摘要
为构建可溶性表达弓形虫MIC1蛋白质的重组杆状病毒株并分析重组蛋白质的活性,通过PCR扩增弓形虫mic1基因的编码序列并连接到pFastBac 1质粒中,将重组的转移质粒转化DH10Bac感受态细胞,通过蓝白斑筛选获得重组杆粒,转染Sf9细胞后连续培养3代获得重组杆状病毒株。结果显示,Sf9细胞在感染后的第3天出现典型的细胞病变;间接免疫荧光和Western blot试验结果表明MIC1重组蛋白质在感染的Sf9细胞中成功可溶性表达;纯化的MIC1重组蛋白质不仅具有结合唾液酸乳糖的能力,同时能够刺激Balb/c小鼠产生较高水平的特异性抗体(>1∶25 600)。以上结果表明,通过杆状病毒表达系统可获得具有生物学活性的弓形虫MIC1重组蛋白质。
弓形虫(Toxoplasma gondii)是重要的人兽共患寄生原虫,其中间宿主范围广,猫科动物作为其终末宿
弓形虫速殖子入侵宿主细胞的过程需多种虫体蛋白质的参与,其中微线体(microneme,MIC)、棒状体(rhoptry,ROP)和致密颗粒(dense granule,GRA)家族蛋白质发挥重要作用。研究表明,MIC1蛋白质N末端具有2个微线体黏合重复域(microneme adhesive repeat,MAR),能够结合宿主细胞表面唾液酸受体,介导虫体入侵宿主细
与原核表达系统相比,昆虫杆状病毒表达系统对外源蛋白的表达效率高,能对目的蛋白进行翻译后修饰,有助于目的蛋白质的正确折叠而保持良好的生物学活性。有研究者将弓形虫膜表面抗原SAG1的编码序列(coding sequence,CDS)整合到杆状病毒载体,转染Sf9细胞,获得能够表达SAG1蛋白质的重组杆状病毒
pFastBac 1质粒、pET22b质粒、DH10Bac感受态细胞和草地贪夜蛾(Spodoptera frugiperda )细胞Sf9均由沈阳农业大学动物科学与医学学院预防兽医学教研室保存;E. coli DH5α感受态细胞购自北京全式金生物技术有限公司;Balb/c小鼠购自辽宁长生生物技术有限公司,小鼠的饲养以及试验的开展均通过沈阳农业大学实验动物福利伦理审查委员会的审查和批准。
PrimerSTAR Max DNA Polymerase、限制性内切酶、T4 DNA连接酶均购自宝生物工程(大连)有限公司;DNA琼脂糖凝胶回收试剂盒、小型质粒提取试剂盒和血液/细胞/组织基因组DNA提取试剂盒均购自天根生化科技(北京)有限公司;SIM SF Expression Medium 购自北京义翘神州科技股份有限公司;胎牛血清、青霉素和链霉素购自以色列BI公司;LipoInsect™转染试剂、杆状病毒穿梭载体Bacmid小量抽提试剂盒、5×SDS上样缓冲液、辣根过氧化物酶(HRP)标记山羊抗小鼠IgG(H+L)、TMB显色液、卡那霉素、庆大霉素和四环素购自上海碧云天生物技术有限公司;甘氨酸购自北京酷来搏科技有限公司;牛血清白蛋白Ⅴ(BSA)购自北京索莱宝科技有限公司;Alexa Flour@488 goat anti-mouse IgG(H+L)购自上海Invitrogen公司;ProLongTm Gold Antifade Mountant with DAPI和PageRMLer™ Prestained Protein Ladde购自美国Thermo Fisher公司;DNA标准Marker购自北京全式金生物技术有限公司;唾液酸乳糖-聚丙烯酰胺-生物素偶联物(3’ sialyllactose polyacrylamide biotin conjugate,3’SL和6’ sialyllactose polyacrylamide biotin conjugate, 6’SL)购自美国GlycoNZ公司;链霉亲和素传感器(Streptavidin,SA)购自德国赛多利斯公司。
收集细胞培养的弓形虫RH虫株速殖子,提取虫体总RNA后反转录为cDNA。以cDNA为模板,根据mic1基因的CDS序列,设计带酶切位点的引物MIC1-NdeⅠ-5与MIC1-XhoⅠ-3(
引物名称 Primers | 引物序列 Primer sequence |
---|---|
MIC1-Nde I-5 | 5'‑CCTTCATATGGCGTCGCATTCTCAT‑3' |
MIC1-Xho I-3 | 5'‑TAACCTCGAGAGCAGAGACGGCCG‑3' |
MIC1-Xba I-5 | 5'‑TTAATCTAGAATGGCGTCGCATTCTC‑3' |
MIC1-Hind Ⅲ-3 | 5'‑TTGCAAGCTTTCAGTGGTGGTGG‑3' |
pUC/M13-F | 5'‑CCCAGTCACGACGTTGTAAAACG‑3' |
pUC/M13-R | 5'‑AGCGGATAACAATTTCACACAGG‑3' |
注: 引物序列中下划线为酶切位点。Note: The underline in the primer sequence represents the cleavage site.
设计带酶切位点的引物MIC1-XbaⅠ-5与MIC1-Hind Ⅲ-3(
将转移质粒pFastBac 1-MIC1转化至DH10Bac感受态细胞中,涂于含X-gal的三抗(卡那霉素、庆大霉素和四环素)固体平板上,于37 ℃ 培养箱中培养72 h,通过蓝白斑筛选,挑取含重组杆粒的白色单菌落到三抗LB液体培养基中培养,并用杆状病毒穿梭载体Bacmid小量抽提试剂盒提取重组杆状病毒穿梭载体reBacmid-MIC1。通过特异性通用引物pUC/M13-F/R(
根据LipoInsect™转染试剂说明书,将2 μL重组杆粒reBacmid-MIC1和5 μL脂质体加到100 μL 无血清SIM SF Expression Medium培养基中,轻轻混匀,室温静置5 min。将混合液转染处于对数生长期的Sf9细胞,并设置未转染空白对照组。27 ℃培养箱培养72 h后,收集上清培养液,此为第1代重组杆状病毒株。进一步,经3次细胞传代获得高滴度重组杆状病毒株。通过基因组DNA提取试剂盒提取第3次接毒细胞的培养液中杆状病毒基因组DNA,并用pUC/M13-F/R特异性引物进行PCR验证,扩增产物约为3 700 bp。
1)Western blot验证。在12孔细胞培养板中每孔接种1×1
2)间接免疫荧光(indirect immunoinfluscent assay,IFA)验证。在12孔细胞培养板中铺入细胞爬片,每孔接种1×1
吸取500 μL第3代重组杆状病毒以1 MOI接种到Sf9细胞,在27 ℃培养72 h,观察到明显病变后,将细胞用预冷的PBS缓冲液重悬,在4 ℃条件下1 500 r/min离心后,用Binding buffer重悬细胞,超声破碎后,通过亲和层析法纯化重组蛋白质。使用BCA试剂盒测定重组蛋白质浓度。
本研究使用生物膜干涉技术(biolayer interferometry,BIL)检测MIC1重组蛋白质与唾液酸乳糖(3’SL和6’SL)的亲和力。打开Octe

图1 试验样品布局
Fig.1 Layout of test samples
将6只Balb/c小鼠随机平均分成2组,分别为免疫组(MIC1重组蛋白质)和阴性对照组(PBS组)。每组小鼠共免疫4次,每次间隔14 d,每只小鼠皮下注射100 μg重组蛋白质或100 μL PBS缓冲液。免疫组小鼠首次免疫使用弗式完全佐剂与蛋白质1∶1混合注射,余下3次免疫使用弗式不完全佐剂与蛋白质1∶1混合注射。2组小鼠在第4次免疫后10 d,摘眼球采血,离心分离得到血清;56 ℃灭活血清30 min,分装后保存于-20 ℃冰箱。
将MIC1重组蛋白质稀释至1 μg/mL,每孔加入100 μL,于4 ℃包被抗原18 h;向每孔内加入150 μL PBST缓冲液以洗涤酶标板,洗3次,每次3 min;配制1% BSA溶液,加至酶标板内,每孔100 μL,37 ℃封闭1.5 h;向每孔内加入150 μL PBST缓冲液以洗涤酶标板,洗3次,每次3 min;稀释灭活的血清加至酶标板中,每孔100 μL,于37 ℃孵育1 h,使用PBST洗涤酶标板3次;加入稀释的HRP标记的山羊抗小鼠二抗,每孔100 μL,于37 ℃中孵育1 h;二抗孵育结束后,用PBST洗涤酶标板3次后加入100 μL TMB显色液,避光条件下显色20 min;向每孔内加入50 μL显色终止液,立即用酶标仪进行OD450 nm测定。
由于pFastBac 1质粒无标签,为了使MIC1重组蛋白质获得His标签,首先通过PCR扩增出弓形虫RH虫株mic1基因的CDS序列,并通过酶切、连接,将MIC1目的基因连接到pET22b质粒中,通过此方法在MIC1蛋白质C末端添加His 标签(

图2 重组转移质粒的构建
Fig.2 Construction of recombinant transfer plasmid
A:pET22b-MIC1重组质粒的双酶切鉴定结果。M:DL5000 DNA marker;1:pET22b-MIC1质粒NdeⅠ与XhoⅠ双酶切产物;B:pFastBac 1-MIC1重组质粒的双酶切鉴定结果。M:DL5000 DNA marker;1:pFastBac 1-MIC1质粒Hind Ⅲ和XbaⅠ双酶切产物。A:The result of pET22b-MIC1 recombinant plasmid by double enzyme digestion. M:DL5000 DNA marker; 1:The pET22b-MIC1 plasmid digested with NdeⅠ and XhoⅠ; B: The result of pFastBac 1-MIC1 recombinant plasmid by double enzyme digestion.M:DL5000 DNA marker; 1:The pFastBac 1-MIC1 plasmid digested with Hind Ⅲ and XbaⅠ.
将鉴定正确的pFastBac 1-MIC1质粒转入DH10Bac感受态中,涂于含X-Gal的三抗(卡那霉素、庆大霉素和四环素)固体平板上,培养72 h后,三抗培养皿上出现白色的阳性菌落和蓝色的阴性菌落,挑取2个白色菌落和1个蓝色菌落,分别置于含有10 μL去离子水的PCR管里混匀,使用 PUC/M13 通用引物鉴定MIC1重组杆粒。如

图3 重组杆粒的选择与鉴定
Fig.3 Selection and identification of recombinant Bacmid
A:转移质粒的mini-Tn7转座子插入到Bacmid示意图;Transposed pFastBac sequence:pFastBac载体中转座子序列;B:重组杆粒的蓝白斑筛选。 “→”所指为白色菌落;C:重组杆粒的PCR鉴定。 M: DL5000 DNA marker;1-2: 白色菌落(阳性)的PCR产物;3: 蓝色菌落(阴性)的PCR产物。A: Schematic diagram of the insertion of the mini-Tn7 transposon of the transfer plasmid into Bacmid. B: Blue-white spot screening of recombinant Bacmid."→" refers to white colonies; C: PCR identification of recombinant Bacmid. M: DL5000 DNA marker; 1-2: PCR products of white colonies (positive); 3: PCR products of blue colonies (negative).
将reBacmid-MIC1转染至Sf9昆虫细胞中,72 h后细胞出现明显病变(如图

图4 重组杆状病毒rBV-MIC1的鉴定
Fig.4 Identification of recombinant baculovirus rBV-MIC1
A:正常Sf9细胞的形态(400 ×);B:重组杆粒转染Sf9细胞的形态(400 ×);C:Sf9细胞培养液中重组杆状病毒的PCR鉴定结果。 M: DL5000 DNA marker;1: 重组杆粒转染Sf9细胞培养液的PCR产物;2:正常Sf9细胞培养液的PCR产物。 A: Morphology of normal Sf9 cells (400×); B: Morphology of Sf9 cells transfected with recombinant Bacmid (400×); C: The identification of recombinant baculovirus in Sf9 cells culture medium by PCR M. DL5000 DNA marker; 1: The PCR products of culture medium of Sf9 cells transfected with recombinant Bacmid; 2: The PCR products of culture medium of normal Sf9 cells.
将rBV-MIC1按 1 MOI 病毒量接种Sf9昆虫细胞,72 h后对接毒细胞进行IFA试验检测。在激光共聚焦显微镜下可观察到,感染rBV-MIC1的 Sf9 细胞出现绿色荧光,阴性未转染组无荧光 (

图5 IFA检测MIC1重组蛋白质在感染的Sf9细胞中的表达(200×)
Fig.5 Expression of MIC1 recombinant protein in infected Sf9 cells identified by IFA (200×)
收集感染rBV-MIC1的Sf9细胞进行Western blot检测。结果显示,MIC1重组蛋白质在细胞裂解液上清和沉淀中都出现目的条带(约65 ku)。表明 MIC1重组蛋白质在感染的Sf9细胞中能够可溶性表达(

图6 MIC1重组蛋白质的表达与纯化
Fig.6 Expression and purification of MIC1 recombinant protein
A:Western blot检测MIC1重组蛋白质的表达。M:蛋白质标准marker;1:接毒Sf9细胞裂解液上清;2:接毒Sf9细胞裂解液沉淀;3:正常Sf9细胞裂解液;B:纯化的MIC1重组蛋白质SDS-PAGE结果。M:蛋白质标准marker;1:纯化的MIC1重组蛋白质;C:纯化的MIC1重组蛋白质Western blot验证。M:蛋白质标准marker;1:纯化的MIC1重组蛋白质。A:The identification of MIC1 recombinant protein by Western blot. M:Protein marker; 1:Lysate supernatant of infected Sf9 cells; 2:Lysate precipitate of infected Sf9 cells; 3:Normal Sf9 cells lysate; B:Purified MIC1 recombinant protein identified by SDS-PAGE. M: Protein marker; 1:Purified MIC1 recombinant protein; C: Purified MIC1 recombinant protein identified by Western blot. M: Protein marker; 1: Purified MIC1 recombinant protein.
使用镍柱纯化MIC1重组蛋白质,通过SDS-PAGE和Western blot检测纯化后的重组蛋白质,结果如图
为了检测纯化的MIC1重组蛋白质的生物活性,我们用生物膜干涉技术(biolayer interferometry,BLI)检测重组蛋白质与3’SL和6’SL的亲和力(KD)。如

图7 BLI检测MIC1重组蛋白质与唾液酸乳糖亲和力
Fig.7 The affinity between MIC1 recombinant protein and sialyllactose detected by BLI
A.3’SL; B.6’SL.
ELISA检测血清抗体效价时,通常计算阳性血清与阴性血清的吸光度之比(DP/DN),将DP/DN≥2.1时所对应的抗体最高稀释倍数作为抗体的效价。如

图8 MIC1重组蛋白质多克隆抗体的制备及特异性分析
Fig. 8 Preparation and specificity analysis of polyclonal antibody for MIC1 recombinant protein
A:ELISA方法检测免疫组和阴性组小鼠血清中抗体效价;B:Western blot检测免疫组小鼠血清与弓形虫RH株TLA的反应。M:蛋白质标准marker;1:弓形虫RH株TLA的免疫印迹;C:Western blot检测阴性组小鼠血清与弓形虫RH株TLA的反应。 M:蛋白质标准marker;1:弓形虫RH株TLA的免疫印迹。A: The antibody titer in serum of mice in immunized and negative group detected by ELISA; B: The reaction between T. gondii RH strain TLA and serum isolated from immunized mice by Western blot. M: Protein marker; 1: Immunoblotting of T. gondii RH strain TLA; C: The reaction between T. gondii RH strain TLA and serum isolated from negative mice by Western blot. M: Protein marker; 1: Immunoblotting of T. gondii RH strain TLA.
弓形虫速殖子主动入侵宿主细胞,此过程中需要分泌多种微线体蛋白,其中MIC1、MIC4和MIC6形成复合物定位于虫体表面,并通过MIC1的MAR结构域识别宿主细胞表面唾液酸受
为了鉴定MCI1重组蛋白质是否具有唾液酸受体结合,本研究采用生物膜干涉(BLI)技术检测重组蛋白质与唾液酸乳糖的结合能力。BLI技术可以实现生物分子之间相互作用的实时分析检测,对生物分子亲和力进行实时、无标记的分
获得大量的高活性的重组蛋白质对于寄生虫学的研究是至关重要
参考文献References
DUBEY J P,JONES J L.Toxoplasma gondii infection in humans and animals in the United States[J].International journal for parasitology,2008,38(11):1257-1278. [百度学术]
刘荣荣,张晓磊,张进顺,等.刚地弓形虫ROP10-ROP18真核表达载体的构建与鉴定[J].中国病原生物学杂志,2018,13(6):612-616.LIU R R,ZHANG X L,ZHANG J S,et al. Construction and identification of eukaryotic expression vector of Toxoplasma gondii ROP10-ROP18[J].Journal of pathogen biology,2018,13(6):612-616 (in Chinese with English abstract). [百度学术]
苏朝康,邬质彬,郭湘碧,等.弓形虫感染对孕妇妊娠结局的影响[J].中国优生与遗传杂志,2002,10(1):78-79.SU C K,WU Z B,GUO X B,et al.The effects of Toxoplasma infection on pregnancy in woman[J].Chinese journal of birth health & heredity,2002,10(1):78-79 (in Chinese with English abstract). [百度学术]
闫鑫磊,韩汶荧,韩笑,等.内蒙古中西部绵羊弓形虫病血清学调查[J].中国兽医杂志,2021,57(1):44-46.YAN X L,HAN W Y,HAN X,et al.Serological investigation of Toxoplasmosis in sheep in central and western Inner Mongolia[J].Chinese journal of veterinary medicine,2021,57(1):44-46 (in Chinese). [百度学术]
杨娜,邢蒙恩,王大为,等.辽宁省猪源弓形虫虫株分离与鉴定[J].华中农业大学学报,2017,36(2):84-88.YANG N,XING M E,WANG D W,et al.Isolation and identification of Toxoplasma gondii strains from pigs in Liaoning Province[J].Journal of Huazhong Agricultural University,2017,36(2):84-88 (in Chinese with English abstract). [百度学术]
HAGER K M,CARRUTHERS V B.MARveling at parasite invasion[J].Trends in parasitology,2008,24(2):51-54. [百度学术]
LOURENÇO E V,PEREIRA S R,FAÇA V M,et al.Toxoplasma gondii micronemal protein MIC1 is a lactose-binding lectin[J].Glycobiology,2001,11(7):541-547. [百度学术]
庄浩瀚,潘灵韬,姚晨倩,等.弓形虫SAG1重组抗体制备及抗原表位鉴定[J].中国兽医学报,2021,41(6):1080-1085.ZHUANG H H,PAN L T,YAO C Q,et al.Preparation of Toxoplasma gondii SAG1 recombinant antibody and identification of its epitope[J].Chinese journal of veterinary science,2021,41(6):1080-1085 (in Chinese with English abstract). [百度学术]
CHOI W H,PARK J S.Immunogenicity and protective effect of a virus-like particle containing the SAG1 antigen of Toxoplasma gondii as a potential vaccine candidate for toxoplasmosis[J/OL].Biomedicines,2020,8(4):91[2023-04-18].https://doi.org/10.3390/biomedicines8040091. [百度学术]
陈晓光,刘国章,江静波.含弓形虫P30基因插入昆虫杆状病毒的研究[J].中国寄生虫学与寄生虫病杂志,1996,14(4):270-273.CHEN X G,LIU G Z,JIANG J B.Construction of the recombinant baculovirus including p30 gene of Toxoplasma gondii[J].Chinese journal of parasitology and parasitic diseases,1996,14(4):270-273 (in Chinese with English abstract) . [百度学术]
严延生,翁育伟,杨婷婷,等.弓形虫主要抗原基因(SAG1)在昆虫细胞中表达的研究[J].中国人兽共患病杂志,1997,13(6):16-19.YAN Y S,WENG Y W,YANG T T,et al.Study on the expression of Toxoplasma gondii SAG1 gene in incect cells[J].Chinese journal of zoonoses,1997,13(6):16-19 (in Chinese with English abstract). [百度学术]
GARNETT J A,LIU Y,LEON E,et al.Detailed insights from microarray and crystallographic studies into carbohydrate recognition by microneme protein 1 (MIC1) of Toxoplasma gondii[J].Protein science:a publication of the protein society,2009,18(9):1935-1947. [百度学术]
WANG Y,HAN C J,ZHOU R S,et al.Differential expression of TgMIC1 in isolates of Chinese 1 Toxoplasma with different virulence[J/OL].Parasites & vectors,2021,14(1):253[2023-04-18]. https://doi.org/10.1186/s13071-021-04752-z. [百度学术]
SARDINHA-SILVA A,MENDONÇA-NATIVIDADE F C,PINZAN C F,et al.The lectin-specific activity of Toxoplasma gondii microneme proteins 1 and 4 binds Toll-like receptor 2 and 4 N-glycans to regulate innate immune priming[J/OL].PLoS pathogens,2019,15(6):e1007871[2023-04-18]. https://doi.org/10.1371/journal.ppat.1007871. [百度学术]
LOURENÇO E V,BERNARDES E S,SILVA N M,et al.Immunization with MIC1 and MIC4 induces protective immunity against Toxoplasma gondii[J].Microbes and infection,2006,8(5):1244-1251. [百度学术]
ALLMAN S A,JENSEN H H,VIJAYAKRISHNAN B,et al.Potent fluoro-oligosaccharide probes of adhesion in Toxoplasmosis[J].ChemBioChem,2009,10(15):2522-2529. [百度学术]
FRIEDRICH N,SANTOS J M,LIU Y,et al.Members of a novel protein family containing microneme adhesive repeat domains act as sialic acid-binding lectins during host cell invasion by api complexan parasites[J].Journal of biological chemistry,2010,285(3):2064-2076. [百度学术]
SAOUROS S,SAWMYNADEN K,MARCHANT J,et al.Complete resonance assignment of the galectin-like domain of MIC1 from Toxoplasma gondii in complex with the second EGF domain from MIC6 and the backbone assignment in complex with the third EGF domain[J].Biomolecular NMR assignments,2008,2(2):175-177. [百度学术]
张艳,姜丽艳,张晓光,等.生物膜干涉技术在生物分子间相互作用检测中的应用[J].生命科学仪器,2019,17(2):49-52.ZHANG Y,JIANG L Y,ZHANG X G,et al.Application of biolayer interferometry in detection of biomolecular interaction[J].Life science instruments,2019,17(2):49-52 (in Chinese with English abstract). [百度学术]
CARVALHO S B,MOLEIRINHO M G,WHEATLEY D,et al.Universal label-free in-process quantification of influenza virus-like particles[J/OL].Biotechnology journal,2017,12(8): 28514082[2023-04-18]. https://doi.org/10.1002/biot.201700031. [百度学术]
景志忠,王佩雅,才学鹏.杆状病毒表达系统研究进展及在寄生虫基因工程疫苗中的应用前景[J].中国兽医科技,2001,31(3):43-45.JING Z Z,WANG P Y,CAI X P.Research progress of baculovirus expression system and its application prospect in parasite genetic engineering vaccine[J].Chinese veterinary science,2001,31(3):43-45 (in Chinese) . [百度学术]
孔祥礼,燕贺,涂宏,等.恶性疟原虫pfK13-F446I基因重组杆状病毒质粒的构建及其在昆虫细胞SF9中的表达[J].中国病原生物学杂志,2021,16(4):442-445.KONG X L,YAN H,TU H,et al.Construction and expression of a recombinant baculovirus plasmid with the K13-F446I gene of Plasmodium falciparum in Spodoptera frugiperda 9 cells[J].Journal of pathogen biology,2021,16(4):442-445 (in Chinese with English abstract). [百度学术]
徐瑞敏,李运燕,段明明,等.日本血吸虫热休克蛋白70在昆虫细胞Sf9中的表达鉴定[J].中国动物传染病学报,2013,21(3):45-50.XU R M,LI Y Y,DUAN M M,et al. Expression and identification of heat shock protein 70 of Schistosoma japonicum in insect cell Sf9[J] Chinese journal of animal infectious diseases, 2013,21(3):45-50 (in Chinese with English abstract). [百度学术]
LEE S H,KANG H J,LEE D H,et al.Virus-like particle vaccines expressing Toxoplasma gondii rhoptry protein 18 and microneme protein 8 provide enhanced protection[J].Vaccine,2018,36(38):5692-5700. [百度学术]
张耀.捻转血矛线虫H11糖蛋白疫苗候选分子的筛选及其免疫保护作用研究[D].武汉:华中农业大学,2023.ZHANG Y.Screening of protective antigens of Haemonchus contortus H11 glycoprotein and verification of its immune protection[D].Wuhan:Huazhong Agricultural University,2023 (in Chinese with English abstract). [百度学术]