网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

木醋液的抑菌活性及其对连作番茄根际土壤微环境生态的影响  PDF

  • 肖健 1
  • 谭俊杰 2
  • 林泽毅 3
  • 林强 3
  • 杨尚东 1
  • 谭宏伟 4
1. 广西大学农学院/广西农业环境与农产品安全重点实验室/植物科学国家级实验教学示范中心,南宁 530004; 2. 广西民族师范学院,崇左 532200; 3. 广西贺州匠心科技有限公司,贺州 542800; 4. 广西农业科学院/广西甘蔗遗传改良重点实验室,南宁 530007

中图分类号: S567.51

最近更新:2024-01-30

DOI:10.13300/j.cnki.hnlkxb.2024.01.005

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

为探索木醋液对番茄根际土壤微生态的作用,以番茄为供试材料,连续3 a常规种植于相同田块,设置木醋液稀释300倍(A)、稀释600倍(B)、稀释900倍(C)处理,以无菌去离子水为对照(CK),探究不同稀释度木醋液的抑菌活性及其对连作番茄植株根系生长、根际土壤细菌和真菌群落结构的影响。结果显示:不同稀释度木醋液对青枯病菌和枯萎病菌均具有显著的抑制作用;3种稀释度的木醋液中,稀释600倍的木醋液浇灌不仅有利于连作番茄根系的生长,而且有助于提高番茄连作根际土壤细菌和真菌的多样性;与对照(CK)相比,不同稀释度木醋液处理均不同程度地降低了放线菌门(Actinobacteriota)细菌的相对丰度,提高了酸杆菌门(Acidobacteriota)细菌以及子囊菌门(Ascomycota)、新赤壳属(Neocosmospora)、曲霉属(Aspergillus)、青霉属(Penicillium)、木霉属(Trichoderma)、毛壳菌属(Chaetomium)和镰刀菌属(Fusarium)真菌等有益微生物的相对丰度。结果表明,木醋液具有显著抑制番茄青枯病及枯萎病病原微生物的作用,浇灌稀释木醋液有利于连作番茄根系生长,改善连作番茄根际土壤微环境生态的作用;其中,以稀释600倍(B)木醋液的改良效果最佳。

番茄(Solanum lycopersicum L.)于世界范围内广泛种植,而我国是全球最大的番茄生产和消费国家。作为“南菜北运”和“西菜东调”的重要蔬菜品种,番茄对广西的蔬菜产业和经济发展有着重大影

1。但随着番茄种植规模的不断扩大,长期单一集约化种植以及不合理的肥料施用,导致土壤板结和酸化加剧,青枯病和枯萎病等土传病害频发,连作障碍发生严重,严重阻碍了广西乃至于全国番茄产业的可持续发2

木醋液又称植物酸,是木材等生物质在干馏设备中经干馏后导出的气体冷凝后分离得到的一种有机混合物,主要成分为乙酸,还含有少量酚类、酸类、醇类等200多种有机物及微量元

3-4。开发、生产木醋液原料丰富、成本低廉,不会污染环境,有利于绿色农业的可持续发展。木醋液对许多植物病原真菌的生长有一定的抑制作用,同时在农业领域常用作土壤改良剂、植物生长促进剂、杀菌剂、杀虫剂和趋避剂等,用于提高作物产量和品质,以及提升土壤肥力和维护土壤健5-6。Mungkunkamchao7发现,灌溉适宜浓度的木醋液可促进番茄生长并提升产量,叶面喷施则可缓解缺素症状的发生,一定程度上可替代化肥;李忠徽8发现,稀释50倍以上的木醋液可以促进辣椒生长并提高其产量;周红娟9研究证实灌施适宜浓度的木醋液具有提高盐碱地土壤酶活性、改善土壤化学性质的效果;潘洁10研究发现,木醋液灌溉可提高土壤碱解氮、速效钾、有效磷及有机质含量,显著提高番茄株高,增加产量和提高品质;张传进3发现,施用稀释600倍的木醋液可促进甜瓜生长、提高甜瓜根际微环境的土壤肥力以及抵御土传病害的能力,显著提高甜瓜根际土壤中可培养微生物数量、微生物生物量和相关酶活性以及细菌丰富度;杜佳11发现,木醋液—生物炭—益生菌复配缓解了辣椒连作土壤的连作障碍,促进了有益菌枯草芽孢杆菌的生长;Zhu12发现,木醋液处理油菜种子能够提高其产量与叶面积指数,并降低霜霉病的发病率;张帆2发现,施用木醋液有助于提高番茄根际土壤有益细菌的丰度占比,改善土壤营养状况,有助于改良番茄根际土壤微生态,且稀释500倍的效果最佳;Adfa13发现,木醋液具有良好的灭杀白蚁功效,同时对真菌的生长具有显著的抑制作用;史冠昭6发现,核桃壳木醋液对几种植物病原菌具有不同程度的抑制作用;肖辉14发现,稀释木醋液对番茄枯萎病、灰霉病病菌菌丝生长均有显著的抑制作用,对盆栽番茄枯萎病、灰霉病均有显著的预防和治疗效果;段晓玲15发现,4种不同的木醋液对大肠杆菌、金黄色葡萄球菌等均具有较强的抑制作用。目前,广西番茄主产区连作障碍发生日趋严重,同时面临着轮作等农艺措施囿于生产条件难以实施,以及化学防治潜在的二次污染难以完全消除等现实问题。基于我国秋冬蔬菜重要生产基地——广西番茄主产区土壤质量劣化、连作障碍频发等问题,本研究采用具有促进作物生长、改良土壤的木醋液,探究其减轻番茄连作障碍危害的效果与作用机制,旨在为番茄产业的可持续发展提供理论依据与技术支撑。

1 材料与方法

1.1 试验地概况

试验于2021年9月—2022年1月在广西大学农学院蔬菜基地(108°17′14″E,22°51′17″N)进行。供试土壤类型为赤红壤,土壤基本理化性质为:pH 5.7,有机质8.56 g/kg,全氮0.49 g/kg,全磷0.69 g/kg,全钾7.18 g/kg,有效磷0.62 mg/kg,速效钾50.83 mg/kg,碱解氮12.87 mg/kg。

1.2 试验材料

供试番茄品种为“中研868”,由北京中研益农种苗科技有限公司生产。

供试木醋液以青冈木为原料,含Fe2+ 829 mg/kg、乙酸51.2 g/kg、丙酸1.97 g/kg、苯酚392 mg/kg、氨基酸932 mg/kg,由广西匠心科技有限公司制备及提供。

供试番茄青枯假单胞菌(Pseudomonas solanacearum Smith)和番茄尖孢镰刀菌(Fusarium oxysporum f. sp. lycopersici)由广西大学农学院蔬菜课题组提供;培养基为PDA培养基(马铃薯浸出粉6 g,葡萄糖20 g,琼脂16 g,蒸馏水定容至1 000 mL,pH 5.6±0.2)。

1.3 试验设计

采集已连续种植番茄3 a的连作土壤,等量装入盆栽袋(直径25 cm、高25 cm)中进行盆栽试验。试验采用随机区组设计,设置4个处理,以无菌去离子水作为对照(CK),处理A:木醋液稀释300倍;处理B:木醋液稀释600倍;处理C:木醋液稀释900倍。每个处理各种植20株番茄。

2021年9月开始常规育苗,待番茄幼苗长出8~9片真叶时定植,定植后5 d进行木醋液第1次浇灌,视天气状况约每隔15 d浇灌1次,共浇灌4次,每次浇灌量为250 mL/株。施肥、除草、浇水、病虫害防治等田间管理按照常规方法进行。

1.4 样品采集

番茄定植55 d后,每个处理随机选择3株长势一致的番茄植株,采用抖根

2采集番茄根际土壤混匀作为1个生物学重复,每个处理3次重复。装入无菌密封袋后低温运回实验室处理,过2 mm筛后置于-80 ℃超低温保存,用于根际土壤微生物群落结构分析。

参照张传进

3的根系采集方法采集根系,采集的根系经过根系扫描仪(Founder Z2400)扫描后获得根系图像,并经由根系图像分析软件(WinRHIZOPro 2009c)处理分析番茄根系图像得到番茄根细总根长、根系表面积、根尖数量、根系体积等根系数据。

1.5 平板抑菌试验

参照韦利

16和郭伊17的方法测定不同稀释度木醋液的抑菌活性。操作步骤如下:木醋液用无菌去离子水分别稀释300倍(A)、600倍(B)、900倍(C);无菌条件下,加热PDA融化并定量加入无菌锥形瓶中,待降温至40 ℃时,按稀释度高低依次定量吸取供试液,分别加入对应的锥形瓶中并混合均匀。制成含不同浓度木醋液的混合培养基,并以纯PDA培养基为空白对照,同时设置无菌去离子水为对照。利用打孔器取直径6 mm的菌饼,接种于冷却后的培养基上,每个处理设置3次重复,倒置于25 ℃恒温培养,枯萎病病原菌接种4 d后用游标卡尺测定菌落直径;待青枯病病原菌菌斑直径达到1/2时测量各处理菌落直径,计算抑菌率[抑菌率=(对照皿菌落直径-处理皿菌落直径)/对照皿菌落直径×100%]。

1.6 根际土壤微生物群落结构分析

参照肖健

18-20的方法完成根际土壤样品总DNA提取、PCR扩增和序列测定。具体测序流程简述如下:根据FastDNA® Spin Kit for Soil试剂盒(MP Biomedicals, USA)说明书进行总DNA抽提,使用NanoDrop2000分光光度计(Thermo Fisher Scientific, Wilmington, NC, USA)检测DNA浓度和纯度,即DNA提取质量利用1%琼脂糖凝胶电泳进行检测,并以提取的土壤微生物DNA为模板,选择338F(5′-ACTCCTACGGGAGGCAGCAG-3′)和806R(5′-GGACTACHVGGGTWTCTAAT-3′)为引物对细菌V3~V4可变区进行PCR扩增;选用ITS1F(5'-CTTGGTCATTTAGAGGAAGTAA-3')和ITS2R(5'-GCTGCGTTCTTCATCGATGC-3')为引物对真菌ITS区进行PCR扩增。PCR扩增在ABI GeneAmp®9700(ABI, Foster City, CA, USA)上进行。将同一样本的PCR产物混合后使用2%琼脂糖凝胶回收PCR产物,利用AxyPrep DNA Gel Extraction Kit(Axygen Biosciences, New York, CA, USA)进行回收产物纯化,2%琼脂糖凝胶电泳检测,并用Quantus™ Fluorometer(Promega, Madison, WI, USA)对回收产物进行检测定量。使用NEXTFLEX® Rapid DNA-Seq Kit进行建库。利用Illumina公司的MiseqPE300平台进行测序(上海美吉生物医药科技有限公司)。参照肖健18-20的方法对测序数据进行处理和分析。

1.7 统计分析

基于Mothur(v.1.30.2)软件计算微生物群落的Alpha多样性。选择相似度为97%的OTUs表,按最小序列样本数进行OTUs抽平,使用R语言(v.3.3.1)工具进行微生物群落组成分析和Venn分析,并进行统计和绘图。使用LEfSe(linear discriminant analysis effect size,LEfSe)对样品按照基于分类学组成的不同分组条件进行线性判别分析(linear discriminant analysis,LDA),以确定对样品划分有明显差异影响的群组。使用R语言(v.3.3.1)进行主坐标分析(principal co-ordinates analysis,PCoA)和作图。使用R语言(v.3.3.1)的“mixOmics”包进行偏最小二乘法判别分析(partial least squares discriminant analysis,PLS-DA)和作图。

采用Excel 2019统计数据,采用IBM SPSS Statistics 21统计软件进行方差分析,采用Duncan’s法进行显著性检验(P<0.05),并利用上海美吉生物医药科技有限公司的生信云数据分析平台(https://cloud.majorbio.com/)进行在线数据分析。平均数据以“平均数±标准差”表示。

2 结果与分析

2.1 不同稀释度木醋液对番茄青枯病病原菌和枯萎病病原菌的抑菌活性

对不同稀释度木醋液进行抑菌活性筛选,结果显示,稀释300倍(A)、600倍(B)和900倍(C)木醋液对青枯病与枯萎病病原菌均具有显著的抑制作用(P<0.05)。且稀释300倍(A)的木醋液抑菌效果最好(表1)。

表1  不同稀释度木醋液对青枯病和枯萎病病原菌的抑菌率
Table 1  The inhibition rate of wood vinegar with different dilution on bacterial wilt and fusarium wilt ( % )

处理

Treatment

青枯病菌抑菌率

Inhibition rate of bacterial wilt

枯萎病菌抑菌率

Inhibition rate of fusarium wilt

A 53.78±1.98a 49.35±2.11a
B 30.31±7.67b 24.66±3.19b
C 18.98±4.45c 19.07±1.01c

注:  表中数据为平均值 ± 标准差;数据后不同小写字母表示不同处理之间差异显著(P<0.05)。A:稀释300倍木醋液;B:稀释600倍木醋液;C:稀释900倍木醋液。下同。Note:Data in the table are mean ± SD; Values followed by different small letters mean significant difference between different treatments (P<0.05). A: 300 dilutions wood vinegar; B: 600 dilutions wood vinegar; C: 900 dilutions wood vinegar.The same as follows.

2.2 不同稀释度木醋液处理对番茄根系生长的影响

不同稀释度木醋液处理下,连作番茄根系形态指标测定结果显示,不同稀释度木醋液处理均不同程度地提高了连作番茄根系的总根表面积、总根体积、根直径、根尖数,但与对照(CK)相比均未达显著差异水平(P>0.05)(表2)。

表2  不同稀释度木醋液处理下连作番茄根系生长状况
Table 2  Root growths of tomatoes treated by different dilutions wood vinegars under continuous cropping conditions

处理

Treatment

总根长/cm

Length

总根表面积/cm2

Surf area

总根体积/cm3

Root volume

根直径/mm

Diameter

根尖数

Tips

A 623.04±79.10a 328.86±33.86a 14.13±3.70a 1.70±0.30a 2 987.00±249.81a
B 511.62±89.88a 344.36±33.94a 19.03±5.71a 2.19±0.47a 3 044.33±309.83a
C 543.30±163.48a 366.51±38.57a 20.95±7,73a 2.27±0.70a 3 564.00±671.00a
CK 574.00±115.84a 303.98±73.56a 12.92±4.21a 1.68±0.19a 2 482.33±148.41a

2.3 不同稀释度木醋液处理连作番茄根际土壤细菌和真菌多样性分析

表3可知,4个处理的覆盖率均≥0.97,说明数据真实可信。与对照(CK)处理相比,不同稀释度木醋液处理均未显著改变连作番茄根际土壤细菌和真菌的多样性(Shannon)和丰富度(ACE)指数(P>0.05)。

表3  不同稀释度木醋液处理下连作番茄根际土壤微生物Alpha多样性(OTU水平)
Table 3  Alpha diversity of rhizospheric microorganisms of tomatoes under different dilutions wood vinegar treatments at OTU level

来源

Source

处理

Treatment

香农指数

Shannon index

Ace指数

Ace index

覆盖率

Coverage

细菌Bacteria CK 6.64±0.09a 3 900.23±188.95a 0.97
A 6.66±0.01a 3 871.63±122.95a 0.97
B 6.80±0.05a 4 073.64±58.21a 0.97
C 6.72±0.05a 3 914.00±35.71a 0.97
真菌Fungi CK 3.86±1.18a 787.30±83.10a 1.00
A 4.36±0.05a 783.22±33.80a 1.00
B 4.28±0.06a 768.24±45.03a 1.00
C 4.16±0.53a 731.96±48.64a 1.00

基于OTU水平的PCoA分析(bray_curtis距离,ANOSIM检验)发现根际土壤细菌ANOSIM检验结果为R=0.388 9,真菌ANOSIM检验结果为R=0.459 9,均说明处理组间差异大于处理组内差异,数据分析可信。

细菌PCoA分析结果显示,PC1轴和PC2轴对结果的解释度分别为21.74%和15.17%,表明不同稀释度木醋液处理下,番茄根际土壤细菌群落组成结构存在差异(P<0.05);其中,对照(CK)、稀释300倍(A)和稀释900倍(C)处理下的细菌群落距离较近,说明它们的物种组成结构相似度高,且均与稀释600倍(B)处理相距甚远(图1a)。

图1  不同稀释度木醋液处理番茄根际土壤微生物的PCoA(a、c)和PLS-DA(b、d)分析(OTU水平)

Fig. 1  PCoA(a,c) and PLS-DA(b,d) analyses of rhizospheric microorganisms of tomatoes under different dilutions wood vinegar treatments at OTU level

真菌PCoA分析结果显示,PC1轴和PC2轴对结果的解释度分别为31.59%和20.38%,表明不同稀释度木醋液处理下,番茄根际土壤真菌群落组成结构亦存在差异(P<0.05);其中,对照(CK)、稀释300倍(A)和稀释600倍(B)处理下的细菌群落距离较近,说明它们的物种组成结构相似度高,且均与稀释900倍(C)处理相距甚远(图1c)。

基于OTU水平的PLS-DA分析结果表明,4种处理的细菌和真菌样本均可以明显区分并聚成4个类群。此外,根据样本点分布的离散程度来看,不同稀释度木醋液处理的每组样品聚类在一起,组间群落结构差异相对较小(图1b、d)。

2.4 不同稀释度木醋液处理连作番茄根际土壤细菌和真菌Venn分析

由Venn分析可知,CK、A、B和C 4个处理,连作番茄根际土壤细菌分别检测到4 044、4 014、4 184和4 121个OTUs;其中,共有的OTUs数量为2 880个,特有的OTUs数量分别为117、125、149和130个(图2a)。CK、A、B和C 4个处理中,连作番茄根际土壤真菌分别检测到1 219、1 163、1 174和1 139个OTUs;其中,共有的OTUs数量为568个,特有的OTUs数量分别为208、184、175和181个(图2b)。可见,与CK相比,不同稀释度木醋液处理均不同程度地提高了连作番茄根际土壤细菌特有的OTUs数量,降低了根际土壤真菌总OTUs数量及特有的OTU数量;其中,影响效果最大的均为稀释600倍(B)的木醋液处理。

图2  不同稀释度木醋液处理下番茄根际土壤细菌(a)和真菌(b)OTUs分类水平Venn图

Fig. 2  Venn diagram of rhizospheric bacteria (a) and fungi (b) of tomatoes at OTU levels under different dilutions wood vinegar

2.5 不同稀释度木醋液处理连作番茄根际土壤细菌和真菌群落组成

1)连作番茄根际土壤细菌和真菌门分类水平组成。基于Illumina Miseq分析,4个处理共获得40门、129纲、313目、483科、885属、1 780种、5 105 OTUs的细菌物种信息及16门、48纲、110目、229科、456属、715种、2 007 OTUs的真菌物种信息。

不同稀释度木醋液处理连作番茄根际土壤中,相对丰度占比大于1%的优势细菌门类共有10个,丰度占比大小依次分别为:放线菌门(Actinobacteriota,27.08%~30.69%)、变形菌门(Proteobacteria,23.04%~26.31%)、绿弯菌门(Chloroflexi,13.19%~15.21%)、酸杆菌门(Acidobacteriota,9.07%~11.18%)、厚壁菌门(Firmicutes,5.25%~6.29%)、芽单胞菌门(Gemmatimonadota,5.59%~5.87%)、粘球菌门(Myxococcota,1.96%~2.36%)、髌骨细菌门(Patescibacteria,1.54%~1.82%)、拟杆菌门(Bacteroidota,1.02%~1.54%)和甲基肌酐门(Methylomirabilota,<1%~1.44%)。其中,放线菌门(Actinobacteriota)、变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、酸杆菌门(Acidobacteriota)是4个处理中连作番茄根际土壤中相对丰度占比大于或接近10%的优势细菌门类,这表明不同稀释度木醋液处理并未改变连作番茄根际土壤中优势细菌门类的组成,仅改变了不同细菌优势门类的相对丰度占比。与对照(CK)相比,不同稀释度木醋液处理均不同程度地降低了放线菌门(Actinobacteriota)的相对丰度占比,提高了酸杆菌门(Acidobacteriota)细菌的相对丰度占比。此外,甲基肌酐门(Methylomirabilota,1.44%)细菌是稀释600倍(B)处理下连作番茄根际土壤中特有的优势细菌门类(图3a)。

图3  不同稀释度木醋液处理下番茄连作根际土壤细菌(a)和真菌(b)门分类水平组成

Fig. 3  Compositions of soil bacteria (a) and fungi (b) in rhizospheres of tomatoes at phylum level under different dilutions wood vinegar treatments

相对丰度占比大于1%的优势真菌门类共有7个,丰度占比大小依次分别为:子囊菌门(Ascomycota,46.56%~74.09%)、油壶菌门(Olpidiomycota,6.79%~25.85%)、被孢霉门(Mortierellomycota,7.22%~8.92%)、unclassified_k_Fungi(4.32%~8.20%)、担子菌门(Basidiomycota,3.73%~10.64%)、罗兹菌门(Rozellomycota,1.04%~1.89%)、壶菌门(Chytridiomycota,<1%~1.80%)。与对照(CK)相比,不同稀释度木醋液处理均不同程度地提高了番茄连作根际土壤中子囊菌门(Ascomycota)真菌的相对丰度占比(图3b)。

2)不同稀释度木醋液处理下连作番茄根际土壤细菌和真菌属分类水平组成。不同稀释度木醋液处理下番茄连作根际土壤中相对丰度占比大于1%的优势细菌属数量及丰度占比如表4所示。对照(CK)、稀释300倍(A)、600倍(B)和900倍(C)处理的优势细菌属分别有19、20、20和19个。其中,unclassified_f_Xanthobacteraceae是对照(CK)处理特有的优势细菌属;节杆菌属(Arthrobacter)是稀释300倍(A)处理连作番茄根际土壤中理特有的优势细菌属;土壤红色杆形菌属(Solirubrobacter)和norank_f_norank_o_Rokubacteriales是稀释600倍(B)处理特有的优势细菌属;norank_f_norank_o_norank_c_TK10是稀释900(C)处理特有的优势细菌属。

表4  不同稀释度木醋液处理下番茄连作根际土壤细菌属分类水平组成
Table 4  Compositions of soil bacteria in rhizospheres of tomatoes at phylum level under different dilutions wood vinegar treatments ( % )
属 GenusCKABC
鞘氨醇单胞菌属 Sphingomonas 4.27 4.46 3.65 3.81
norank_f_norank_o_Gaiellales 3.98 3.49 3.85 3.46
norank_f_norank_o_Vicinamibacterales 2.74 3.09 3.36 3.36
链霉菌属 Streptomyces 3.73 2.68 2.12 3.14
norank_f_67-14 2.70 2.38 2.38 2.34
norank_f_Vicinamibacteraceae 1.96 2.32 2.39 2.58
norank_f_Gemmatimonadaceae 2.35 2.25 2.21 2.31
norank_f_JG30-KF-CM45 1.87 1.93 2.16 1.93
Gaiella 2.11 1.78 2.14 1.82
norank_f_norank_o_norank_c_KD4-96 1.56 1.82 2.01 1.88
norank_f_JG30-KF-AS9 1.50 2.00 1.68 1.94
norank_ f_norank_o_Elsterales 1.86 1.99 1.46 1.60
芽孢杆菌属 Bacillus 1.79 1.50 1.76 1.62
类诺卡氏菌属 Nocardioides 1.84 1.48 1.52 1.76
norank_f_Roseiflexaceae 1.42 1.34 1.57 1.52
unclassified_f_Gemmatimonadaceae 1.47 1.48 1.24 1.32
酸杆菌属 Acidibacter 1.31 1.38 1.11 1.24
Bryobacter 1.16 1.16 - 1.07
节杆菌属 Arthrobacter - 1.78 - -
unclassified_f_Xanthobacteraceae 1.11 - - -
土壤红色杆形菌属 Solirubrobacter - - 1.25 -
norank_f_norank_o_norank_c_Gitt-GS-136 - 1.03 1.12 -
norank_f_norank_o_norank_c_TK10 - - - 1.02
norank_f_norank_o_Rokubacteriales - - 1.18 -
其他 Others 55.13 55.21 56.28 56.22

注:  “unclassified”是指在置信度70%下未与数据库比对上,即在数据库中没有类似序列;“norank”是指序列与数据库比对上,但数据库也没有具体分类学信息,数据库就给出的物种名称以“norank”命名;“-”表示相对丰度<1%;下同。Note: Sequences that could not be classified into any known group at a confidence level of 70% were assigned as “unclassified”.Some intermediate ranks in the taxonomic spectrum appeared in the comparison database without scientific names and were assigned as “norank”. That was, this rank was not named.“-” means the relative abundancd<1%;The same as follows.

不同稀释度木醋液处理下,连作番茄根际土壤中相对丰度占比大于1%的优势真菌属数量及丰度占比如表5所示。对照(CK)、稀释300倍(A)、600倍(B)和900倍(C)处理的优势真菌属的数量分别为16、19、19和16个。与对照(CK)相比,不同稀释度木醋液处理均不同程度地降低了连作番茄根际土壤中油壶菌属(Olpidium)和被孢霉属(Mortierella)等优势真菌的相对丰度占比,以及提高了曲霉属(Aspergillus)、青霉属(Penicillium)、新赤壳属(Neocosmospora)、毛壳菌属(Chaetomium)、镰刀菌属(Fusarium)和木霉属(Trichoderma)等优势真菌属的相对丰度占比。黄孢展齿革菌属(Phanerochaete)真菌是对照(CK)处理连作番茄根际土壤中特有的优势真菌属;红酵母属(Rhodotorula)和unclassified_c_Chytridiomycetes真菌是稀释300倍(A)处理连作番茄根际土壤中特有的优势真菌属;unclassified_o_Sordariales真菌是稀释600倍(B)处理连作番茄根际土壤中特有的优势真菌属;小不整球壳属(Plectosphaerella)真菌是稀释900倍(C)处理连作番茄根际土壤中缺失的优势真菌属。

表5  不同稀释度木醋液处理连作番茄根际土壤真菌属分类水平组成
Table 5  Compositions of soil fungi in rhizospheres of tomatoes at phylum level under different dilutions wood vinegar treatments ( % )
属 GenusCKABC
油壶菌属 Olpidium 25.85 10.17 17.46 6.79
曲霉属 Aspergillus 5.74 8.51 7.56 20.53
被孢霉属 Mortierella 8.85 7.13 8.61 8.32
青霉属 Penicillium 4.32 5.67 6.89 7.79
Unclassified_k_Fungi 5.78 8.20 5.27 4.32
Gibellulopsis 4.94 6.13 4.06 3.84
新赤壳属 Neocosmospora 3.90 4.29 4.27 6.32
毛壳菌属 Chaetomium 1.86 6.37 3.67 3.23
镰刀菌属 Fusarium 2.50 4.75 3.25 3.32
木霉属 Trichoderma 1.23 3.26 1.92 6.96
小不整球壳属 Plectosphaerella 1.17 3.60 4.05 -
枝孢霉属 Cladosporium 1.61 2.01 3.03 1.85
篮状菌属 Talaromyces 2.08 1.52 1.52 1.45
Unclassified_c_Sordariomycetes 1.21 1.09 1.06 2.74
单孢瓶霉属 Phialemonium 1.61 1.54 1.29 1.14
Unclassified_ p_Rozellomycota - 1.67 1.34 1.55
黄孢展齿革菌属 Phanerochaete 5.27 - - -
翅孢壳属 Emericellopsis - 1.89 1.15 -
Unclassified_ p_Ascomycota - - 1.24 1.01
Unclassified_o_Sordariales - - 1.04 -
红酵母属 Rhodotorula - 1.04 - -
Unclassified_c_Chytridiomycetes - 1.33 - -
其他 Others 18.44 18.24 20.33 15.88

2.6 不同稀释度木醋液处理连作番茄根际土壤细菌和真菌LEfSe分析

基于LEfSe分析(筛选标准为P<0.05,LDA score>2.0)可以发现不同稀释度木醋液处理连作番茄根际土壤中具有显著优势的细菌和真菌类群。

1)细菌类群。门分类水平下,除了unclassified_k_norank_d_Bacteria是稀释600倍(B)处理连作番茄根际土壤中具有显著优势的细菌门类外,其余处理中均未检测出具有显著优势的细菌门类。属分类水平下,链霉菌属(Streptomyces)、Kribbella、诺卡氏菌属(Nocardia)、微酸菌属(Ilumatobacter)及norank_f_norank_o_Chitinophagales细菌是对照(CK)处理连作番茄根际土壤中具有显著优势的细菌属;Paenarthrobacter、贪铜菌属(Cupriavidus)、norank_f_Micropepsaceae、中华单孢菌(Sinomonas)、norank_f_LWQ8、水恒杆菌属(Mizugakiibacter)、Candidatus_Alysiosphaera,unclassified_f_Geodermatophilaceae、红假单胞菌属(Rhodopseudomonas)、unclassified_o_Oxyphotobacteria_Incertae_Sedis及嗜热单胞菌属(Thermomonas)细菌是稀释300倍(A)处理连作番茄根际土壤中具有显著优势的细菌属;unclassified_k_norank_d_Bacteria、芽孢八叠球菌属(Sporosarcina)、Leptolyngbya_ANT_L52_2、norank_f_norank_o_PB19,PuiaClostridium_sensu_stricto_8、鱼孢菌属(Sporichthya)、黄杆菌属(Flavobacterium)、norank_f_norank_o_norank_c_AKAU4049、norank_f_norank_o_norank_c_SHA-26、斯克尔曼氏菌属(Skermanella)和norank_f_Methylococcaceae细菌是稀释600倍(B)处理连作番茄根际土壤中具有显著优势的细菌属;norank_f_norank_o_KF-JG30-C25、假单胞菌属(Pseudomonas)和Mobilitalea细菌是稀释900倍(C)处理连作番茄根际土壤中具有显著优势的细菌属(图4a)。

图4  不同稀释度木醋液处理连作番茄根际土壤细菌(a)和真菌(b)LEfSe分析结果(LDA阈值为2.0)

Fig. 4  LEfSe analyses of rhizospheric bacteria (a) and fungi (b) of tomatoes under different dilutions wood vinegar treatments (LDA score=2.0)

不同的前缀表示不同的分类水平(p:门;c:纲;o:目;f:科;g:属)。Different prefixes indicate different levels (p: Phylum; c: Class, o: Order; f: Family; g: Genus).

2)真菌类群。门分类水平下,油壶菌门(Olpidiomycota)真菌是对照(CK)处理连作番茄根际土壤中具有显著优势的真菌门类;子囊菌门(Ascomycota)真菌是稀释900倍(C)处理连作番茄根际土壤中具有显著优势的真菌门类;稀释300倍(A)和600倍(B)处理中均未检测出具有显著优势的真菌门类。属分类水平下,油壶菌属(Olpidium)、白鬼伞属(Leucocoprinus)、unclassified_f_Chytridiaceae及黑孢子菌属(Nigrospora)真菌是对照(CK)处理连作番茄根际土壤中具有显著优势的真菌属;毛壳菌属(Chaetomium)、unclassified_f_PlectosphaerellaceaeSolicoccozymaApiosordariaStaphylotrichumPyxidiophora、红酵母属(Rhodotorula)和Myrmecridium真菌是稀释300倍(A)处理连作番茄根际土壤中具有显著优势的真菌属;织球壳菌属(Plectosphaerella)、RamophialophoraDistoseptisporaApiospora、丝葚霉属(Papulaspora)和金孢属(Chrysosporium)真菌是稀释600倍(B)处理连作番茄根际土壤中具有显著优势的真菌属;木霉属(Trichoderma)、蜡蚧菌属(Lecanicillium)及unclassified_f_Clavicipitaceae是稀释900倍(C)处理连作番茄根际土壤中具有显著优势的真菌属(图4b)。

3 讨论

木醋液中含有的有机酸、酚类化合物等抑菌活性物质,通过抑制病原菌增

21而起到改善根际土壤微环境生态的效果。木醋液的制备需要严格的技术条件和原料分类,不同的原料及条件下制备的木醋液效果也存在一定的差异。史冠昭6发现,以普通核桃壳和铁核桃壳为原料制备的木醋液对番茄早疫病病原菌(Alternaria solani)、小麦纹枯病病原菌(Rhizoctonia cerealis)、小麦赤霉病病原菌(Fusarium graminearum)等7种病原真菌均产生不同程度的抑制效果。本研究也发现,以青冈木为原料的不同稀释度木醋液对番茄青枯病和枯萎病病原菌亦具有显著的抑菌活性,且稀释300倍的抑制效果最佳。

张帆

2发现,采用不同稀释度木醋液灌根处理并未显著改变番茄根际土壤细菌的多样性和丰富度。同样地,本研究中不同稀释度木醋液处理连作番茄,亦没有显著改变番茄根际土壤细菌的多样性与丰富度。这一结果表明木醋液处理不会导致番茄根际微环境生态劣化。

Conradie

22研究表明,随着pH降低,酸杆菌门(Acidobacteriota)菌群的系统发育聚集性更强。本研究中,与对照(CK)相比,不同稀释度木醋液处理均不同程度地提高了酸杆菌门(Acidobacteriota)细菌的相对丰度占比,表明木醋液处理,有利于酸杆菌门(Acidobacteriota)细菌于番茄根际土壤中的定殖与富集,有助于提高作物生产23。此外,节杆菌属(Arthrobacter)细菌可耐受各种极端环境压力,具有降解持久性环境污染物等特点,具有通过生物刺激提高作物抗逆(如渗透压、氧气、温度、pH值调节和重金属)24;而土壤红色杆形菌(Solirubrobacter)细菌是一种根际促生菌,兼有抑制植物病原菌、根际有害微生物以及促进植物生长并增加作物产量的作25。节杆菌属(Arthrobacter)细菌和土壤红色杆形菌属(Solirubrobacter)细菌分别为稀释300倍和600倍木醋液处理连作番茄根际土壤中特有的优势细菌属,表明稀释300、600倍的木醋液浇灌处理有助于改善连作番茄根际土壤微环境。

另一方面,Adfa

13研究发现,木醋液具有显著抑制真菌生长的作用。本研究中,与对照(CK)相比,不同稀释度木醋液处理均不同程度地降低了连作番茄根际土壤真菌的丰富度、总OTUs数量和特有OTUs数量。进一步说明了不同稀释度木醋液具有抑制连作番茄根际土壤(病原)真菌增殖生长的效果。

子囊菌门(Ascomycota)真菌是真核生物中最普遍和最多样化的菌群,有利于分解枯枝落叶、木屑和粪便等有机底

26。油壶菌属(Olpidium)真菌是根部侵染性微生物,很少在寄主植株上引发症状,酸性条件能抑制以其为载体的病毒性病害传27。本研究中与对照(CK)相比,不同稀释度木醋液处理均不同程度地提高了番茄连作根际土壤中子囊菌门(Ascomycota)真菌的相对丰度,同时降低了连作番茄根际土壤中油壶菌属(Olpidium)真菌的相对丰度占比。此外,新赤壳属(Neocosmospora)真菌具有清除或淬灭活性氧(ROS)的能28,曲霉属(Aspergillus)真菌具有溶磷促生长作用,还对木质素和多酚具有强降解作用,可提高土壤肥力和活29-30,青霉属(Penicillium)、木霉属(Trichoderma)和毛壳菌属(Chaetomium)真菌可通过降解凋落物、修剪物、根系分泌物中的木质素和多酚来提高土壤肥力和活性,对纤维素分解具有重要作30-31,并具有抗菌和抑菌活性,在提高植物抗逆性方面发挥着重要作31-33。同时,镰刀菌属(Fusarium)真菌还可产生纤维素酶促进土壤碳循环,并与曲霉菌属真菌一道参与土壤难溶性磷的溶解,是溶磷微生物的重要类3134。与对照(CK)相比,不同稀释度木醋液处理均不同程度提高了连作番茄根际土壤中新赤壳属(Neocosmospora)、曲霉属(Aspergillus)、青霉属(Penicillium)、木霉属(Trichoderma)、毛壳菌属(Chaetomium)和镰刀菌属(Fusarium)等优势真菌属的相对丰度占比。由此推测,不同稀释度木醋液在富集土壤有益细菌或真菌的同时抑制了病原真菌的增殖生长,改善了连作番茄根际土壤微环境生态,提高番茄根系抵抗力,从而有利于克服番茄连作障碍。

综上,木醋液浇灌不仅有助于番茄根际富集有益微生物门和属,而且降低了病原真菌的丰度占比,具有改善连作番茄根际土壤微环境生态的功能。本研究的3种木醋液稀释度中,以稀释600倍改善连作番茄根际土壤微环境生态的效果最佳。

参考文献 References

1

庞师婵,王帅帅,张文静,等.氮肥/花生饼肥配施对番茄根际土壤及根系内生细菌群落结构的影响[J].华中农业大学学报,2021,40(3):141-151.PANG S C,WANG S S,ZHANG W J,et al.Effects of nitrogen/peanut residue compost on rhizosphere soil and endophytic bacterial community structure in root system of tomato[J].Journal of Huazhong Agricultural University,2021,40(3):141-151 (in Chinese with English abstract). [百度学术] 

2

张帆, 谢琛, 肖宝莹, 等. 木醋液对番茄根际土壤理化性质及细菌群落多样性的影响[J/OL].吉林农业大学学报, 2022[2022-11-13].https://doi.org/10.13327/j.jjlau.2022.1751.ZHANG F, XIE C, XIAO B Y, et al.Effects of wood vinegar on physicochemical properties and bacterial community diversity of tomato rhizosphere soil[J/OL].Journal of Jilin Agricultural University, 2022[2022-11-13].https://doi.org/10.13327/j.jjlau.2022.1751 (in Chinese with English abstract). [百度学术] 

3

张传进,吴人敏,王帅帅,等.施用木醋液甜瓜根系生长及根际土壤生物学性状与细菌多样性变化[J].热带作物学报,2019,40(7):1265-1271.ZHANG C J,WU R M,WANG S S,et al.Change of root growth of muskmelon,soil biological properties and bacterial diversity in rhizosphere under wood vinegar application[J].Chinese journal of tropical crops,2019,40(7):1265-1271 (in Chinese with English abstract). [百度学术] 

4

陈萍,朱洪吉,王建刚.气相色谱质谱法测定木醋液饮料中化学成分[J].食品研究与开发,2016,37(15):183-185.CHEN P,ZHU H J,WANG J G.Chemical constitution analysis of health care beverage of wood vinegar by gas chromatography-mass spectrometry[J].Food research and development,2016,37(15):183-185 (in Chinese with English abstract). [百度学术] 

5

史冠昭,翟梅枝,毛光瑞,等.2种核桃壳木醋液的化学组成及抑菌活性研究[J].西北植物学报,2014,34(10):2109-2117.SHI G Z,ZHAI M Z,MAO G R,et al.Chemical compositions and antifungi activities of pyroligneous acids from walnut shell of two species[J].Acta botanica boreali-occidentalia sinica,2014,34(10):2109-2117 (in Chinese with English abstract). [百度学术] 

6

胡世龙,程博,曹凑贵,等.不同氮肥水平下喷施木醋液对水稻产量和食味品质的影响[J].华中农业大学学报,2022,41(1):133-140.Effects of spraying wood vinegar on yield and taste quality of high-quality rice under different nitrogen levels[J].Journal of Huazhong Agricultural University,2021,41(1):133-140(in Chinese with English abstract). [百度学术] 

7

MUNGKUNKAMCHAO T, KESMALA T, PIMRATCH S, et al.Wood vinegar and fermented bioextracts:natural products to enhance growth and yield of tomato (Solanum lycopersicum L.)[J].Scientia horticulturae,2013,154:66-72. [百度学术] 

8

李忠徽,王旭东.灌施木醋液对土壤性质和植物生长的影响[J].植物营养与肥料学报,2014,20(2):510-516.LI Z H,WANG X D.Effect of wood vinegar on soil properties and plant growth[J].Journal of plant nutrition and fertilizer,2014,20(2):510-516 (in Chinese with English abstract). [百度学术] 

9

周红娟,耿玉清,丛日春,等.木醋液对盐碱土化学性质、酶活性及相关性的影响[J].土壤通报,2016,47(1):105-111.ZHOU H J,GENG Y Q,CONG R C,et al.Effects of wood vinegar on chemical properties,enzyme activities and their correlation in saline alkali soil[J].Chinese journal of soil science,2016,47(1):105-111 (in Chinese with English abstract). [百度学术] 

10

潘洁, 肖辉, 程文娟,等.木醋液土壤灌溉对土壤养分、番茄产量及品质的影响[J].中国土壤与肥料,2016(2): 61-64.PAN J,XIAO H,CHENG W J,et al.Effect of wood vinegar on soil nutrient,tomato yield and quality[J].Soil and fertilizer sciences in China,2016(2):61-64.(in Chinese with English abstract). [百度学术] 

11

杜佳燕.木醋液-生物炭-益生菌复配对辣椒连作土壤的作用效应[D].保定:河北农业大学,2020.DU J Y.Effects of wood vinegar-biochar-beneficial microorganism on soil with continuously mono-cropped pepper[D].Baoding:Hebei Agricultural University,2020 (in Chinese with English abstract). [百度学术] 

12

ZHU K M,GU S C,LIU J H,et al.Wood vinegar as a complex growth regulator promotes the growth,yield,and quality of rapeseed[J/OL].Agronomy,2021,11(3):510[2022-11-13].https://doi.org/10.3390/agronomy11030510. [百度学术] 

13

ADFA M,ROMAYASA A,KUSNANDA A J,et al.Chemical components,antitermite and antifungal activities of Cinnamomum parthenoxylon wood vinegar[J].Journal of the Korean wood science and technology,2020,48(1):107-116. [百度学术] 

14

肖辉,程文娟,张鹏,等.木醋液与杀菌剂复配对番茄枯萎病和灰霉病的防治效果[J].江苏农业科学,2021,49(1):82-87.XIAO H,CHENG W J,ZHANG P,et al.Control effects of wood vinegar and fungicide on fusarium wilt and gray mold of tomato[J].Jiangsu agricultural sciences,2021,49(1):82-87 (in Chinese with English abstract). [百度学术] 

15

段晓玲,王海英,刘志明,等.农林废弃物干馏产物木醋液的抑菌活性[J].西南农业学报,2016,29(2):425-429.DUAN X L,WANG H Y,LIU Z M,et al.Antibacterial activities of wood vinegar from agricultural and forestry wastes dry distillation products[J].Southwest China journal of agricultural sciences,2016,29(2):425-429 (in Chinese with English abstract). [百度学术] 

16

韦利娜.抗病砧木根系分泌物提高嫁接甜瓜抗枯萎病的生理机制研究[D].南宁:广西大学,2021.WEI L N.Physiological mechanism of root exudates from disease-resistant rootstocks to improve resistance of grafted muskmelon[D].Nanning:Guangxi University,2021 (in Chinese with English abstract). [百度学术] 

17

郭伊娟.植物提取物的抑菌活性及其对番茄连作土壤微生物多样性的影响[D].南宁:广西大学,2015.GUO Y J.Inhibition of plant extracts and their effects on soil microbial diversity in tomato continuous-cropping fields[D].Nanning:Guangxi University,2015 (in Chinese with English abstract). [百度学术] 

18

肖健,韦星璇,杨尚东,等.间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响[J].作物学报,2023,49(2):526-538.XIAO J,WEI X X,YANG S D,et al.Effects of intercropping with watermelons on cane yields,soil physicochemical properties and micro-ecology in rhizospheres of sugarcanes[J].Acta agronomica sinica,2023,49(2):526-538(in Chinese with English abstract). [百度学术] 

19

肖健.嫁接和人工除草对八角树根际(区)土壤健康的影响[D].南宁:广西大学,2022.XIAO J.Effects of grafting and artificial weeding on soil fertility and health in rhizosphere of star anise trees[D].Nanning:Guangxi University,2022 (in Chinese with English abstract). [百度学术] 

20

肖健,孙妍,陈思宇,等.南方果园蚁巢土壤微生物群落结构特征分析[J].南方农业学报,2021,52(6):1604-1614.XIAO J,SUN Y,CHEN S Y,et al.Characteristics of soil microbial community structure in ant nests in orchards in Southern China[J].Journal of southern agriculture,2021,52(6):1604-1614 (in Chinese with English abstract). [百度学术] 

21

母军,于志明,李黎,等.木材剩余物的木酢液制备及其成分分析[J].北京林业大学学报,2008,30(2):129-132.MU J,YU Z M,LI L,et al.Preparation and analysis of wood vinegar with wood residues[J].Journal of Beijing Forestry University,2008,30(2):129-132 (in Chinese with English abstract). [百度学术] 

22

CONRADIE T A,JACOBS K.Distribution patterns of Acidobacteriota in different fynbos soils[J/OL].PLoS One,2021,16(3):e0248913[2022-11-13].https://doi.org/ 10.1371/journal.pone.0248913. [百度学术] 

23

BLAISE D,VELMOUROUGANE K,SANTOSH S,et al.Intercrop mulch affects soil biology and microbial diversity in rainfed transgenic Bt cotton hybrids[J/OL].The Science of the total environment,2021,794:148787[2022-11-13].https://doi.org/10.1016/j.scitotenv.2021.148787. [百度学术] 

24

GUO X H,XIE C Y,WANG L J,et al.Biodegradation of persistent environmental pollutants by Arthrobacter sp[J].Environmental science and pollution research,2019,26(9):8429-8443. [百度学术] 

25

金桃,冯强,万景旺,等.五种根际促生菌在改善植物的农艺性状方面的应用:CN106472568A[P].2020-05-12.JIN T,FENG Q,WAN J W,et al.Application of five plant growth-promoting rhizobacteria to improvement of agronomic traits of plants:CN106472568A[P].2020-05-12(in Chinese). [百度学术] 

26

杨仔奇.不同土壤改良处理对甘蔗分蘖期土壤养分和真菌群落的影响[D].福州:福建农林大学,2020.YANG Z Q.Effects of different soil amendments on soil nutrients and fungal communities at the tillering stage of sugarcane[D].Fuzhou:Fujian Agriculture and Forestry University,2020 (in Chinese with English abstract). [百度学术] 

27

IWAMOTO Y,INOUE K,NISHIGUCHI S,et al.Acidic soil conditions suppress zoospore release from zoosporangia in Olpidium virulentus[J].Journal of general plant pathology,2017,83(4):240-243. [百度学术] 

28

MATSUO H,HIROSE T,MOKUDAI T,et al.Absolute structure and anti-oxidative activity of chaetochiversin C isolated from fungal strain Neocosmospora sp.FKI-7792 by physicochemical screening[J].Journal of general and applied microbiology,2020,66(3):181-187. [百度学术] 

29

肖健,吴银秀,杨尚东,等.秸秆覆盖还田对桑园土壤真菌群落结构组成的影响[J].西南农业学报,2021,34(12):2707-2713.XIAO J,WU Y X,YANG S D,et al.Effects of straw mulching on soil fungal community structure in mulberry plantation[J].Southwest China journal of agricultural sciences,2021,34(12):2707-2713 (in Chinese with English abstract). [百度学术] 

30

万人源,马会杰,蒋宾,等.茶园土壤真菌群落组成及影响因素研究[J].中国农学通报,2021,37(33):88-97.WAN R Y,MA H J,JIANG B,et al.The fungi community structure and influencing factors in tea gardens soil[J].Chinese agricultural science bulletin,2021,37(33):88-97 (in Chinese with English abstract). [百度学术] 

31

肖健,黄小丹,杨尚东,等.青枯病易感和钝感桑树品种根际土壤真菌群落结构比较[J].广西植物,2022,42(12):2099-2108.XIAO J,HUANG X D,YANG S D,et al.Comparison of fungal community structures in rhizosphere soil between sensitive and insensitive mulberry varieties to bacterial wilt[J].Guihaia,2022,42(12):2099-2108 (in Chinese with English abstract). [百度学术] 

32

张琪,王嘉琦,吕梦霞,等.青霉属真菌次级代谢产物的结构类型及其药用活性的研究进展[J].工业微生物,2019,49(2):56-65.ZHANG Q,WANG J Q,LÜ M X,et al.Advances in structural types and medical activities of secondary metabolites of Penicillium fungi[J].Industrial microbiology,2019,49(2):56-65 (in Chinese with English abstract). [百度学术] 

33

LIU Z X,LIU J J,YU Z H,et al.Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance,diversity and community composition[J/OL].Soil & tillage research,2020,197:104503[2022-11-13].https://doi.org/10.1016/j.still.2019.104503. [百度学术] 

34

杨顺,杨婷,林斌,等.两株溶磷真菌的筛选、鉴定及溶磷效果的评价[J].微生物学报,2018,58(2):264-273.YANG S,YANG T,LIN B,et al.Isolation and evaluation of two phosphate-dissolving fungi[J].Acta microbiologica sinica,2018,58(2):264-273 (in Chinese with English abstract). [百度学术]