,2019,273:8-15. [百度学术]
SUN Z Q,ZHAO L,LIU C H,et al.Fast adsorption of BPA with high capacity based on π-π electron donor-acceptor and hydrophobicity mechanism using an in-situ sp2 C dominant N-doped carbon[J/OL].Chemical engineering journal,2020,381:122510[2023-08-07].https://doi.org/10.1016/j.cej.2019.122510. [百度学术]
宋泽峰,石晓倩,刘卓,等.芦苇生物炭的制备、表征及其吸附铜离子与双酚A的性能[J].环境化学,2020,39(8):2196-2205.SONG Z F,SHI X Q,LIU Z,et al.Synthesis and characterization of reed-based biochar and its adsorption properties for C
SHIN J,KWAK J,LEE Y G,et al.Competitive adsorption of pharmaceuticals in lake water and wastewater effluent by pristine and NaOH-activated biochars from spent coffee wastes:contribution of hydrophobic and π-π interactions[J/OL].Environmental pollution,2021,270:116244[2023-08-07].https://doi.org/10.1016/J.envpol.2020.116244. [百度学术]
SHI W,WANG H,YAN J L,et al.Wheat straw derived biochar with hierarchically porous structure for bisphenol A removal:preparation,characterization,and adsorption properties[J/OL].Separation and purification technology,2022,289:120796[2023-08-07].https://doi.org/10.1016/J.SEPPUR.2022.120796. [百度学术]
杨墨.改性生物炭的制备及其对水中双酚A吸附研究[D].沈阳:沈阳师范大学,2022.YANG M.Preparation of modified biochar and its adsorption of BPA in aqueous solution[D].Shenyang:Shenyang Normal University,2022(in Chinese with English abstract). [百度学术]
VEKSHA A,PANDYA P,HILL J M.The removal of methyl orange from aqueous solution by biochar and activated carbon under microwave irradiation and in the presence of hydrogen peroxide[J].Journal of environmental chemical engineering,2015,3(3):1452-1458. [百度学术]
徐祥健.基于羟基和硫酸根自由基的高级氧化技术降解有机污染物的研究[D].武汉:武汉大学,2019.XU X J.Hydroxyl radical-and sulfate radical-based advanced oxidation processes for the removal of organic pollutants[D].Wuhan:Wuhan University,2019 (in Chinese with English abstract). [百度学术]
SONG T H,LI G Q,HU R H,et al.Degradation of antibiotics via UV-activated peroxodisulfate or peroxymonosulfate:a review[J/OL].Catalysts,2022,12(9):1025[2023-08-07].https://doi.org/10.3390/catal12091025. [百度学术]
GAO F,LI Y J,XIANG B.Degradation of bisphenol A through transition metals activating persulfate process[J].Ecotoxicology and environmental safety,2018,158:239-247. [百度学术]
PHAM V L,KIM D G,KO S O.Advanced oxidative degradation of acetaminophen by carbon catalysts:radical vs non-radical pathways[J/OL].Environmental research,2020,188:109767[2023-08-07].https://doi.org/10.1016/j.envres.2020.109767. [百度学术]
吴飞,任伟,程成,等.基于生物炭的高级氧化技术降解水中有机污染物[J].化学进展,2022,34(4):992-1010.WU F,REN W,CHENG C,et al.Biochar-based advanced oxidation processes for the degradation of organic contaminants in water[J].Progress in chemistry,2022,34(4):992-1010 (in Chinese with English abstract). [百度学术]
LI R,LU X K,YAN B B,et al.Sludge-derived biochar toward sustainable peroxymonosulfate activation:regulation of active sites and synergistic production of reaction oxygen species[J/OL].Chemical engineering journal,2022,440:135897[2023-08-07].https://doi.org/10.1016/J.cej.2022.135897. [百度学术]
LIU J G,JIANG S J,CHEN D D,et al.Activation of persulfate with biochar for degradation of bisphenol A in soil[J/OL].Chemical engineering journal,2020,381:122637[2023-08-07].https://doi.org/ 10.1016/j.cej.2019.122637. [百度学术]
DIAO Z H,DONG F X,YAN L,et al.Synergistic oxidation of bisphenol A in a heterogeneous ultrasound-enhanced sludge biochar catalyst/persulfate process:reactivity and mechanism[J/OL].Journal of hazardous materials,2020,384:121385[2023-08-07].https://doi.org/10.1016/j.jhazmat.2019.121385. [百度学术]
ANNAMALAI S,SHIN W S.Efficient degradation of trimethoprim with ball-milled nitrogen-doped biochar catalyst via persulfate activation[J/OL].Chemical engineering journal,2022,440:135815[2023-08-07].https://doi.org/10.1016/j.cej.2022.135815. [百度学术]
WANG S Z,WANG J L.Bimetallic and nitrogen Co-doped biochar for peroxymonosulfate (PMS) activation to degrade emerging contaminants[J/OL].Separation and purification technology,2023,307:122807[2023-08-07].https://doi.org/10.1016/j.seppur.2022.122807. [百度学术]
XU L,WU C X,LIU P H,et al.Peroxymonosulfate activation by nitrogen-doped biochar from sawdust for the efficient degradation of organic pollutants[J/OL].Chemical engineering journal,2020,387:124065[2023-08-07].https://doi.org/10.1016/j.cej.2020.124065. [百度学术]
JIANG S F,LING L L,CHEN W J,et al.High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system:mechanistic elucidation and quantification of the contributors[J].Chemical engineering journal,2019,359:572-583. [百度学术]
RONG X,XIE M,KONG L S,et al.The magnetic biochar derived from banana peels as a persulfate activator for organic contaminants degradation[J].Chemical engineering journal,2019,372:294-300. [百度学术]
SATHISHKUMAR K,LI Y,SANGANYADO E.Electrochemical behavior of biochar and its effects on microbial nitrate reduction:role of extracellular polymeric substances in extracellular electron transfer[J/OL].Chemical engineering journal,2020,395:125077[2023-08-07].https://doi.org/10.1016/j.cej.2020.124065. [百度学术]
XIONG Y,ZHANG Q,WANDELL R,et al.Synergistic 1,4-dioxane removal by non-thermal plasma followed by biodegradation[J].Chemical engineering journal,2019,361:519-527. [百度学术]
MARSOLEK M D,TORRES C I,HAUSNER M,et al.Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating-bed biofilm reactor[J].Biotechnology and bioengineering,2008,101(1):83-92. [百度学术]
于博洋,崔晓春,曹野,等.高级氧化-生物降解近场耦合技术研究现状与展望[J].土木与环境工程学报(中英文),2021,43(4):108-117.YU B Y,CUI X C,CAO Y,et al.Research status and prospects of intimately coupled advanced oxidization and biodegradation[J].Journal of civil and environmental engineering,2021,43(4):108-117 (in Chinese with English abstract). [百度学术]
郭楚玲,郑天凌,洪华生.多环芳烃的微生物降解与生物修复[J].海洋环境科学,2000,19(3):24-29.GUO C L,ZHENG T L,HONG H S.Biodegradattion and bioremediation of polycyclic aromatic hydrocarbons[J].Marine environmental science,2000,19(3):24-29 (in Chinese with English abstract). [百度学术]
HOU S Y,YANG P.BPA biodegradation driven by isolated strain SQ-2 and its metabolism mechanism elucidation[J/OL].Biochemical engineering journal,2022,185:108540[2023-08-07].https://doi.org/10.1016/j.bej.2022.108540. [百度学术]
LEADBETTER E R,FOSTER J W.Oxidation products formed from gaseous alkanes by the bacterium Pseudomonas methanica[J].Archives of biochemistry and biophysics,1959,82(2):491-492. [百度学术]
DELGADILLO-MIRQUEZ L,LARDON L,STEYER J P,et al.A new dynamic model for bioavailability and cometabolism of micropollutants during anaerobic digestion[J].Water research,2011,45(15):4511-4521. [百度学术]
郑小会.硝化污泥共代谢内分泌干扰物试验研究[D].西安:西安建筑科技大学,2011.ZHENG X H.A study on cometabolism of selected endocrine disrupting compounds in nitrifying activated sludge[D].Xi’an:Xi’an University of Architecture and Technology,2011 (in Chinese with English abstract). [百度学术]
PARKHURST J D,DRYDEN F D,MCDERMOTT G N,et al.Pomona activated carbon pilot plant[J].Journal - water pollution control federation,1967,39(10):70-81. [百度学术]
LI M,YIN H,ZHU M H,et al.Co-metabolic and biochar-promoted biodegradation of mixed PAHs by highly efficient microbial consortium QY1[J].Journal of environmental sciences,2021,107:65-76. [百度学术]
ZHANG W,SHEN J N,ZHANG H F,et al.Efficient nitrate removal by Pseudomonas mendocina GL6 immobilized on biochar[J/OL].Bioresource technology,2021,320:124324[2023-08-07].https://doi.org/10.1016/j.biortech.2020.124324. [百度学术]
LIANG J D,WU Z J,TENG T T.Biochar prepared from Fe-rich sludge as suitable microbial carriers for facilitating biodegradation of phenanthrene in soil[J].Journal of chemical technology & biotechnology,2021,96(7):2014-2021. [百度学术]
SAIDULU D,GUPTA B,GUPTA A K,et al.A review on occurrences,eco-toxic effects,and remediation of emerging contaminants from wastewater:special emphasis on biological treatment based hybrid systems[J/OL].Journal of environmental chemical engineering,2021,9(4):105282[2023-08-07].https://doi.org/10.1016/j.jece.2021.105282. [百度学术]
LIU Y,CHEN H,ZHAO L,et al.Enhanced trichloroethylene biodegradation:roles of biochar-microbial collaboration beyond adsorption[J/OL].Science of the total environment,2021,792:148451[2023-08-07].https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.148451. [百度学术]
ROSSI M M,MATTURRO B,AMANAT N,et al.Coupled adsorption and biodegradation of trichloroethylene on biochar from pine wood wastes:a combined approach for a sustainable bioremediation strategy[J/OL].Microorganisms,2022,10(1):101[2023-08-07].https://doi.org/10.3390/microorganisms10010101. [百度学术]
ROSSI M M,ALFANO S,AMANAT N,et al.A polyhydroxybutyrate (PHB)-biochar reactor for the adsorption and biodegradation of trichloroethylene:design and startup phase[J/OL].Bioengineering,2022,9(5):192[2023-08-07].https://doi.org/10.3390/bioengineering9050192. [百度学术]
QIN L B,HUANG X M,XUE Q,et al.In-situ biodegradation of harmful pollutants in landfill by sludge modified biochar used as biocover[J/OL].Environmental pollution,2020,258:113710[2023-08-07].https://doi.org/10.1016/j.envpol.2019.113710. [百度学术]
LIU X H,WEI J,WU Y D,et al.Performances and mechanisms of microbial nitrate removal coupling sediment-based biochar and nanoscale zero-valent iron[J/OL].Bioresource technology,2022,345:126523[2023-08-07].https://doi.org/10.1016/j.biortech.2021.126523. [百度学术]