摘要
为为解决番茄连作障碍、构建番茄可持续发展的生态栽培技术体系,设置番茄伴生生菜(A)、苋菜(B)、菜心(C)、葱(D)、薄荷(E)以及番茄单作(F)处理,在相同环境条件下进行同样栽培管理,利用Illumina MiSeq 高通量测序平台,分析不同作物伴生及番茄单作处理下根系内生微生物多样性与群落组成。结果显示:伴生及单作番茄植株根系共有的排名前5的优势细菌属为链霉菌属(Streptomyces)、Burkholderia-Caballeronia-Paraburkholderia、德沃斯氏菌属(Devosia)、类诺卡氏菌属(Nocardioides)、马赛菌属(Massilia);番茄伴生生菜(A)特有的优势内生细菌属为新草小螺菌属 (Noviherbaspirillum),番茄伴生苋菜(B)特有的优势内生细菌属为游动放线菌属 (Actinoplanes); 番茄伴生葱(D)特有的优势内生细菌属为爬管菌属(Herpetosiphon),番茄伴生薄荷(E)特有的优势内生细菌属为微杆菌属(Microbacterium),番茄单作(F)特有的优势内生细菌属包括芽孢杆菌属(Bacillus)、栖大理石菌属(Marmoricola)和糖霉菌属 (Glycomyces);伴生及单作处理番茄共有的优势真菌属为油壶菌属(Olpidium)、unclassified_o_Sordariales、unclassified_p_Ascomycota,番茄伴生生菜(A)特有的优势内生真菌属为Immersiella,番茄伴生苋菜(B)特有的优势内生真菌包括念珠菌属(Candida)、unclassified_c_Agaricomycetes和Phialemonium,番茄伴生菜心(C)特有的优势内生真菌包括Rhizophagus、Plectosphaerella、Geminibasidium,番茄伴生葱(D)特有的优势内生真菌包括unclassified_p_Chytridiomycota、unclassified_f_Ceratobasidiaceae、Ceratorhiza、unclassified_o_Boletales、unclassified_p_Basidiomycota,番茄单作(F)特有的优势内生真菌属为赤霉属(Gibberella)。结果表明,与番茄单作相比,番茄伴生不同作物使主栽番茄根系优势内生细菌和内生真菌属组成发生了变化,伴生条件下主栽番茄根系均富集了特异的优势内生细菌和真菌门、属。伴生富集的特异优势内生细菌或真菌门、属组成具有提升主栽番茄植株抵御环境生物或非生物胁迫的潜力。
番茄(Solanum lycopersicum L.)为茄科茄属的1年生草本植物。2018年至今,我国番茄栽培面积已达110.9 万 h
然而,伴生栽培除了提高作物根际微环境土壤肥力、提升根际土壤微生物多样性外,是否亦影响了主栽番茄植株的抗性,至今仍鲜见相关研究报道。植物内生微生物(endophyte)指能够生活在健康植物或组织中生存而不引起寄主植物明显病变的一大类微生物,主要包括细菌、真菌和放线
主栽番茄品种中研 868(中研益农种苗科技有限公司选育)、伴生作物菜心品种油青 31号(兴宁市庆丰盈科种子有限公司选育);苋菜品种、台选圆叶红苋菜 262(兴宁市庆丰盈科种子有限公司选育)、薄荷品种香草薄荷(江苏百萌生态发展有限公司选育)、生菜品种特种生菜(聊城华煜农业科技有限公司选育)、葱品种香葱(北京花儿朵朵花仙子农业有限公司选育)均购自南宁市蔬菜种子市场。
试验于2020年6-12 月在广西大学农学院蔬菜基地(108°17′25″E,22°51′02″N)进行。采用桶栽方式(桶高 35 cm,半径 30 cm),每个桶中分别装入 20 kg 土。土壤类型为赤红壤,理化性状如下:pH 5.71,有机质 8.42 mg/kg,全氮 0.51 mg/kg,全磷 0.67 mg/kg,全钾 7.21 g/kg,速效磷 0.59 mg/kg,速效钾 51.01 mg/kg,碱解氮 13.17 mg/kg。
试验共设置6个处理:番茄伴生生菜(Lactuca sativa)(A)、番茄伴生苋菜(Amaranthus tricolor)(B)、番茄伴生菜心(Brassica chinensis var. parachinensis)(C)、番茄伴生葱(Allium fistulosum)(D)、番茄伴生薄荷(Mentha canadensis)(E)及番茄单作(F)。
伴生栽培处理以番茄植株为中心,半径 10 cm 处环形种植不同伴生作物,上述6个处理均同期育苗与定植。番茄生长期间,灌溉、除草等所有生产措施均按常规方法相同管理。
番茄植株根系样品于 2020 年 9 月采集。每个处理随机抽取3株长势一致的健壮番茄植株,用消毒铁铲铲松植株周围半径约25 cm 的圆圈土层,然后手握植株茎基部,连根拔起整个植株。采用抖根
根系样品总DNA提取、PCR 扩增和序列测定委托上海美吉生物医药科技有限公司进行。利用AxyPrepDNA凝胶回收试剂盒根据FastDN
引物类型 Primer type | 引物名称 Primer name | 引物序列(5'→3') Primer sequence(5'→3') | 测序平台 Sequencing platform | 产物长度/ bp Product length |
---|---|---|---|---|
根系内生细菌 Root endophytic bacteria | 1192R | ACGGGCGGTGTGTRC | MiSeq PE250 | 394 |
799F | AACMGGATTAGATACCCKG | |||
根系内生真菌 Rootendophytic fungi | 1193R | ACGTCATCCCCACCTTCC | ||
ITS1F | CTTGGTCATTTAGAGGAAGTAA | MiSeq PE250 | 350 | |
ITS2R | GCTGCGTTCTTCATCGATGC |
Illumina MiSeq 测序:同一样本的PCR 产物采用AxyPrep DNAGel Extraction Kit (Axygen Biosciences,美国)进行回收产物纯化,混合后使用2%琼脂糖凝胶进行回收检测,并采用Quantus™ Fluorometer (Promega,USA) 对回收产物进行检测定量。使用NEXTFLE
1)番茄根系内生细菌OTUs(operational taxonomic units,分类操作单元)聚类分析。由
栽培模式 Cultivation modes | OTUs | 不同分类阶元归类数量 Number of different taxonomic categories | |||||
---|---|---|---|---|---|---|---|
门 Phylum | 纲 Class | 目 Order | 科 Family | 属 Genus | 种 Species | ||
A | 617 | 19 | 41 | 108 | 173 | 298 | 443 |
B | 571 | 18 | 37 | 95 | 161 | 290 | 425 |
C | 637 | 19 | 42 | 104 | 170 | 304 | 458 |
D | 631 | 19 | 37 | 99 | 165 | 299 | 458 |
E | 555 | 19 | 35 | 97 | 158 | 275 | 408 |
F | 616 | 19 | 40 | 106 | 172 | 298 | 453 |
总计 Total | 873 | 21 | 47 | 131 | 213 | 380 | 596 |
注: A:番茄伴生生菜;B;番茄伴生苋菜;C:番茄伴生菜心;D:番茄伴生葱;E:番茄伴生薄荷;F:番茄单作。下同。Note:A:Solanum lycopersicum associated cultivations with Lactuca sativa;B: Solanum lycopersicum associated cultivations with Amaranthus tricolor;C:Solanum lycopersicum associated cultivations with Brassica chinensis var. parachinensis; D:Solanum lycopersicum associated cultivations with Allium fistulosum;E:Solanum lycopersicum associated cultivations with Mentha canadensis; F:Tomato monoculture.The same as follows.
2) 番茄根系内生细菌Alpha 多样性。由
栽培模式 Cultivation modes | 香农指数 Shannon index | 辛普森指数 Simpson index | Ace指数 Ace index | Chao 1指数 Chao 1 index | 覆盖率 Coverage |
---|---|---|---|---|---|
A | 4.15±0.18a | 0.07±0.035a | 519.00±12.54a | 521.23±27.45ab | 0.99 |
B | 4.22±0.18a | 0.04±0.005b | 481.14±29.08a | 484.46±18.02ab | 0.99 |
C | 4.49±0.21a | 0.03±0.010b | 555.08±63.87a | 554.22±34.11a | 0.99 |
D | 4.35±0.18a | 0.04±0.003b | 523.35±11.09a | 515.29±26.25ab | 0.99 |
E | 4.19±0.16a | 0.04±0.007b | 470.79±59.38a | 460.36±64.46b | 0.99 |
F | 4.41±0.13a | 0.03±0.001b | 543.75±67.06a | 552.37±73.00a | 0.99 |
3)番茄根系内生细菌门分类水平。由

图 1 不同伴生处理主栽番茄植株根系内生细菌门分类水平群落相对分布
Fig. 1 Relative distribution of endophytic bacteria in roots of tomatoes at phylum level under different associated cultivations
4)番茄根系内生细菌属分类水平。番茄单作和不同伴生处理番茄植株根系检测出优势内生细菌属(相对丰度占比大于1%)33个(

图 2 不同伴生处理主栽番茄植株根系内生细菌属分类水平群落相对分布
Fig. 2 Relative distribution of endophytic bacteria in roots of tomatoes at genus level under different associated cultivations
1)番茄根系内生真菌OTUs聚类分析。基于97%相似水平对样品序列不同分类水平进行聚类分析(
栽培模式 Cultivation modes | OTUs | 不同分类阶元归类数量 Number of different taxonomic categories | |||||
---|---|---|---|---|---|---|---|
门 Phylum | 纲 Class | 目 Order | 科 Family | 属 Genus | 种 Species | ||
A | 142 | 7 | 18 | 32 | 54 | 77 | 93 |
B | 233 | 7 | 9 | 45 | 79 | 109 | 135 |
C | 259 | 7 | 21 | 41 | 69 | 105 | 135 |
D | 247 | 7 | 26 | 44 | 72 | 98 | 127 |
E | 167 | 8 | 19 | 32 | 57 | 81 | 108 |
F | 285 | 8 | 22 | 43 | 75 | 117 | 157 |
总计 Total | 595 | 9 | 31 | 71 | 127 | 216 | 301 |
2)番茄根系内生真菌Alpha 多样性。 由
栽培模式 Cultivation modes | 香农指数 Shannon index | 辛普森指数 Simpson index | Ace指数 Ace index | Chao 1指数 Chao 1 index | 覆盖率 Coverage |
---|---|---|---|---|---|
A | 1.26±0.84a | 0.54±0.23a | 71.79±31.70b | 71.54±32.12c | 1.00 |
B | 2.27±1.64a | 0.36±0.45a | 120.24±50.48ab | 121.84±49.07abc | 1.00 |
C | 2.13±0.86a | 0.33±0.23a | 148.10±12.22a | 150.27±11.78ab | 1.00 |
D | 2.63±0.27a | 0.19±0.05a | 129.76±33.99ab | 131.15±37.19abc | 1.00 |
E | 1.83±0.95a | 0.35±0.22a | 92.75±22.48ab | 87.54±25.43bc | 1.00 |
F | 1.98±1.18a | 0.34±0.32a | 160.70±49.33a | 160.19±49.52a | 1.00 |
注: 数据后不同小写字母表示不同处理之间差异显著(P<0.05)。Note:Values followed by different small letters mean significant difference between different treatments(P<0.05).
3)番茄根系内生真菌门分类水平。由

图 3 不同伴生处理主栽番茄植株根系内生真菌门分类水平群落相对分布
Fig.3 Relative distribution of fungi at phylum level in root of tomatoes under different associated cultivations
4) 番茄根系内生真菌属分类水平。由

图 4 不同伴生处理主栽番茄植株根系内生真菌属分类水平群落相对分布
Fig. 4 Relative distribution of fungi community in root of tomatoes at genus level under different treatments
植物内生菌广泛存在于植物各器官组织中且根部内生细菌数量远超过其他组织。内生细菌具有固氮、促进植物生长、增强植物抗性、 生物防
与番茄单作(F)相比,伴生栽培处理不仅改变了主栽番茄植株根系优势内生细菌门类群落组成,而且还改变了根系内优势内生细菌门类的丰度占比。此外,变形菌门(Proteobacteria)细菌均是伴生处理番茄根系的绝对优势内生细菌门类,其丰度占比均超过50%。Tian
与番茄单作(F)处理相比,伴生处理虽然无助于显著提高番茄植株根系内生细菌多样性,但改变了内生细菌的丰富度。慢生根瘤菌属(Bradyrhizobium)是伴生处理优势细菌属。研究已证实,慢生根瘤菌能提升根瘤菌与豆科植物的共生效
与番茄单作(F)处理相比,伴生处理均减少了主栽番茄植株根系中未分类的优势内生真菌门类数量,但减少效果依伴生作物的种类而异。与番茄单作(F)相比,伴生处理不仅改变了主栽番茄根系内生真菌优势菌属的组成;而且提升了番茄植株根系特有的优势真菌属分类水平数量。其中,番茄伴生苋菜(B)、番茄伴生菜心(C)和番茄伴生葱(D)根系特有的优势真菌属分类水平数量与番茄单作(F)处理相比更多。
由于根系内生真菌是与植物经过长期共生演化形成,能够诱导植物抗性及养分吸收能力发生改
综上,伴生栽培处理具有改变主栽番茄植株根系内生细菌和真菌群落门、属分类水平组成的效果。主栽番茄植株根系中,富集的特异优势内生细菌或真菌门、属具有提升主栽番茄植株抵御生物或非生物环境胁迫的潜力,对番茄克服连作障碍具有一定的理论和实践指导意义。
参考文献References
李君明,项朝阳,王孝宣,等.“十三五”我国番茄产业现状及展望[J].中国蔬菜,2021(2):13-20.LI J M,XIANG C Y,WANG X X,et al.Current situation of tomato industry in China during “The Thirteenth Five-Year Plan” period and future prospect[J].China vegetables,2021(2):13-20 (in Chinese with English abstract). [百度学术]
燕在珍.广西和山东番茄主产区产业发展及土地利用效益比较研究[D].南宁:广西大学,2019.YAN Z Z.Comparative research on industrial development and land use efficiency of main tomato production areas in Guangxi and Shandong[D].Nanning:Guangxi University,2019 (in Chinese with English abstract). [百度学术]
杨尚东,李荣坦,吴俊,等.番茄连作与轮作土壤生物学特性及细菌群落结构的比较[J].生态环境学报,2016,25(1):76-83.YANG S D,LI R T,WU J,et al.Comparison of soil microbial properties and bacterial community structure in continuous cropping and rotation fields of tomatoes[J].Ecology and environmental sciences,2016,25(1):76-83 (in Chinese with English abstract). [百度学术]
孙光闻,陈日远,刘厚诚.设施蔬菜连作障碍原因及防治措施[J].农业工程学报,2005,21(S2):184-188.SUN G W,CHEN R Y,LIU H C.Causes and control measures for continuous cropping obstacles in protected vegetable cultivation[J].Transactions of the CSAE,2005,21(S2):184-188 (in Chinese with English abstract). [百度学术]
VAN ELSAS J D,GARBEVA P,SALLES J.Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens[J].Biodegradation,2002,13(1):29-40. [百度学术]
JANVIER C,VILLENEUVE F,ALABOUVETTE C,et al.Soil health through soil disease suppression:which strategy from descriptors to indicators?[J].Soil biology and biochemistry,2007,39(1):1-23. [百度学术]
TIROESELE B, MATSHELA O. The effect of companion planting on the abundance of cabbage aphid, Brevicoryne brassicae L., on kale (Brassica oleracea var. acephala)[J]. Journal of plant and pest science, 2015, 2(3):57-65. [百度学术]
杨瑞娟,王腾飞,周希,等.禾本科作物伴生对番茄根区土壤酶活性、微生物及根结线虫的影响[J].中国蔬菜,2017(3):38-42.YANG R J,WANG T F,ZHOU X,et al.Effects of companion cereal crops on soil enzyme activities,microorganism and root knot nematodes of tomato rhizosphere[J].China vegetables,2017(3):38-42 (in Chinese with English abstract). [百度学术]
谢华.生物炭和伴生对连作番茄生长发育及土壤微生物的影响[D].哈尔滨:东北农业大学,2020.XIE H.Effects of biochar and intercropping with potato onion on growth and development of continuously monocropped tomato and soil microbial communities[D].Harbin:Northeast Agricultural University,2020 (in Chinese with English abstract). [百度学术]
付彦祥, 李乃荟, 刘佳遥, 等. 伴生分蘖洋葱对番茄根际微生物群落结构的影响[J].中国蔬菜, 2020(6): 49-57. FU Y X,LI N H,LIU J Y,et al. Effects of concomitant tillering onion on microbial community structure in tomato rhizosphere soil[J]. China vegetable, 2020 (6): 49-57 (in Chinese with English abstract). [百度学术]
李红玉.分蘖洋葱伴生番茄根际微生物对番茄黄萎病抗性的影响[D].哈尔滨:东北农业大学,2018.LI H Y.Effect of rhizosphere microorganism of tomato intercropping with potato onion on Verticillium wilt resistance in tomato[D].Harbin:Northeast Agricultural University,2018 (in Chinese with English abstract). [百度学术]
HALLMANN J,QUADT-HALLMANN A,MAHAFFEE W F,et al.Bacterial endophytes in agricultural crops[J].Canadian journal of microbiology,1997,43(10):895-914. [百度学术]
SUN L,QIU F B,ZHANG X X,et al.Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis[J].Microbial ecology,2008,55(3):415-424. [百度学术]
ROMERO F M,MARINA M,PIECKENSTAIN F L.The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria,analyzed by 16S-ribosomal RNA gene pyrosequencing[J].FEMS microbiology letters,2014,351(2):187-194. [百度学术]
庞师婵,郭霜,任奎瑜,等.番茄/茄子嫁接对其根际土壤生物学性状及细菌群落结构的影响[J].园艺学报,2020,47(2):253-263.PANG S C,GUO S,REN K Y,et al.Impact of grafting on soil microbial properties and bacterial community structure in tomato rhizosphere[J].Acta horticulturae sinica,2020,47(2):253-263 (in Chinese with English abstract). [百度学术]
罗俊,林兆里,李诗燕,等.不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响[J].作物学报,2020,46(4):596-613.LUO J,LIN Z L,LI S Y,et al.Effects of different soil improvement measures on soil physicochemical properties and microbial community structures in mechanically compacted acidified sugarcane field[J].Acta agronomica sinica,2020,46(4):596-613 (in Chinese with English abstract). [百度学术]
LU H,ZOU W X,MENG J C,et al.New bioactive metabolites produced by Colletotrichum sp.,an endophytic fungus in Artemisia annua[J].Plant science,2000,151(1):67-73. [百度学术]
吴绍军,孟佳丽,沈虹,等.连作西瓜抗逆系统及土壤微生态对大蒜伴生的响应[J].西北植物学报,2021,41(4):635-642.WU S J,MENG J L,SHEN H,et al.Response of continuous cropping watermelon resistance system and soil micro-ecology to associative garlic[J].Acta botanica boreali-occidentalia sinica,2021,41(4):635-642 (in Chinese with English abstract). [百度学术]
TIAN B Y, CAO Y, ZHANG K Q. Metagenomic insights into communities, functions of endophytes and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots[J/OL]. Scientific reports, 2015, 5:17087[2022-09-06].https://doi.org/10.1038/srep17087. [百度学术]
DE ALMEIDA LEITE R , MARTINS L C, DOS SANTOS FRANÇA FERREIr L V, et al. Co-inoculation of Rhizobium and Bradyrhizobium promotes growth and yield of common beans[J/OL]. Applied soil ecology, 2022, 172:104356[2022-09-06].https://doi.org/10.1016/j.apsoil.2021.104356. [百度学术]
DA CONCEIÇÃO JESUS E,DE ALMEIDA LEITE R,DO AMARAL BASTOS R,et al.Co-inoculation of Bradyrhizobium stimulates the symbiosis efficiency of Rhizobium with common bean[J].Plant and soil,2018,425(1):201-215. [百度学术]
CEREZINI P,KUWANO B H,GRUNVALD A K,et al.Soybean tolerance to drought depends on the associated Bradyrhizobium strain[J].Brazilian journal of microbiology,2020,51(4):1977-1986. [百度学术]
BIANUCCI E,GODOY A,FURLAN A,et al.Arsenic toxicity in soybean alleviated by a symbiotic species of Bradyrhizobium[J].Symbiosis,2018,74(3):167-176. [百度学术]
EL-TARABILY K A.An endophytic chitinase-producing isolate of Actinoplanes missouriensis,with potential for biological control of root rot of lupin caused by Plectosporium tabacinum[J].Australian journal of botany,2003,51(3):257-266. [百度学术]
LIVINGSTONE P G,MORPHEW R M,COOKSON A R,et al.Genome analysis,metabolic potential,and predatory capabilities of Herpetosiphon llansteffanense sp. nov[J/OL].Applied and environmental microbiology,2018,84(22):e01040-18[2022-09-06].https://doi.org/10.1128/AEM.01040-18. [百度学术]
PURAHONG W,HYDE K D.Effects of fungal endophytes on grass and non-grass litter decomposition rates[J].Fungal diversity,2011,47(1):1-7. [百度学术]