摘要
为探究伴生不同作物对主栽番茄根际土壤肥力与健康影响的作用机制,设置番茄伴生生菜、苋菜、菜心、薄荷和葱的栽培模式,基于高通量测序技术分析伴生不同作物栽培模式下主栽番茄根际土壤肥力及细菌、真菌多样性。结果显示:除菜心外,其他4种伴生作物均显著提高了主栽番茄植株根际土壤中涉及氮、磷循环的土壤酶活性以及微生物生物量碳、氮、磷;伴生栽培虽然没有丰富主栽番茄植株根际土壤中细菌、真菌多样性,但改变了主栽番茄植株根际土壤细菌、真菌优势门属间的丰度占比;门分类水平下,伴生管理均提高了变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、Patescibacteria细菌的丰度占比;属分类水平下,norank f Microscillaceae、 norank f norank o Vicinamibacterales、芽孢杆菌属(Bacillus)、norank f Gemmatimonadaceae、交替赤杆菌属(Altererythrobacter)细菌是番茄伴生不同作物中丰度占比前10的特有优势细菌属。此外,伴生栽培不同程度地改变了主栽番茄植株根际土壤真菌多样性和丰富度,富集了壶菌门、担子菌门和油壶菌门优势真菌门;同时富集了unclassified o Sordariales、油壶菌属(Olpidium)和锥盖伞属(Conocybe)、Phialemonium、unclassified o Pleosporales、 unclassified o Boletales和Sodiomyces属等优势真菌属,亦提高了毛壳菌属(Chaetomium)的丰度占比。研究结果表明,番茄伴生栽培生菜、苋菜、薄荷和葱4种植物均同程度地有助于不提高番茄根际土壤肥力和维护根际微环境土壤健康的作用,其中,伴生栽培生菜和薄荷提升土壤肥力及维护土壤健康的效果优于伴生菜心、苋菜和葱。
番茄(Solanum lycopersicum L.)的经济价值和食用价值都极高,具有丰富的维生素和矿物质等营养物质,深受顾客的喜爱。随着我国蔬菜产业的专业化和集约化发展,番茄规模化生产已初具雏形。当前,番茄产区土壤由于长期的盲目施肥和不当管理,不仅水肥利用率低,而且土壤中氮、磷、钾等矿质元素富集而导致土壤盐渍化、酸化以及土传病害等连作障碍日渐严重,严重制约了番茄产业的发
伴生栽培是利用植物间套作,即在主栽作物的旁边种植伴生植物,不以收获伴生植物为目的的栽培模
主栽番茄品种为中研868,中研益农种苗科技有限公司选育;伴生作物菜心(Brassica chinensis var. tsai-tai)品种为油青31 号,广东兴宁市庆丰盈种子有限公司选育;伴生作物生菜(Lactuca sativa L.var.capitata DC.)品种为特种生菜,聊城华煜农业科技有限公司选育;伴生作物薄荷(Mentha haplocalyx)品种为香草薄荷,江苏百萌生态发展有限公司选育;伴生作物葱(Allium schoenoprasum L.)品种为香葱,北京花儿朵朵花仙子农业有限公司选育;伴生作物苋菜(Amaranthus tricolor Linn.)品种为台选圆叶红苋菜262 ,广东兴宁市庆丰盈科种子有限公司选育。均购自南宁市蔬菜种子市场。
2020年6-12月,在广西大学农学院蔬菜基地大棚(108°17′25"E,22°51′02"N)内进行试验。采用桶栽方式(桶高 35 cm,半径 30 cm),每个桶分别装入 20 kg 土,试验共设3次重复。试验土壤采用赤红壤,理化性状为:pH 5.71,有机质 8.42 g/kg,全氮 0.51 g/kg,全磷 0.67 g/kg,全钾 7.21 g/kg,有效磷 0.59 mg/kg,速效钾 51.01 mg/kg,碱解氮 13.17 mg/kg。
试验共设置7个处理,处理1:番茄伴生生菜(番茄/生菜,A);处理2:番茄伴生苋菜(番茄/苋菜,B);处理3:番茄伴生菜心(番茄/菜心,C);处理4:番茄伴生葱(番茄/葱,D);处理5:番茄伴生薄荷(番茄/薄荷,E);处理6:番茄单作(F);处理7:空白土壤(G) ,不栽植任何作物。
番茄生长期间,根据番茄的需肥规律,基肥配施于番茄移栽前,追肥从第一花序肥大期开始进行。除草灌溉、病虫害防治等按常规方法进行相同管理。伴生栽植的方式以番茄种植为中心,半径10 cm处环形种植不同的伴生植物。
番茄进入成熟采收期(2020年10月23日)时,采用“抖根法”采集番茄根际土壤:先用经75%乙醇消毒的铁锹疏松土壤,然后翻转种植桶,倒出整个番茄植株和土块,抖去番茄植株上的非根际土,然后收集黏附在植株根系上的土壤,装入无菌袋,带回实验室。将根际土壤样品过2 mm筛后分为两部分:一部分置于-80 ℃的冰箱,用于后续的微生物群落结构分析;另外一部分土壤样品放置于4 ℃的冰箱,用于分析土壤酶活性和微生物生物量。
参照文献[
采用 Hayan
由

图1 伴生栽培主栽番茄植株根际土壤微生物生物量的碳(Ⅰ)、氮(Ⅱ)、磷(Ⅲ)
Fig.1 Soil microbial biomass carbon(Ⅰ), nitrogen(Ⅱ) and phosphorus(Ⅲ) in rhizospheres
A:番茄伴生生菜; B:番茄伴生苋菜; C:番茄伴生菜心; D:番茄伴生葱; E:番茄伴生薄荷; F:番茄单作; G:空白;柱子上不同小写字母表示不同处理间差异显著(P<0.05);下同。A:Tomato associated cultivations with lettuce; B:Tomato associated cultivations with amaranths; C:Tomato associated cultivations with flowering cabbage; D:Tomato associated cultivations with green onions; E:Tomato associated cultivations with mint; F:Tomato monoculture; G:Blank.Different lowercase letters in the columns indicate significant differences among different treatments (P <0.05).The same as follows.
of tomatoes in associated cultivations
同样地,与番茄单作相比,番茄伴生生菜、伴生葱和薄荷处理中,主栽番茄根际土壤中微生物生物量氮显著高于番茄单作,番茄伴生苋菜及伴生菜心栽培则与单作间无明显差异。结果表明,主栽番茄植株根际土壤中的微生物生物量氮含量同样显著受伴生作物种类的影响(
除番茄伴生菜心处理外,番茄伴生葱(D)、番茄伴生苋菜(B)、番茄伴生生菜(A)和番茄伴生薄荷(E)处理中,主栽番茄植株根际土壤微生物生物量磷均显著高于相应的番茄单作(
综上,与番茄单作处理相比,伴生不同作物均不同程度地提高了主栽番茄植株根际土壤微生物生物量碳、氮、磷;5种伴生作物中,以生菜、葱和薄荷为番茄伴生作物的提升效果优于菜心和苋菜。
由

图2 伴生栽培主栽番茄植株根际土壤β-葡糖苷酶(Ⅰ)、磷酸酶(Ⅱ)和氨肽酶(Ⅲ)活性
Fig.2 Soil β-glucosidase(Ⅰ),phosphatase(Ⅱ) and aminopeptidase(Ⅲ) activities in rhizospheres of tomatoes in associated cultivations
1)伴生栽培对主栽番茄植株根际土壤细菌Alpha多样性的影响。由
栽培模式 Cultivation modes | Ace指数 Ace index | Chao1指数 Chao1 index | 香农指数 Shannon index | 覆盖率 Coverage |
---|---|---|---|---|
A | 2 708.12±39.19a | 2 704.68±28.25a | 6.19±0.05b | 0.98 |
B | 2 295.84±184.57bc | 2 306.62±212.73c | 5.77±0.11e | 0.98 |
C | 2 475.83±49.66b | 2 453.69±27.04bc | 6.12±0.01b | 0.98 |
D | 2 421.44±47.64b | 2 436.08±52.48bc | 5.94±0.05cd | 0.98 |
E | 2 218.22±114.54c | 2 237.60±153.72c | 5.85±0.07de | 0.98 |
F | 2 460.60±51.64b | 2 463.98±121.97bc | 5.96±0.05c | 0.98 |
G | 2 679.67±103.93a | 2 655.00±148.2ab | 6.32±0.02a | 0.98 |
注: 同列不同小写字母表示不同处理间差异显著(P<0.05)。Note:Different lowercase lettersin the same columns indicate significant differences among different treatments (P <0.05).
与番茄单作相比,指示主栽番茄根际土壤细菌多样性的香农(Shannon)指数,除番茄伴生生菜和菜心处理显著高于相应的番茄单作外,番茄伴生葱处理与番茄单作之间无显著差异,且番茄伴生苋菜和薄荷处理则显著低于相应的番茄单作处理。指示细菌丰富度的Ace指数和Chao1指数,除伴生生菜处理显著高于相应的番茄单作外,其余伴生处理与番茄单作之间无显著差异,或显著低于番茄单作。结果表明:番茄伴生栽培均改变了主栽番茄植株根际土壤细菌的多样性和丰富度,但改变效果依伴生作物的种类而异。
2)不同伴生栽培模式下主栽番茄植株根际土壤细菌门分类水平。伴生与番茄单作模式下,主栽番茄植株根际土壤中优势细菌门类(丰度占比大于1%)有:变形菌门(Proteobacteria)、放线菌门(Actinobacteriota)、厚壁菌门 (Firmicutes)、绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidota)、Patescibacteria、酸杆菌门(Acidobacteriota)、芽单胞菌门(Gemmatimonadota)和Myxococcota(

图3 伴生栽培主栽番茄植株根际土壤优势细菌门分类水平占比
Fig.3 Proportion of soil dominant bacteria in rhizosphere of tomatoes in associated cultivations
3)不同伴生栽培模式下主栽番茄植株根际土壤细菌属分类水平。番茄伴生生菜、苋菜、菜心、葱、薄荷以及单作处理番茄根际土壤及空白对照中,优势细菌属(丰度占比大于1%)分别有25、22、25、26、26、23和22个(

图4 伴生栽培主栽番茄植株根际土壤优势细菌属分类水平占比
Fig.4 Proportion of soil dominant bacterial genera in rhizospheres of tomatoes in associated cultivations
1)伴生栽培对主栽番茄植株根际土壤真菌Alpha多样性的影响。由
栽培模式 Cultivation modes | Ace指数 Ace index | Chao1指数 Chao1 index | 香农指数 Shannon index | 覆盖率 Coverage |
---|---|---|---|---|
A | 400.8±14.89a | 391.3±27.87a | 2.110±0.006a | 0.998 |
B | 340.2±29.25a | 333.97±31.87a | 2.840±0.13a | 0.999 |
C | 345.1±18.30a | 348.1±27.62a | 2.110±0.18c | 0.999 |
D | 358.4±38.48a | 337.5±33.49a | 2.670±0.24ab | 0.999 |
E | 355.4±92.97a | 346.3±80.29a | 2.640±0.08b | 0.999 |
F |
393.3± 7.75a | 378.0±35.86a | 2.760±0.20a | 0.999 |
G | 339.6±29.26a | 334.5±24.57a | 2.010±0.07c | 0.999 |
与番茄单作处理之间没有显著差异。这一结果表明,番茄伴生不同作物虽然改变了主栽番茄植株根际土壤真菌多样性,但改变程度依作物的种类而异;同时,伴生5种作物对主栽番茄根际土壤真菌的丰富度没有影响。
2)不同伴生栽培模式下主栽番茄植株根际土壤
真菌门分类水平。伴生生菜、苋菜、菜心、葱、薄荷,
以及番茄单作植株根际土壤和空白处理中,优势真菌门(丰度占比大于1%)分类数量分别有:4、1、2、3、1、2和2个(

图5 不同伴生栽培模式下主栽番茄植株根际土壤优势真菌门分类丰度占比
Fig.5 Proportion of soil dominant fungi in rhizospheres of tomatoes in associated cultivations
3)伴生模式下主栽番茄植株根际土壤真菌属分类水平。伴生5种不同作物以及番茄单作和空白土壤(G)中,优势真菌属(丰度占比大于1%)分类水平数量分别有12、13、9、12、8、12和9个(

图6 伴生模式下主栽番茄植株根际土壤优势真菌属分类水平
Fig.6 Classification level of soil dominant fungi in rhizospheres of tomatoes in associated cultivations
土壤微生物生物量对土壤物质转换和能量流动具有促进作用,是评价土壤质量的有效指
土壤中微生物多样性对土壤质量和健康至关重要,根际微生物对无机质转化、土壤肥力及分解有机物质等具有重要作
土壤真菌是土壤环境的分解者,可以有效降解土壤有机质和促进土壤养分循
与番茄单作相比,番茄伴生生菜处理富集了unclassified o Sordariales、油壶菌属和锥盖伞属等特有真菌属;伴生苋菜处理中富集了Phialemonium、unclassified o Pleosporales和蓝状菌属等特有真菌属;伴生葱处理富集了unclassified o Boletales和Sodiomyces属等优势真菌属;毛壳菌属真菌在番茄伴生生菜(A)、菜心(C)、葱(D)和薄荷(E)处理中,丰度占比高达39%以上。番茄伴生生菜、菜心、葱和薄荷富集的毛壳菌属真菌有助于提高番茄植株吸收养分的能力。
综上,与番茄单作相比,番茄伴生不同作物不仅具有提高番茄根际土壤肥力的效果,而且改变了主栽番茄根际土壤细菌和真菌群落组成,富集更多的有益微生物,生菜、苋菜、菜心、葱以及薄荷5种植物中,生菜和薄荷更适宜作为番茄的伴生植物。
参考文献 References
马灿,王明友.设施番茄连作对土壤理化性状、微生物数量及病虫害的影响[J].吉林农业科学,2014,39(4):22-25.MA C,WANG M Y.Effects of continuous cropping of tomato on soil characteristics,microorganism,diseases and pests[J].Journal of Jilin agricultural sciences,2014,39(4):22-25 (in Chinese with English abstract). [百度学术]
李蒙,张梦媛,龚守富,等.生物有机肥添加量对番茄幼苗生长的影响[J].中国土壤与肥料,2021(5):119-125.LI M,ZHANG M Y,GONG S F,et al.Effects of bio-organic fertilizer addition on growth of tomato seedlings[J].Soil and fertilizer sciences in China,2021(5):119-125 (in Chinese with English abstract). [百度学术]
刘学才,陈玲,李胜奇,等.施蚯蚓粪对日光温室土壤及番茄产量与品质的影响[J].应用生态学报,2021,32(2):549-556.LIU X C,CHEN L,LI S Q,et al.Effects of vermicompost fertilization on soil,tomato yield and quality in greenhouse[J].Chinese journal of applied ecology,2021,32(2):549-556 (in Chinese with English abstract). [百度学术]
孙文浩,余叔文.相生相克效应及其应用[J].植物生理学通讯,1992,28(2):81-87.SUN W H,YU S W.Allelopathy and its potential application[J].Plant physiology communications,1992,28(2):81-87 (in Chinese with English abstract). [百度学术]
ZHANG M M,WANG N,ZHANG J Y,et al.Soil physicochemical properties and the rhizosphere soil fungal community in a mulberry (Morus alba L.)/alfalfa(Medicago sativa L.) intercropping system[J/OL].Forests,2019,10(2):167[2022-07-10].https://doi.org/10.3390/f10020167. [百度学术]
付彦祥,李乃荟,刘佳遥,等.伴生分蘖洋葱对番茄根际微生物群落结构的影响[J].中国蔬菜,2020(6):49-57.FU Y X,LI N H,LIU J Y,et al.Effects of concomitant tillering onion on microbial community structure in tomato rhizosphere soil[J].China vegetables,2020(6):49-57 (in Chinese with English abstract). [百度学术]
孙彩菊,程智慧,孟焕文,等.大棚番茄连续套蒜第3年作物生产和土壤养分分析[J].西北农林科技大学学报(自然科学版),2014,42(12):102-110.SUN C J,CHENG Z H,MENG H W,et al.Analysis of crop production and soil nutrients after three years tomato/garlic continuous intercropping under plastic tunnel[J].Journal of Northwest A & F University (natural science edition),2014,42(12):102-110 (in Chinese with English abstract). [百度学术]
杨瑞娟,王腾飞,周希,等.禾本科作物伴生对番茄根区土壤酶活性、微生物及根结线虫的影响[J].中国蔬菜,2017(3):38-42.YANG R J,WANG T F,ZHOU X,et al.Effects of companion cereal crops on soil enzyme activities,microorganism and root knot nematodes of tomato rhizosphere[J].China vegetables,2017(3):38-42 (in Chinese with English abstract). [百度学术]
张晓梅,李江.不同伴生栽培对黄瓜植物学性状及产量品质的影响[J].青海大学学报,2019,37(2):42-46.ZHANG X M,LI J.Influence of different companion planting on characters and quality of cucumber[J].Journal of Qinghai University,2019,37(2):42-46 (in Chinese with English abstract). [百度学术]
庞师婵,王帅帅,张文静,等.氮肥/花生饼肥配施对番茄根际土壤及根系内生细菌群落结构的影响[J].华中农业大学学报,2021,40(3):141-151.PANG S C, WANG S S, ZHANG W J,et al. Effects of nitrogen / peanut residue compost on rhizosphere soil and endophytic bacterial community structure in root system of tomato[J].Journal of Huazhong Agricultural University,2021,40(3):141-151(in Chinese with English abstract). [百度学术]
鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.BAO S D.Soil and agricultural chemistry analysis[M].3rd ed.Beijing:China Agriculture Press,2000(in Chinese). [百度学术]
HAYANO K.A method for the determination of β-glucosidase activity in soil[J].Soil science and plant nutrition,1973,19(2):103-108. [百度学术]
LADD J N. Properties of proteolytic enzymes extracted from soil[J].Soil biology and biochemistry,1972,4(2):227-237. [百度学术]
TABATABAI M A, BREMNER J M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity[J]. Soil biology and biochemistry, 1969, 1(4):301-307. [百度学术]
POWLSON D S, PROOKES P C, CHRISTENSEN B T.Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation[J].Soil biology and biochemistry,1987,19(2):159-164. [百度学术]
JOERGENSEN R G,BROOK P C.Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5 m K2SO4 soil extracts[J].Soil biology and biochemistry,1990,22(8):1023-1027. [百度学术]
吴金水,肖和艾,陈桂秋,等.旱地土壤微生物磷测定方法研究[J].土壤学报,2003,40(1):70-78.WU J S,XIAO H A,CHEN G Q,et al.Measurement of microbial biomass-p in upland soils in China[J].Acta pedologica sinica,2003,40(1):70-78 (in Chinese with English abstract). [百度学术]
汪亚芳,刘宗悦,张宝刚,等.入侵毛竹皆伐对亚热带森林土壤微生物生物量和酶活性的影响[J].应用生态学报,2022,33(5):1233-1239.WANG Y F,LIU Z Y,ZHANG B G,et al.Effects of the removal of invasive Moso bamboo on soil microbial biomass and enzyme activities in subtropical forests[J].Chinese journal of applied ecology,2022,33(5):1233-1239 (in Chinese with English abstract). [百度学术]
苟小梅,张瑞平,张宇羽,等.苗床添加微生物肥料对植烟根际土壤微生物量碳氮的影响[J].四川农业大学学报,2019,37(3):338-342,351.GOU X M,ZHANG R P,ZHANG Y Y,et al.Effect of microbial fertilizers added into seedbed on microbial biomass carbon and nitrogen in rhizosphere of tobacco soil[J].Journal of Sichuan Agricultural University,2019,37(3):338-342,351 (in Chinese with English abstract). [百度学术]
刘放,吴明辉,魏培洁,等.疏勒河源高寒草甸土壤微生物生物量碳氮变化特征[J].生态学报,2020,40(18):6416-6426.LIU F,WU M H,WEI P J,et al.Variations of soil microbial biomass carbon and nitrogen in alpine meadow of the Shule River headwater region[J].Acta ecologica sinica,2020,40(18):6416-6426 (in Chinese with English abstract). [百度学术]
刘恩科,梅旭荣,赵秉强,等.长期不同施肥制度对土壤微生物生物量碳、氮、磷的影响[J].中国农业大学学报,2009,14(3):63-68.LIU E K,MEI X R,ZHAO B Q,et al.Long-term effects of different fertilizer management on microbial biomass C,N and P in a Fluvo-aquic soil[J].Journal of China Agricultural University,2009,14(3):63-68 (in Chinese with English abstract). [百度学术]
徐伟慧,吴凤芝.西瓜根际土壤酶及微生物对小麦伴生的响应[J].浙江农业学报,2016,28(9):1588-1594.XU W H,WU F Z.Response of soil enzymes activities and microorganism in rhizosphere of watermelon to wheat as companion crop[J].Acta agriculturae Zhejiangensis,2016,28(9):1588-1594 (in Chinese with English abstract). [百度学术]
覃仁柳,林刚云,吴银秀,等.桑树青枯病与根际土壤肥力及微生物群落结构特征的研究[J].中国生物防治学报,2021,37(6):1256-1264.QIN R L,LIN G Y,WU Y X,et al.Characteristic of soil fertility and microbial community structure in rhizosphere of bacterial wilt infected and non-infected mulberry plants[J].Chinese journal of biological control,2021,37(6):1256-1264 (in Chinese with English abstract). [百度学术]
倪栋,陈应素,李爽,等.大葱伴生甜瓜栽培对根际土壤酶活性和细菌群落的影响[J].核农学报,2022,36(1):201-209.NI D,CHEN Y S,LI S,et al.Effects of companion planting of melon with onion on enzyme activities and bacterial community in rhizosphere soil[J].Journal of nuclear agricultural sciences,2022,36(1):201-209 (in Chinese with English abstract). [百度学术]
刘训理,王超,吴凡,等.烟草根际微生物研究[J].生态学报,2006,26(2):552-557.LIU X L,WANG C,WU F,et al.Studies on tobacco rhizosphere microbes[J].Acta ecologica sinica,2006,26(2):552-557 (in Chinese with English abstract). [百度学术]
李春霞.伴生小麦对西瓜枯萎病抗性调控的机理研究[D].哈尔滨:东北农业大学,2019.LI C X.The mechanism of enhancement the suppression of Fusarium wilt in watermelon by wheat as companion crop[D].Harbin:Northeast Agricultural University,2019 (in Chinese with English abstract). [百度学术]
WANG Z, CHEN Q, LIU L,et al..Responses of soil fungi to 5-year conservation tillage treatments in the drylands of Northern China[J].Applied soil ecology,2016,101:132-140. [百度学术]