摘要
为探究植物源次生代谢物对不同作物增产的效果,将甜菜和甘蔗的代谢物提取分离后,通过优化配比,然后与腐殖酸螯合,按照含腐殖酸水溶肥料国家标准形成产品,通过田间试验和水培试验研究该产品在小麦等15种作物上的增产效果及其作用机制。试验设置2个处理:①常规施肥;②常规施肥+含植物源次生代谢物产品,该产品根据不同作物类型分别采用叶面喷施、拌肥和灌根3种方式施用。结果显示:与对照相比,施用含植物源次生代谢物产品,15种作物产量均得到提高,增幅为5.2%~21.1%;水稻、玉米和棉花种子的发芽势分别提高了6.6%、11.5%和15.2%,发芽率分别提高了2.6%、3.5%和6.1%;小麦根系总根长、总表面积和根尖数分别提高了54.44%、60.57%和30.43%;马铃薯、大白菜、包菜和小麦叶片的SPAD值分别提高了4.8%、8.7%、6.6%和9.7%;小麦叶片净光合速率提高了7.9%;马铃薯、大白菜和辣椒中Vc含量分别提高了40.8%、22.9%和28.51%,硝酸盐含量分别下降了28.8%、23.9%和20.27%;葡萄和甜菜的含糖率分别提高了21.81%和15.75%。以上结果表明,植物源次生代谢物能通过提高根系活力、促进养分的吸收,提高叶绿素含量、促进光合产物的累积,从而提高作物产量,改善作物品质,具有良好的提质增效作用。
随着我国化肥产业的发展,肥料企业为了提高产品的市场竞争力,通常采用改良肥料加工技术来提高产品的影响力。如通过测土施肥技术生产专用配方肥满足作物对养分的需求、通过缓控释肥技术生产满足作物不同生育期对养分的需求,从而实现提高肥料利用效率的目标;或通过添加硝化抑制
植物次生代谢物是特种植物在特定条件下生长或诱导,通过代谢合成的一类物质,兼有植物激素类物质的性
为了高效利用植物源次生代谢物,1999年以来,笔者所在研究团队在王运华教授的带领下,对从甜菜和甘蔗中提取的次生代谢物开展不同配比研究,1999-2014年围绕次生代谢物有效提取与分离、2种提取物的配比以及与腐殖酸的螯合技术与工艺开展系统研究,明确次生代谢物对作物产量的提升效果后,2014年,开发出符合含腐殖酸水溶肥料国家标准的产品,2015年开始,对产品开展试验示范研究,本文就该产品在不同作物上的应用效果进行了总结,分析了次生代谢物对作物生长发育及养分吸收的影响,旨在为新型次生代谢物的研发与推广应用提供技术支撑。
选择甜菜和甘蔗作为提取植物源次生代谢物的原料,提取分离后,按照一定比例与腐殖酸螯合,形成备用品,其中植物源次生代谢物的含量为0.4%,由武汉皓达农业科技有限公司生产加工为含腐殖酸水溶肥料,供试验示范。
田间试验设2个处理:①常规施肥(CK);②常规施肥+含植物源次生代谢物产品(plant secondary metabolites, PSM ),植物源次生代谢物的用量依据作物种类和施用方法有所调整。
含植物源次生代谢物产品的使用方法及用量:(1)叶面喷施(foliar spraying, S):在作物生育期内叶面喷施3次含植物源次生代谢物产品,用量为1 500~2 000 g/h
水培试验在华中农业大学玻璃温室内进行,光照强度5 000 lx,光照周期16 h/d,温度为白天25 ℃,晚上20 ℃。试验设2个处理:①全量营养液;②全量营养液+含植物源次生代谢物产品。营养液配方:0.24 g/L Ca(NO3)2·4H2O,0.5 g/L KNO3,0.15 g/L MgSO4·7H2O,0.1 g/L KH2PO4,0.1 g/L 酒石酸铁,2.86 g/L H3BO3,1.81 g/L MnCl2·4H2O,0.22 g/L ZnSO4·7H2O,0.08 g/L CuSO4·5H2O,0.02 g/L H2MoO4,含植物源次生代谢物产品的添加量为1/1 000,每3 d更换1次营养液,培养28 d后采集样品。
土壤基础理化性质参照鲍士
植物氮、磷、钾含量测定:H2SO4-H2O2消煮,氮采用凯氏定氮法测定,磷采用钼锑抗比色法测定,钾采用火焰光度计测定;根系指标采用EPSON1680根系扫描仪进行测定;叶片SPAD值用SPAD-502仪进行测定;叶片光合参数采用便携式光合测定系统Li-6400(American Li-COR)进行测定;作物品质指标参照文献[
2015-2021年,田间试验及全国各地试验示范研究结果显示,与单独施用复合肥相比,植物源次生代谢物与复合肥配施能有效提高作物产量(
试验作物 Crops | 施用方式 Application | 产量/(kg/h | 增产率/% Rate | 试验年份 Year | 试验地点 Place | |
---|---|---|---|---|---|---|
CK | PSM | |||||
小麦 Wheat | MF | 4 140±270b | 4 665±300a | 12.7 | 2015-2016 | 内蒙古呼伦贝尔市新巴尔虎左旗 |
甜玉米 Sweet corn | MF | 12 855±315a | 13 530±525a | 5.2 | 2022 | 华中农业大学 |
早稻 Rice | MF | 7 650±285b | 8 250±300a | 7.8 | 2021 | 浙江省衢州市江山市大桥镇新桥村 |
马铃薯 Potato | MF | 19 305±870b | 21 570±990a | 11.7 | 2015-2016 | 内蒙古呼伦贝尔市牙克石市莫拐农场 |
红薯 Sweet potato | MF | 38 970±1335b | 44 820±1620a | 15.0 | 2022 | 华中农业大学 |
油菜 Rape | MF | 2 820±165b | 3 420±270a | 21.1 | 2014-2015 | 华中农业大学 |
大豆 Soybean | MF | 2 250±225b | 2 550±240a | 13.3 | 2022 | 黑龙江省哈尔滨市宾县宾州镇 |
紫苜蓿 Alfalfa | MF | 15 315±765b | 19 080±795a | 24.5 | 2018-2019 | 内蒙古赤峰市阿鲁科尔沁旗绍根镇 |
大蒜 Garlic | MF | 7 245±285b | 7 830±345a | 8.1 | 2016-2017 | 云南省大理州上关镇大排村 |
大白菜 Chinese cabbage | S | 91 365±1 575b | 101 385±2 835a | 10.9 | 2016 | 华中农业大学 |
生菜 Lettuce | S | 23 310±1 240b | 26 070±1 335a | 11.8 | 2016-2017 | 华中农业大学 |
辣椒 Pepper | MF | 64 680±2 590b | 72 345±1 855a | 11.9 | 2020 | 华中农业大学 |
茄子 Eggplant | MF | 109 800±1 800b | 117 780±2 085a | 7.3 | 2022 | 华中农业大学 |
萝卜 Turnip | MF | 83 805±3 840b | 96 270±4 815a | 14.9 | 2021 | 华中农业大学 |
关口葡萄 Guankou grape | IR | 19 200±1 290b | 22 470±1 650a | 17.0 | 2016-2018 | 湖北省恩施市建始县花坪镇关口乡 |
注: 试验结果采用t检验法检验分析,不同字母表示差异达到5%显著水平。下同。Note:The experimental results was analyzed using t-test, with different letters indicating a significant difference of 5%.The same as below.
1)植物源次生代谢物对种子发芽的影响。植物源次生代谢物可提高种子的发芽势和发芽率。由
作物 Crop | 处理 Treatment | 平均发芽势(3 d) Germinative energy | 平均发芽率(7 d) Germinative rate |
---|---|---|---|
水稻 Rice | CK | 85.6±1.1b | 92.2±0.6b |
PSM | 91.3±0.5a | 94.6±0.4a | |
玉米 Corn | CK | 80.3±1.3b | 88.5±0.7b |
PSM | 89.6±1.8a | 91.6±0.5a | |
棉花 Cotton | CK | 70.6±1.5b | 85.6±1.2b |
PSM | 81.3±1.8a | 91.5±0.8a |
2)植物源次生代谢物对作物根系发育的影响。如

图1 小麦根系扫描图
Fig.1 Scanning image of wheat root
左边为对照,右边为处理CK on the left and PSM treatment on the right.
处理 Treatment | 最大根长/cm Max length | 总根长/cm Length | 总表面积/c Surface area | 总体积/c Volume | 平均直径/mm Average diameter | 根尖数/个 Tips number |
---|---|---|---|---|---|---|
CK | 31.62±1.23b | 512.21±112.35b | 59.62±18.69b | 0.57±0.15b | 0.37±0.07a | 815±56b |
PSM | 35.65±1.56a | 785.61±158.56a | 95.71±18.32a | 0.99±0.21a | 0.39±0.06a | 1 063±102a |
作物 Crop | 处理 Treatment | 根长/cm Length | 根系单株干质量/g Root dry weight per plant | 地上部单株干质量/g Aboveground dry weight per plant | 根冠比Root/Shoot ratio |
---|---|---|---|---|---|
大白菜 Chinese cabbage | CK | 20.37±0.53a | 0.10±0.03b | 1.31±0.13b | 0.078±0.01b |
PSM | 21.93±0.64a | 0.17±0.04a | 1.83±0.25a | 0.094±0.01a | |
包菜 Cabbage | CK | 24.11±0.67b | 0.17±0.03b | 1.33±0.15b | 0.13±0.01a |
PSM | 26.23±1.08a | 0.23±0.04a | 1.72±0.34a | 0.13±0.02a |
3)植物源次生代谢物对不同作物叶片SPAD值的影响。由
作物 Crop | 时期 Period | 处理 Treatment | SPAD | 增幅/% Amplification |
---|---|---|---|---|
马铃薯 Potato |
块茎形成期 Tuber formation growth | CK | 51.10±1.26a | 4.8 |
PSM | 53.60±1.04a | |||
块茎膨大期 Tuber bulking growth | CK | 45.70±1.58a | 0.8 | |
PSM | 46.10±2.03a | |||
块茎成熟期 Tuber maturation growth | CK | 43.80±0.95a | 2.1 | |
PSM | 44.70±0.46a | |||
大白菜 Chinese cabbage | 苗期(水培) | CK | 28.60±0.76a | 8.7 |
Seedling stage(nutrient solution) | PSM | 31.10±1.23a | ||
成熟期(大田) Maturation stage(field) | CK | 38.70±0.95b | 8.7 | |
PSM | 42.10±0.53a | |||
包菜 Cabbage | 苗期(水培) | CK | 38.20±0.35a | 2.3 |
Seedling stage(nutrient solution) | PSM | 39.10±0.48a | ||
成熟期(大田) Maturation stage(field) | CK | 55.60±1.23b | 6.6 | |
PSM | 59.30±1.42a | |||
小麦 Wheat |
(水培)出苗后14 d 14 days after emergence(nutrient solution) | CK | 30.52±1.35b | 8.1 |
PSM | 33.00±1.12a | |||
(水培)出苗后21 d 21 days after emergence(nutrient solution) | CK | 42.73±0.98b | 7.9 | |
PSM | 46.13±1.56a | |||
(水培)出苗后28 d 28 days after emergence(nutrient solution) | CK | 53.36±1.11b | 9.7 | |
PSM | 58.52±1.95a |
4)植物源次生代谢物对作物光合能力的影响。由
处理 Treatment | 净光合速率/[μmol/(m·s)] Net photosynthetic rate | 气孔导度/[mmol/(m∙s)] Stomatal conductivity | 胞间CO2浓度/(μmol/mol) Intercellular CO2 concentration | 蒸腾速率/[mmol /(m∙s)] Transpiration rate | 气孔限制值Pore limit value |
---|---|---|---|---|---|
CK | 14.08±0.41b | 0.21±0.07b | 275.97±8.97b | 4.19±0.68b | 0.315±0.06a |
PSM | 15.20±0.25a | 0.35±0.05a | 311.61±15.62a | 6.55±0.95a | 0.215±0.03b |
与对照相比,施用植物源次生代谢物显著提高了马铃薯、大白菜和辣椒Vc的含量(

图2 不同处理下作物维生素C含量的变化
Fig.2 Changes in vitamin C content of crops under different treatments
试验结果采用t检验法检验分析,不同字母表示不同组间差异达到5%显著水平。下同。The experimental results was analyzed using t-test, with different letters indicating a significant difference of 5%.The same as below.

图3 不同处理下作物硝酸盐含量的变化
Fig.3 Changes in nitrate content of crops under different treatments

图4 不同处理下作物糖含量的变化
Fig.4 Changes in crop sugar content under different treatments
本研究结果表明植物源次生代谢物能提高作物产量,对15种作物均具有增产效果。其增产效果可能是由于植物源次生代谢物提高了植物的抗逆能力、促进了根系生长、提高了叶片SPAD值和光合作用能力,从而引起的干物质积累量增加造成的。植物源次生代谢物可能会促进光合作用同化产物向种子中的转运,提高小麦籽粒淀粉合成和干物质积累
种子发芽是农业生产的第一步,直接关系着作物的产量和品质。本研究结果表明植物源次生代谢物能显著提高种子的发芽势和发芽率,与刘长乐
参考文献References
SONG T,YIN J H,HU Z P.Characteristics of urease/nitrification inhibitors in reducing nitrogen losses in farmland soils[J].Journal of agricultural resources and environment,2021,38(4):585-597. [百度学术]
LAN T,HE X Q,WANG Q,et al.Synergistic effects of biological nitrification inhibitor,urease inhibitor,and biochar on NH3 volatilization,N leaching,and nitrogen use efficiency in a calcareous soil-wheat system[J/OL].Applied soil ecology,2022,174:104412[2023-10-23].https://doi.org/10.1016/j.apsoil.2022.104412. [百度学术]
殷敏,丁颖,庄东英,等.不同植物生长调节剂复配对水稻产量性状的影响[J].现代农业科技,2023(5):5-8.YIN M,DING Y,ZHUANG D Y,et al.Effects of different plant growth regulator combinations on rice yield traits[J].Modern agricultural science and technology,2023(5):5-8 (in Chinese). [百度学术]
王永吉,郝小玲,周佳佳,等.外源甜菜碱对干旱胁迫下紫花苜蓿种子萌发与幼苗生长的影响[J].北方园艺,2022(15):51-57.WANG Y J,HAO X L,ZHOU J J,et al.Effects of exogenous glycine betaine on seed germination and seedling growth of alfalfa under drought stress[J].Northern horticulture,2022(15):51-57 (in Chinese with English abstract). [百度学术]
张妍妍,卢玉,史保争,等.植物中多胺的代谢及生理功能研究进展[J].北方园艺,2023(15):122-127.ZHANG Y Y,LU Y,SHI B Z,et al.Research progress on metabolism and physiological function of polyamines in plants[J].Northern horticulture,2023(15):122-127 (in Chinese). [百度学术]
SEIFI H S,SHELP B J.Spermine differentially refines plant defense responses against biotic and abiotic stresses[J/OL].Frontiers in plant science,2019,10:117[2023-10-23].https://doi.org/10.3389/fpls.2019.00117. [百度学术]
张苗,姜玉,汤静,等.冷激结合甜菜碱处理对西葫芦冷害及能量代谢的影响[J].食品科学,2020,41(7):184-190.ZHANG M,JIANG Y,TANG J,et al.Effects of cold shock combined with Glycine betaine treatment on chilling injury and energy metabolism of zucchini[J].Food science,2020,41(7):184-190 (in Chinese with English abstract). [百度学术]
田玉凤,姜春昱,田皓,等.茉莉酸甲酯对叶用莴苣抽薹及相关生理特性的影响[J].分子植物育种,2023:1-12.TIAN Y F,JIANG C Y,TIAN H,et al.Effect of methyl jasmonate on bolting and related physiological characteristics of leaf lettuce[J].Molecular plant breeding,2023:1-12(in Chinese with English abstract). [百度学术]
LI J Z,MIN D D,LI Z L,et al.Regulation of sugar metabolism by methyl jasmonate to improve the postharvest quality of tomato fruit[J].Journal of plant growth regulation,2022,41(4):1615-1626. [百度学术]
范巧兰,刘珍,张丽萍,等.0.5%苦参碱水剂对韭菜蚜虫的防治效果[J].河北农业科学,2023,27(4):66-68,74.FAN Q L,LIU Z,ZHANG L P,et al.Control effects of 0.5% matrine AS on leek aphids[J].Journal of Hebei agricultural sciences,2023,27(4):66-68,74 (in Chinese with English abstract). [百度学术]
熊鑫,郭树奇,李琳,等.苦豆子生物碱对番茄生长及果实品质的影响[J].中国农业科学,2015,48(9):1737-1746.XIONG X,GUO S Q,LI L,et al.Effect of Sophora alopecuroides alkaloids on tomato growth and fruit quality[J].Scientia agricultura sinica,2015,48(9):1737-1746 (in Chinese with English abstract). [百度学术]
SOLIMAN M,ELKELISH A A,SOUAD T,et al.Brassinosteroid seed priming with nitrogen supplementation improves salt tolerance in soybean[J].Physiology and molecular biology of plants,2020,26:501-511. [百度学术]
尚秉琛,何昊,李丹丹,等.油菜素内酯引发对盐胁迫下水稻幼苗生长及生理特性的影响[J].江西农业大学学报,2023,45(4):795-805.SHANG B C,HE H,LI D D,et al.Effects of brassinolide priming on growth and growth characteristics of rice seedlings under salt stress[J].Acta Agriculturae Universitatis Jiangxiensis,2023,45(4):795-805 (in Chinese with English abstract). [百度学术]
赵海亮,左璐,马长恩,等.果实膨大期叶面喷施褪黑素对番茄品质的影响[J].北方园艺,2021(17):15-21.ZHAO H L,ZUO L,MA C E,et al.Effects of foliar spraying melatonin on fruit quality of tomato during fruit expansion[J].Northern horticulture,2021(17):15-21 (in Chinese with English abstract). [百度学术]
WANG H M,REN C Y,CAO L A,et al.Exogenous melatonin modulates physiological response to nitrogen and improves yield in nitrogen-deficient soybean (Glycine max L.Merr.)[J/OL].Frontiers in plant science,2022,13:865758[2023-10-23].https://doi.org/10.3389/fpls.2022.865758. [百度学术]
NING X L,WANG X H,CUI Y E,et al.Chilling resistance of corn and cold stress responses of salicylic acid-treated corn[J/OL].ScienceAsia,2022,48(2):144[2023-10-23].http://dx.doi.org/10.2306/scienceasia1513-1874.2022.018. [百度学术]
李雪,吴杨婧雯,俞超,等.外源水杨酸对低温胁迫下火龙果幼苗的形态及生理效应[J/OL].广西植物,2023:1-10.LI X,WU Y J W,YU C,et al.Effect of exogenous salicylic acid on morphology and physiology of pitaya seedlings under low temperature stress[J/OL].Guihaia,2023:1-10[2023-10-23].https://kns.cnki.net/kcms2/detail/45.1134.q.20230523.1722.008.html.DOI:10.11931/guihaia.gxzw202211016(in Chinese with English abstract). [百度学术]
彭贞贞,钟传飞,王宝刚,等.‘红颜’草莓果实成熟过程中花色苷积累及合成途径基因表达的分析[J].食品工业科技,2023,44(14):346-354.PENG Z Z,ZHONG C F,WANG B G,et al.Analysis of anthocyanin accumulation and gene expression of anthocyanin synthesis pathway during fruit ripening of ‘Benihoppe’ strawberry[J].Science and technology of food industry,2023,44(14):346-354 (in Chinese with English abstract). [百度学术]
鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.BAO S D.Soil and agricultural chemistry analysis[M].3rd ed.Beijing:China Agriculture Press,2000(in Chinese). [百度学术]
王学奎,黄见良.植物生理生化实验原理与技术[M].3版.北京:高等教育出版社,2015.WANG X K,HUANG J L.Principles and techniques of plant physiological biochemical experiment[M].3rd ed.Beijing:Higher Education Press,2015(in Chinese). [百度学术]
王贝贝,徐旭,赵艳,等.植物生长调节剂对花后渍水遮阴小麦籽粒淀粉合成和干物质积累的影响[J].江苏农业学报,2022,38(1):9-19.WANG B B,XU X,ZHAO Y,et al.Effects of plant growth hormone on starch synthesis and dry matter accumulation of wheat grain under waterlogging and shading after anthesis[J].Jiangsu journal of agricultural sciences,2022,38(1):9-19 (in Chinese with English abstract). [百度学术]
何斌,刘颖,马玉寿.植物生长调节剂对发草种子产量及产量构成因素的影响[J].草地学报,2023,31(5):1588-1598.HE B,LIU Y,MA Y S.Effects of plant growth regulators on seed yield and yield components of Deschampsia cespitosa[J].Acta agrestia sinica,2023,31(5):1588-1598 (in Chinese with English abstract). [百度学术]
谭诚,张辉,袁洁,等.不同植物生长调节剂对甘薯分枝结薯期淹水的缓解效果[J].江苏农业科学,2022,50(23):81-89.TAN C,ZHANG H,YUAN J,et al.Alleviating effects of different plant growth regulators on the flooding of sweet potato at the branch and nodding stage[J].Jiangsu agricultural sciences,2022,50(23):81-89 (in Chinese). [百度学术]
战帅,王文伟,赵竹青,等.氮磷钾肥与皓达肥配施对生菜产量和氮磷钾吸收的影响[J].长江蔬菜,2018(12):52-55.ZHAN S,WANG W W,ZHAO Z Q,et al.Effects of NPK fertilizer and Hrda fertilizer combined application on yield and NPK uptake of lettuce[J].Journal of Changjiang vegetables,2018(12):52-55 (in Chinese with English abstract). [百度学术]
刘长乐,寇佩雯,许祎珂,等.逆境胁迫和植物生长调节剂对甘草种子萌发的影响[J].中国野生植物资源,2022,41(2):14-20.LIU C L,KOU P W,XU Y K,et al.Effects of adversity stress and plant growth regulators on seed germination of Glycyrrhiza uralensis Fisch[J].Chinese wild plant resources,2022,41(2):14-20 (in Chinese with English abstract). [百度学术]
李田甜,陈国栋,万素梅,等.叶面喷施不同配方植物生长调节剂对棉花苗期根系生长的影响[J].山东农业科学,2022,54(2):46-50.LI T T,CHEN G D,WAN S M,et al.Effects of foliar application of plant growth regulators with different formula on root growth of cotton at seedling stage[J].Shandong agricultural sciences,2022,54(2):46-50 (in Chinese with English abstract). [百度学术]
谢田朋,柳娜,刘越敏,等.化肥减量配施中药源植物生长调节剂对当归质量和根际土壤细菌群落的影响[J].生物技术通报,2022,38(3):79-91.XIE T P,LIU N,LIU Y M,et al.Effects of chemical fertilizer reduction and application of plant growth regulators from traditional Chinese medicine on the quality and its bacterial community in rhizosphere soil[J]. Biotechnology bulletin,2022,38(3):79-91 (in Chinese with English abstract) [百度学术]
李甜子,郑殿峰,冯乃杰,等.植物生长调节剂对低温胁迫下荔枝生理特性及产量的影响[J].热带作物学报,2022,43(3):509-519.LI T Z,ZHENG D F,FENG N J,et al.Effects of plant growth regulators on physiological characteristics and yield of Litchi plants under low temperature stress[J].Chinese journal of tropical crops,2022,43(3):509-519 (in Chinese with English abstract). [百度学术]
李浩铭,李青丰,曲艳,等.不同植物生长调剂对八宝景天株型和生理特性的影响[J].草地学报,2022,30(12):3294-3301.LI H M,LI Q F,QU Y,et al.Effects of different plant growth regulators on plant type and physiological characteristics of Sedum Babao[J].Acta agrestia sinica,2022,30(12):3294-3301 (in Chinese with English abstract). [百度学术]
丁凯鑫,冯乃杰,郑殿峰,等.植物生长调节剂对赤豆鼓粒期光合特性及氮代谢的影响[J].核农学报,2022,36(12):2510-2518.DING K X,FENG N J,ZHENG D F,et al.Effects of plant growth regulators on photosynthetic characteristics and nitrogen metabolism of adzuki bean during seed filling stage[J].Journal of nuclear agricultural sciences,2022,36(12):2510-2518 (in Chinese with English abstract). [百度学术]
李海燕,张丽平,王莉,等.2种植物生长调节剂对阳光玫瑰葡萄品质的影响[J].浙江大学学报(农业与生命科学版),2016,42(4):419-426.LI H Y,ZHANG L P,WANG L,et al.Effects of two kinds of plant growth regulators on fruit quality of Shine Muscat grape[J].Journal of Zhejiang University (agriculture and life sciences),2016,42(4):419-426 (in Chinese with English abstract). [百度学术]