摘要
为精准探究高温胁迫对百合开花品质的影响,以东方百合‘索邦’为试验材料,研究了不同发育阶段的花苞经过不同温度和不同时间处理后,盛花期花径、花色和矢车菊素含量的变化,以及温度处理过程中矢车菊素合成通路的3个关键基因LhCHS、LhF3H和LhANS的表达量变化。结果显示:S5-S6时期是‘索邦’百合花苞显色的关键时期;花苞在高于30 ℃温度培养4 d后,盛花期花径显著变小,矢车菊含量显著降低,花被片颜色变浅; qRT-PCR结果显示,花苞显色的关键时期,遇到30 ℃以上的高温处理导致LhCHS、LhF3H、LhANS等花青素合成基因表达量显著下调,从而影响盛花期花色的合成。
百合(Lilium spp.)是百合科百合属所有种及品种的总称,种类繁多、花色丰富、姿态优美,是世界五大切花之一。形成百合花色的物质主要有类黄酮和类胡萝卜素,其中粉红色、红色、紫色等花色的主要呈色物质为类黄酮物质中的花青素苷,黄色和橙色等花色的主要呈色物质是类胡萝卜
花青素的生物合成由自身基因决定的同时,还受到光照、温度、激素和营养供给条件等外界环境因素的调
‘索邦’百合(Lilium oriental hybrids ‘Sorbonne’)是东方百合杂种系最重要的一个品种,也是当前最流行的切花品种之
切花百合‘索邦’由南京懋园农业科技有限公司提供。剪取植株生长健壮、无病虫害、具有3个花苞、长度为65 cm的百合花枝,保留花枝上部的8片叶,茎秆底部剪成45°的斜面,置于百合专用保鲜液中培养直至开花,保鲜液配方为:蒸馏水中加入20 g蔗糖(国药集团化学试剂有限公司)、100 mg赤霉素、50 mg二氯异氰尿酸钠(上海麦克林生化科技有限公司),加蒸馏水至1 L。每个花枝从基部起向上的第1个花苞为试验材料。
所有温度处理均在RDN-400C-4人工气候箱(宁波东南仪器有限公司)中进行,16 h光照/8 h黑暗,光照强度为12 000 lx,湿度为70%。
参考刘雅

图1 ‘索邦’百合花苞显色过程和矢车菊素含量变化
Fig.1 The flower bud coloration process and the variation tendency of cyaindin content of Lilium ‘Sorbonne’
A、B: S1-S8时期的花苞形态(A)和外轮花被片内侧(B)的颜色变化;C: SK盛花期花朵的形态;标尺=1 cm。D:S1-SK时期外轮花被片中上部分的矢车菊素含量,图中不同小写字母表示0.05水平的差异显著性,下同。A,B: The development of bud morphology (A) and coloration of outer tepal (B) from S1 to S8; C: The morphology of flower at full blossom SK stage; bar=1 cm;D: The cyanidin content of the outer tepal (upper part) from S1 to SK, and different lowercase letters in the figure represent significant difference at 0.05 level, the following figure is as the same.
2021年12月13日,根据花苞发育和显色的特点,分别选取第1个花苞处于S2、S3、S4、S5、S6 时期的百合花枝,3枝1束,用花枝包装袋包裹花束,瓶插后分别置于25和35 ℃处理2和4 d后,转入到25 ℃条件下继续瓶插培养直至开花。观察百合开放进程并测定盛花期花朵直径,分别采集25 ℃与35 ℃处理2、4 d和盛花期外轮花被片中上部的组织样品,样品用液氮速冻后保存于-80 ℃超低温冰箱,每个处理3次重复。
2022年1月28日,选取第1个花苞处于S3时期的百合花枝,3枝1束,用花枝包装袋包裹花束,瓶插后分别放置于25、28、30、33 ℃条件下处理2、4、6 d后,转入到25 ℃条件下继续瓶插培养直至开花。观察百合开放进程并测定盛花期花朵直径,采集不同温度处理2、4、6 d和盛花期外轮花被片中上部的组织样品,样品用液氮速冻后保存于-80 ℃超低温冰箱,每个处理3次重复。
测量S1-S9时期和温度处理后盛花期样品的矢车菊素含量。将0.2 g样品用液氮研磨至粉末,用2 mL含有2%甲酸的甲醇避光浸提24 h后,4 ℃条件下12 000 r/min离心10 min,取上清液,经0.22 μm滤膜过滤,使用酶标仪(Victor NivoTM, PerkinElmer)在530、657 nm波长测量其光密度D530、D657。以矢车菊-3-O-β-芸香糖苷氯化物为标准品制作标准曲线。矢车菊素含量=465.24×D530-116.31×D657-16.218。
采用RNA提取试剂盒RN33-PLANTpure(Aidlab,北京,中国)提取温度处理2、4和6 d的样品的总RNA。利用 Nanodrop 2000 Spetctrophotometer(Thero Fisher Scientific, 威尔明,美国)检测 RNA 浓度,并利用 1%的琼脂糖凝胶检测 RNA 的完整性。利用反转录试剂盒 TRUEscript RT MasterMix(Aidlab,北京,中国)将总 RNA 反转录成cDNA,反转录产物保存于-20 ℃冰箱中备用。选取‘索邦’百合矢车菊素合成途径的3个重要基因LhCHS、LhF3H、LhANS(GenBank登录号分别为:AB058639、AB201532、AB699166),利用 Primer Premier 5.0 软件在3个基因的非保守区设计定量引物(
基因Gene | 上游引物(5'→3') Upstream primer | 下游引物(5'→3') Downstream primer |
---|---|---|
LhCHS | CTGAAGCTGGCGCTGGACAAAAAG | GGTAGTGATCGGAATGCTGTGAAGA |
LhF3H | GATTGAGGGTGCCTTTGTTG | GCATCCAAAACTGGCTTCTC |
LhANS | CGTTGGAGTTGATAGATAGGGTGA | GCGGACATTTGGGATAGTAGTT |
Lilyactin | TGCTGACCGTATGAGCAAGG | GACGATGGCTGGACCAGATT |
随着‘索邦’百合花苞逐渐膨大,花被片外侧的颜色由绿色(S1-S2)逐渐转变为黄绿色(S3-S5),直至粉红色(S6-S8)(
测定不同发育阶段花苞和盛花期(
由

图2 百合S2-S6时期花苞经过35 ℃处理2、4 d后盛花期的花色
Fig.2 The tepal color of lily at full blossom for the flower bud from S2 to S6 with the treatment of 35 ℃ for 2,4 days
35 ℃ 2 d(4 d)-25 ℃:表示花苞经35 ℃处理2 d(4 d)后转入25 ℃培养,直至开花。对照始终在25 ℃培养。35 ℃ 2 d(4 d)-25 ℃: After the treatment of 35 ℃ for 2 or 4 days, the flower buds were transferred to 25 ℃ for subsequent development until anthesis. The control was cultured at 25 ℃ all the time.

图3 百合不同发育期的花苞经35 ℃处理2、4 d后盛花期矢车菊素含量(A)和花径(B)
Fig.3 The cotent of cyanidin(A) and flower diameter(B) of lily at full blossom for the flower bud at different development stages with the treatment of 35 ℃ for 2,4 days
CK:25 ℃处理下的百合花苞;T-2 d:花苞经35 ℃处理2 d后转入25 ℃培养,直至开花;T-4 d:花苞经35 ℃处理4 d后转入25 ℃培养,直至开花。 CK: Lily buds treated with 25 ℃; T-2 d: Buds treated with 35 ℃ for 2 days were transferred to 25 ℃ until full blossom; T-4 d: Buds treated at 35 ℃ for 4 days were transferred to 25 ℃ until full blossom.
高温处理后,百合盛花期花径较对照均变小,随着处理时间延长,花径缩短程度增加,高温处理4 d后,S2、S3、S4、S5、S6盛花期的花径分别较对照缩短了19.38%、14.87%、7.38%、19.67%、16.53%(
如

图4 S3时期花苞经不同温度处理2、4、6 d后盛花期花色
Fig.4 The tepal color of lily at full blossom for S3 flower buds treated with different temperature for 2,4,6 days

图5 S3时期花苞经不同温度处理2 、4 、6 d盛花期矢车菊素含量(A)和花径(B)
Fig. 5 The cotent of cyanidin(A) and flower diameter(B) of lily at full blossom for S3 flower buds treated with different temperature for 2,4,6 days
1)35 ℃高温处理2 d和4 d花被片中花色合成基因的表达量差异。由

图6 不同时期花苞25 ℃和35 ℃处理2、4 d外轮花被片中LhCHS、LhF3H、LhANS的表达量
Fig. 6 Relative expression of LhCHS, LhF3H, LhANS gene in the outer tepal for the flower bud at different development stages treated with 25 ℃ and 35 ℃ for 2,4 days
A和E:S2-S6时期的花苞经过25 ℃和35 ℃处理2、4 d外轮花被片显色情况,标尺=1 cm;B和F:LhCHS基因相对表达量;C和G:LhF3H基因相对表达量; D和H:LhANS基因相对表达量;*表示处理中基因相对表达量超过对照的2倍或小于对照的1/2。 A,E: The coloration of outer tepal of bud from S2 to S6 treated with 25 ℃,35 ℃ for 2,4 days, bar=1 cm; B,F: Relative expression of LhCHS; C,G: Relative expression of LhF3H; D,H: Relative expression of LhANS;* means the relative gene expression in treatment was more than twice or less than 1/2 of the control.
2)不同温度处理2、4、6 d花被片中花色合成基因的表达量差异。由

图7 S3百合花苞经不同温度处理2、4、6 d外轮花被片中LhCHS、LhF3H、LhANS的表达量
Fig. 7 Relative expression of LhCHS, LhF3H, LhANS in the outer tepal of lily for flower buds S3 treated with different temperature for 2,4,6 days
A:百合S3时期花苞经不同温度处理2 、4 、6 d外轮花被片的显色情况,标尺=1 cm;B、C、D分别为LhCHS、LhF3H、LhANS基因相对表达量;*表示处理中基因相对表达量超过对照(25 ℃)的2倍或小于对照的1/2。A: The coloration of outer tepal of flower bud S3 treated with different temperature for 2,4,6 days, bar=1 cm; B,C,D show relative expression of LhCHS,LhF3H,LhANS respectively;* means the relative gene expression in treatment was more than twice or less than 1/2 of the control(25 ℃ treatment).
S5-S6时期是‘索邦’百合花被片着色的关键时期(
温度是影响植物花色合成的重要环境因子。高温胁迫抑制百合花色合成相关基因的表达,导致花青素含量降低、花被片的颜色变浅。韩笑
花青素苷是影响植物花瓣呈色的主要色素物质之
参考文献References
YAMAGISHI M,KISHIMOTO S,NAKAYAMA M.Carotenoid composition and changes in expression of carotenoid biosynthetic genes in tepals of Asiatic hybrid lily[J].Plant breeding,2010,129(1):100-107. [百度学术]
VEBERIC R,SLATNAR A,BIZJAK J,et al.Anthocyanin composition of different wild and cultivated berry species[J].LWT - food science and technology,2015,60(1):509-517. [百度学术]
YAMAGISHI M,YOSHIDA Y,NAKAYAMA M.The transcription factor LhMYB12 determines anthocyanin pigmentation in the tepals of Asiatic hybrid lilies (Lilium spp.) and regulates pigment quantity[J].Molecular breeding,2012,30(2):913-925. [百度学术]
毕蒙蒙,曹雨薇,宋蒙,等.百合花色研究进展[J].园艺学报,2021,48(10):2073-2086.BI M M,CAO Y W,SONG M,et al.Advances in flower color research of Lilium[J].Acta horticulturae sinica,2021,48(10):2073-2086 (in Chinese with English abstract). [百度学术]
肖伟,张铭芳,张秀海,等.百合花青素合成调控的研究进展[J].北方园艺,2018(20):154-162.XIAO W,ZHANG M F,ZHANG X H,et al.Research progress of anthocyanin synthesis regulation of lily[J].Northern horticulture,2018(20):154-162 (in Chinese with English abstract). [百度学术]
AN J P,ZHANG X W,YOU C X,et al.MdWRKY40 promotes wounding-induced anthocyanin biosynthesis in association with MdMYB1 and undergoes MdBT2-mediated degradation[J].New phytologist,2019,224(1):380-395. [百度学术]
胡可,韩科厅,戴思兰.环境因子调控植物花青素苷合成及呈色的机理[J].植物学报,2010,45(3):307-317.HU K,HAN K T,DAI S L.Regulation of plant anthocyanin synthesis and pigmentation by environmental factors[J].Chinese bulletin of botany,2010,45(3):307-317 (in Chinese with English abstract). [百度学术]
杨捷,张星,彭梦笛,等.百合转录因子MYB12的克隆与表达分析[J].植物科学学报,2018,36(6):812-816,818.YANG J,ZHANG X,PENG M D,et al.Cloning and expression analysis of MYB12 in Lilium oriental hybrid’Sorbonne’[J].Plant science journal,2018,36(6):812-816,818 (in Chinese with English abstract). [百度学术]
NAKATSUKA A,YAMAGISHI M,NAKANO M,et al.Light-induced expression of basic helix-loop-helix genes involved in anthocyanin biosynthesis in flowers and leaves of Asiatic hybrid lily[J].Scientia horticulturae,2009,121(1):84-91. [百度学术]
YAMAGISHI M.A novel R2R3-MYB transcription factor regulates light-mediated floral and vegetative anthocyanin pigmentation patterns in Lilium regale[J/OL].Molecular breeding,2016,36(1):3[2022-11-29].https://doi.org/10.1007/s11032-015-0426-y. [百度学术]
LAI Y S,YAMAGISHI M,SUZUKI T.Elevated temperature inhibits anthocyanin biosynthesis in the tepals of an oriental hybrid lily via the suppression of LhMYB12 transcription[J].Scientia horticulturae,2011,132:59-65. [百度学术]
张旭红,孙美玉,李靖锐,等.东方百合‘索邦’GA20ox的克隆及表达分析[J].园艺学报,2019,46(1):74-86.ZHANG X H,SUN M Y,LI J R,et al.Cloning and expression analysis of GA20ox gene in Lilium oriental hybrids ‘sorbonne’[J].Acta horticulturae sinica,2019,46(1):74-86 (in Chinese with English abstract). [百度学术]
YAMAGISHI M.Oriental hybrid lily Sorbonne homologue of LhMYB12 regulates anthocyanin biosyntheses in flower tepals and tepal spots[J].Molecular breeding,2011,28(3):381-389. [百度学术]
刘雅莉.百合乙烯生成与衰老的关系及ACC氧化酶基因cDNA的克隆[D].杨凌:西北农林科技大学,2004.LIU Y L.The relation ethylene production to senescence and cloning of the ACC oxidase genes from lily[D].Yangling:Northwest A & F University,2004 (in Chinese with English abstract). [百度学术]
LIVAK K J,SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method[J].Methods,2001,25(4):402-408. [百度学术]
韩笑盈.菊花高温下花色褪色差异表达基因分析及CmHY5的功能研究[D].南京:南京农业大学,2020.HAN X Y.Analysis of differentially expressed genes in color fading under heat stress and functional analysis of CmHY5 in Chrysanthemum[D].Nanjing:Nanjing Agricultural University,2020 (in Chinese with English abstract). [百度学术]
SULLIVAN C N,KOSKI M H.The effects of climate change on floral anthocyanin polymorphisms[J/OL].Proceedings biological sciences,2021,288(1946):2020.2693[2022-11-29 ].https://doi.org/10.1098/rspb.2020.2693. [百度学术]
NIU J P,ZHANG G J,ZHANG W T,et al.Anthocyanin concentration depends on the counterbalance between its synthesis and degradation in plum fruit at high temperature[J/OL].Scientific reports,2017,7:7684[2022-11-29 ].https://doi.org/10.1038/s41598-017-07896-0. [百度学术]
KUI L W,MICHELETTI D,PALMER J,et al.High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex[J].Plant,cell & environment,2011,34(7):1176-1190. [百度学术]
张圣美.高温胁迫对茄子果皮花青素生物合成的影响[D].南京:南京农业大学,2020.ZHANG S M.Effects of high temperature stress on anthocyanin biosynthesis in eggplant peel[D].Nanjing:Nanjing Agricultural University,2020 (in Chinese with English abstract). [百度学术]
洪燕红,叶清华,李泽坤,等.红花草莓‘莓红’花瓣花色苷积累及其MYB基因的表达分析[J].园艺学报,2021,48(8):1470-1484.HONG Y H,YE Q H,LI Z K,et al.Accumulation of anthocyanins in red-flowered strawberry‘Meihong’petals and expression analysis of MYB gene[J].Acta horticulturae sinica,2021,48(8):1470-1484 (in Chinese with English abstract). [百度学术]
FU Z Z,SHANG H Q,JIANG H,et al.Systematic identification of the light-quality responding anthocyanin synthesis-related transcripts in Petunia petals[J].Horticultural plant journal,2020,6(6):428-438. [百度学术]
MENG J X,GAO Y,HAN M L,et al.In vitro anthocyanin induction and metabolite analysis in Malus spectabilis leaves under low nitrogen conditions[J].Horticultural plant journal,2020,6(5):284-292. [百度学术]
YAMAGISHI M,SHIMOYAMADA Y,NAKATSUKA T,et al.Two R2R3-MYB genes,homologs of Petunia AN2,regulate anthocyanin biosyntheses in flower tepals,tepal spots and leaves of Asiatic hybrid lily[J].Plant and cell physiology,2010,51(3):463-474. [百度学术]
TIRUMALAI V,SWETHA C,NAIR A,et al.miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes[J].Journal of experimental botany,2019,70(18):4775-4792. [百度学术]
JIANG S H,WANG N,CHEN M,et al.Methylation of MdMYB1 locus mediated by RdDM pathway regulates anthocyanin biosynthesis in apple[J].Plant biotechnology journal,2020,18(8):1736-1748. [百度学术]
CAI H Y,ZHANG M,CHAI M N,et al.Epigenetic regulation of anthocyanin biosynthesis by an antagonistic interaction between H2A.Z and H3K4me3[J].New phytologist,2019,221(1):295-308. [百度学术]