摘要
为探究在酸性土壤环境下油菜苗期耐酸特性,采用盆栽试验对113份油菜品种进行酸胁迫处理和酸性土壤改良处理,在苗期测定根长、株高、地上部鲜质量、根系鲜质量、总鲜质量、地上部干质量、根系干质量、总干质量、根冠比和SPAD共10项性状指标,利用相关性分析、主成分分析、隶属函数法、聚类分析、灰色关联度和逐步回归分析对不同油菜品种进行耐酸综合评价,建立油菜耐酸评价模型并筛选耐酸油菜品种。结果显示:113份油菜品种在2个处理下10个性状均呈现极显著差异;10项指标的变异系数范围为10.09%~78.68%,将10个单项指标转换成4个相互独立的综合指标,代表了原始指标88.688%的信息量;基于113份油菜的耐酸综合评价值(D值)聚类分析,将油菜品种分为5个类群,分别为极耐酸型(2份)、耐酸型(16份)、中间型(41份)、敏感型(50份)、极敏感型(4份);通过D值和10项指标构建最优回归方程:D =-0.075+ 0.0403X总干质量+ 0.100X根系鲜质量+ 0.188X SPAD+ 0.099X株高+ 0.092X根系干质量(
土壤的自然酸化过程本身比较缓
油菜作为我国主要的油料作物之一,其种植面积和总产量均居世界前
前人的研究结果为耐酸油菜品种筛选奠定了良好的基础,但也存在一些不足。这些研究大多采用水培的方式进行筛选,与土壤环境差异较大,并且主要关注酸性土壤中铝毒这一种胁迫,而酸性土壤对植物生长存在多种障碍因子,因此可能使筛选出来的品种田间适应性不佳。本研究以具有不同遗传背景和地理来源的113份油菜品种为材料,采用盆栽试验进行酸胁迫处理和酸性土壤改良处理,以10个性状指标的耐酸系数作为衡量油菜耐酸性的指标,利用相关性分析、主成分分析、隶属函数法、聚类分析、逐步回归分析和灰色关联度分析对不同油菜品种进行耐酸综合评价,鉴定和筛选耐酸油菜品种,明确油菜苗期耐酸性状特征,以期为油菜耐酸机制研究及耐酸油菜品种的培育提供材料基础。
供试甘蓝型油菜品种主要来源于我国长江流域油菜主产区(湖北、湖南、四川、安徽、江西、浙江、江苏、重庆、贵州、上海),共113份,具有不同的遗传背景和地理来源(
编号 No. | 品种名称 Variety name | 来源 Source | 编号 No. | 品种名称 Variety name | 来源 Source |
---|---|---|---|---|---|
1 | 丰油730 Fengyou 730* | 湖南Hunan | 40 | CY12GJ-1 | 四川Sichuan |
2 | 沣油306 Fengyou 306 | 湖南Hunan | 41 | 秦优1699 Qinyou 1699 | 陕西Shaanxi |
3 | 沣油789 Fengyou 789 | 湖南Hunan | 42 | 秦优1718 Qinyou 1718* | 陕西Shaanxi |
4 | 沣油823 Fengyou 823 | 湖南Hunan | 43 | 秦油5号Qinyou 5 | 陕西Shaanxi |
5 | 湘杂油6号Xiangzayou 6 | 湖南Hunan | 44 | 青油2号Qingyou 2 | 青海Qinghai |
6 | 湘杂油631 Xiangzayou 631 | 湖南Hunan | 45 | 德徽油88 Dehuiyou 88 | 安徽Anhui |
7 | 湘杂油743 Xiangzayou 743 | 湖南Hunan | 46 | 德选518 Dexuan 518 | 安徽Anhui |
8 | 华油杂652 Huayouza 652 | 湖北Hubei | 47 | 润普丰Runpufeng | 安徽Anhui |
9 | 中油杂28 Zhongyouza 28 | 湖北Hubei | 48 | 天禾油17 Tianheyou 17 | 安徽Anhui |
10 | 利油杂3号Liyouza 3 | 湖北Hubei | 49 | 圣灯1号Shengdeng 1 | 湖北Hubei |
11 | 利油杂168 Liyouza 168 | 湖北Hubei | 50 | 圣缘1号Shengyuan 1 | 湖北Hubei |
12 | 阳光131 Yangguang 131* | 湖北Hubei | 51 | 大地95 Dadi 95 | 湖北Hubei |
13 | 大地199 Dadi 199* | 湖北Hubei | 52 | GY-5 | 湖北Hubei |
14 | 中油杂19 Zhongyouza 19* | 湖北Hubei | 53 | 甲预31棚Jiayu31peng | 湖北Hubei |
15 | 中油杂39 Zhongyouza 39 | 湖北Hubei | 54 | WH-49 | 湖北Hubei |
16 | 华油杂68 Huayouza 68 | 湖北Hubei | 55 | WH-50 | 湖北Hubei |
17 | 华油杂82 Huayouza 82 | 湖北Hubei | 56 | WH-59 | 湖北Hubei |
18 | 华油杂158 Huayouza 158 | 湖北Hubei | 57 | WH-63 | 湖北Hubei |
19 | 华油杂158R Huayouza 158R | 湖北Hubei | 58 | WH-88 | 湖北Hubei |
20 | 鄂垦油629 Ekenyou 629 | 湖北Hubei | 59 | WH-83 | 湖北Hubei |
21 | 18LP10 | 湖北Hubei | 60 | WH-85 | 湖北Hubei |
22 | 华油杂50 Huayouza 50* | 湖北Hubei | 61 | WH-58 | 湖北Hubei |
23 | 华油杂655R Huayouza 655R | 湖北Hubei | 62 | WH-19 | 湖北Hubei |
24 | H20-01 | 湖北Hubei | 63 | 宁R101 NingR 101 | 江苏Jiangsu |
25 | H21-01 | 湖北Hubei | 64 | 宁R201 NingR 201 | 江苏Jiangsu |
26 | 川早油12 Chuanzaoyou 12 | 江西Jiangxi | 65 | 宁油1号Ningyou 1 | 江苏Jiangsu |
27 | 赣油杂8号Ganyouza 8* | 江西Jiangxi | 66 | 杨油6号Yangyou 6 | 江苏Jiangsu |
28 | 赣油杂9号Ganyouza 9 | 江西Jiangxi | 67 | 镇油3号Zhenyou 3 | 江苏Jiangsu |
29 | 赣油杂10号Ganyouza 10 | 江西Jiangxi | 68 | 垛油一号Duoyouyihao | 江苏Jiangsu |
30 | 赣油杂906 Ganyouza 906 | 江西Jiangxi | 69 | 浙杂903 Zheza 903 | 浙江Zhejiang |
31 | 邡油777 Fangyou 777* | 四川Sichuan | 70 | 浙双8号Zheshuang 8 | 浙江Zhejiang |
32 | 德5油66 De5you 66 | 四川Sichuan | 71 | 浙油18 Zheyou 18 | 浙江Zhejiang |
33 | 德核杂油9 Dehezayou 9 | 四川Sichuan | 72 | 浙双72 Zheshuang 72 | 浙江Zhejiang |
34 | 川油18 Chuanyou 18 | 四川Sichuan | 73 | 胜利青梗Shengliqinggeng | 上海Shanghai |
35 | CY12NY-7 | 四川Sichuan | 74 | 沪油12号Huyou 12 | 上海Shanghai |
36 | CY12QSZ06 | 四川Sichuan | 75 | 沪油14号Huyou 14 | 上海Shanghai |
37 | CY12PXW-4 | 四川Sichuan | 76 | 丰油737 Fengyou 737* | 湖南Hunan |
38 | CY13PXW-17 | 四川Sichuan | 77 | 常油杂9号Changyouza 9 | 湖南Hunan |
39 | CY18PXW-62 | 四川Sichuan | 78 | 沣油737 Fengyou 737 | 湖南Hunan |
79 | 圣光50 Shengguang 50 | 湖南Hunan | 97 | 华油10号Huayou 10 | 湖北Hubei |
80 | 圣光165R Shengguang 165R | 湖南Hunan | 98 | 中双11号 Zhongshuang 11* | 湖北Hubei |
81 | 圣光168 Shengguang 168 | 湖南Hunan | 99 | 11-P74-13 | 湖北Hubei |
82 | 湘农油3号Xiangnongyou 3 | 湖南Hunan | 100 | 09-P37 | 湖北Hubei |
83 | 华油12 Huayou 12 | 湖北Hubei | 101 | 12-P24 | 湖北Hubei |
84 | 08-P35 | 湖北Hubei | 102 | 庆油3号Qingyou 3 | 重庆Chongqing |
85 | 08-P36 | 湖北Hubei | 103 | 庆油8号Qingyou 8 | 重庆Chongqing |
86 | 09-P32 | 湖北Hubei | 104 | 庆油11号Qingyou 11 | 重庆Chongqing |
87 | 09-P36 | 湖北Hubei | 105 | SWU49 | 重庆Chongqing |
88 | 09-P37 | 湖北Hubei | 106 | 金油杂6号Jinyouza 6 | 贵州Guizhou |
89 | 10-P10 | 湖北Hubei | 107 | 金油杂8号Jinyouza 8 | 贵州Guizhou |
90 | 10-P29 | 湖北Hubei | 108 | 金油杂8号Jinyouza 9 | 贵州Guizhou |
91 | 11-P30 | 湖北Hubei | 109 | 金油杂8号Jinyouza 10 | 贵州Guizhou |
92 | 12-P24 | 湖北Hubei | 110 | 金油杂8号Jinyouza 11 | 贵州Guizhou |
93 | 12-P25 | 湖北Hubei | 111 | 金油杂8号Jinyouza 12 | 贵州Guizhou |
94 | 中双2号Zhongshuang 2 | 湖北Hubei | 112 | 黔选6 Qianxuan 6 | 贵州Guizhou |
95 | 轮选1427-1 Lunxuan 1427-1 | 湖北Hubei | 113 | 黔油4号 Qianyou 4 | 贵州Guizhou |
96 | 农林22 Nonglin 22 | 湖北Hubei |
注: *表示国家农作物优良品种推广目录(2023)中的油菜品种。Note: * indicates the rapeseed varieties in the National Promotion Directory of Crop Varieties (2023).
试验于2022-2023年在华中农业大学盆栽场进行。供试土壤为红壤,取自湖北咸宁贺胜桥,土壤基础理化性质为pH 4.82、有机质含量4.84 g/kg、全氮含量0.31 g/kg、速效磷含量1.33 mg/kg、速效钾含量84.13 mg/kg、铝离子含量503.01 mg/kg。试验设置2个处理,分别为酸胁迫处理(pH 4.82,原始土壤)和酸性土壤改良处理(pH 6.24,适宜油菜生长的正常土壤pH),酸性土壤改良参考闫志浩
挑选113份油菜品种中饱满均匀的种子,分别播种在2个pH水平的土壤中,设3个重复,每个品种播种15粒,间苗后留4株长势均匀一致的油菜。将盆栽放置于防雨棚下,大棚仅起到防雨的作用,其余条件与外界环境相同。定期浇水,油菜生长38 d后收样。
收样前,用SPAD-502型便捷式叶绿素测定仪测定各植株叶片的SPAD。收样后,将根系清洗干净后用吸水纸吸干水分,分别测定株高、根长、地上部鲜质量和根鲜质量。之后将地上部和根系分别烘干至恒质量后测定其干质量。
由地上部鲜质量和根系鲜质量相加计算出总鲜质量;地上部干质量和根系干质量相加计算出总干质量;根冠比为根系干质量与地上部干质量的比值。
利用Microsoft Excel 2016统计和整理原始数据;采用Graphpad Prism制作相关分析图。采用SPSS 22.0进行方差分析、相关性分析、主成分分析,R语言进行聚类分析。采用隶属函数法进行耐酸综合评价,相关指标计算参照文献[
耐酸系数=酸胁迫处理下的指标值/酸性土壤改良处理下的指标值 | (1) |
运用
i=1,2……m; j=1,2……n | (2) |
运用
j=1,2……n | (3) |
运用
j=1,2……n | (4) |
运用
i=1,2……m; j=1,2……k | (5) |
运用
j=1,2……k | (6) |
运用
j=1,2……k | (7) |
对2个处理下113份油菜品种苗期的10项性状指标,包括根长、株高、地上部鲜质量、根系鲜质量、总鲜质量、地上部干质量、根系干质量、总干质量、根冠比和SPAD进行统计分析。结果显示,根冠比在酸胁迫处理下的平均值与酸性土壤改良处理下相比呈现上升趋势,其余9项指标均呈现下降趋势,并且10项指标在2个处理下均达到极显著差异(

图1 酸胁迫下油菜苗期各性状的变化
Fig. 1 Changes of each trait in rapeseed seedlings stage under acid stress
pH 6.24:酸性土壤改良处理;pH 4.82:酸胁迫处理。**表示在0.01水平差异显著,***表示在0.001水平上差异显著。RL:根长;PH:株高;RFW:根系鲜质量;AFW:地上部鲜质量;TFW:总鲜质量;RDW:根系干质量;ADW:地上部干质量;TDW:总干质量;RSR:根冠比;SPAD值表示叶绿素相对含量。下同。pH 6.24: Acid soil improvement treatment; pH 4.82: Acid stress treatment. ** represents significance at the 0.01 level,*** represents significance at the 0.001 level. RL: Root length; PH: Plant height; RFW: Root fresh weight; AFW: Aboveground fresh weight; TFW: Total fresh weight; RDW: Root dry weight; ADW: Aboveground dry weight; TDW: Total dry weight; RSR: Root shoot ratio; SPAD shows chlorophyll relative content. The same as below.
性状 Traits | 酸性土壤改良处理 Acid soil improvement treatment | 酸胁迫处理 Acid stress treatment | ||||
---|---|---|---|---|---|---|
变化范围Variation range | 平均值 Mean | 变异系数/%CV | 变化范围Variation range | 平均值 Mean | 变异系数/%CV | |
RL/cm | 7.38~16.61 | 10.77 | 13.65 | 6.10~13.95 | 9.67 | 16.93 |
PH/cm | 1.88~12.72 | 6.62 | 33.93 | 0.65~4.74 | 2.82 | 28.25 |
RFW/g | 0.05~0.56 | 0.21 | 45.41 | 0.01~0.26 | 0.083 | 48.32 |
AFW/g | 0.85~4.79 | 2.37 | 33.73 | 0.10~1.83 | 0.63 | 60.77 |
TFW/g | 0.96~5.18 | 2.57 | 32.74 | 0.13~2.09 | 0.72 | 57.74 |
RDW/g | 0.02~0.15 | 0.06 | 45.26 | 0.01~0.07 | 0.02 | 55.08 |
ADW/g | 0.06~0.39 | 0.18 | 39.07 | 0.01~0.14 | 0.05 | 61.67 |
TDW/g | 0.08~0.48 | 0.23 | 33.09 | 0.02~0.19 | 0.07 | 55.19 |
RSR | 0.10~1.96 | 0.38 | 57.03 | 0.08~1.94 | 0.50 | 61.01 |
SPAD | 25.10~35.07 | 28.72 | 7.39 | 19.00~29.47 | 23.83 | 7.16 |
根据
指标 Index | 最大值 Maximum | 最小值 Minimum | 平均值 Mean | 标准差 SD | 变异系数/% CV |
---|---|---|---|---|---|
RRL | 1.309 | 0.507 | 0.907 | 0.159 | 17.580 |
RPH | 1.513 | 0.232 | 0.460 | 0.198 | 43.031 |
RRFW | 2.333 | 0.050 | 0.484 | 0.319 | 65.933 |
RAFW | 0.791 | 0.052 | 0.272 | 0.150 | 55.172 |
RTFW | 0.774 | 0.057 | 0.283 | 0.146 | 51.418 |
RRDW | 1.641 | 0.071 | 0.426 | 0.318 | 74.535 |
RADW | 0.834 | 0.066 | 0.282 | 0.142 | 50.443 |
RTDW | 0.777 | 0.071 | 0.300 | 0.137 | 45.575 |
RRSR | 7.730 | 0.188 | 1.715 | 1.349 | 78.681 |
RSPAD | 1.121 | 0.634 | 0.834 | 0.084 | 10.089 |
注: RRL:相对根长;RPH:相对株高;RRFW:相对根系鲜质量;RAFW:相对地上部鲜质量;RTFW:相对总鲜质量;RRDW:相对根系干质量;RADW:相对地上部干质量;RTDW:相对总干质量;RRSR:相对根冠比;RSPAD:相对叶绿素相对含量。下同。Note: RRL: Relative root length; RPH: Relative plant height; RRFW: Relative root fresh weight; RAFW: Relative aboveground fresh weight; RTFW: Relative total fresh weight; RRDW: Relative root dry weight; RADW: Relative aboveground dry weight; RTDW: Relative total dry weight; RSR: Relative root shoot ratio; RSPAD: Relative chlorophyll relative content. The same as below.

图2 油菜苗期各单项指标耐酸系数的相关性分析
Fig. 2 Correlation analysis of acid resistance coefficients of each single indicator in rapeseed seedling stage
*表示在0.05水平上显著相关;**表示在0.01水平上显著相关;***表示在0.001水平上显著相关。* represents significant correlation at the 0.05 level; ** represents significant correlation at the 0.01 level; *** represents significant correlation at the 0.001 level.
对113份油菜品种10项指标的耐酸系数进行主成分分析,把多个变量转化为少数几个综合指标从而达到浓缩数据的目的。前4个主成分的贡献率分别为46.246%、25.033%、10.077%、7.332%,累积贡献率达到88.688%(
项目 Item | 主成分 Principle factors | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
特征值 Eigenvalue | 4.625 | 2.503 | 1.008 | 0.733 | |
贡献率/% Contributive ratio | 46.246 | 25.033 | 10.077 | 7.332 | |
累积贡献率/% Cumulative contributive ratio | 46.246 | 71.279 | 81.357 | 88.688 | |
特征向量值 Eigenvector value | RRL | 0.135 | 0.067 | -0.156 | -0.434 |
RPH | 0.080 | -0.150 | 0.512 | 0.827 | |
RRFW | 0.201 | -0.116 | -0.052 | -0.105 | |
RAFW | 0.109 | 0.283 | 0.035 | 0.203 | |
RTFW | 0.206 | -0.090 | -0.045 | -0.102 | |
RRDW | 0.203 | -0.117 | 0.016 | -0.079 | |
RADW | 0.111 | 0.312 | -0.091 | 0.249 | |
RTDW | 0.209 | 0.022 | -0.016 | 0.030 | |
RRSR | -0.007 | 0.375 | -0.038 | 0.171 | |
RSPAD | 0.007 | 0.135 | 0.831 | -0.575 |
根据不同油菜品种各综合指标值和贡献率,利用隶属函数法计算各综合指标的隶属函数值,再结合各综合指标的权重计算出不同油菜品种的耐酸综合评价值(D值)。113份油菜品种D值的范围为0.115~0.705,D值越小表明耐酸性越弱,D值越大表明耐酸性越强(

图3 基于D值的113份油菜品种耐酸性聚类分析
Fig. 3 Cluster analysis of acid tolerance of 113 rapeseed varieties based on D values
第Ⅰ类属于极耐酸型,第Ⅱ类属于耐酸型,第Ⅲ类属于中间型,第Ⅳ类属于敏感型,第Ⅴ类属于极敏感型。Class Ⅰ belongs to the extremely acid-resistant type,class Ⅱ belongs to the acid-resistant type,class Ⅲ belongs to the intermediate type,class Ⅳ belongs to the sensitive type,class Ⅴ belongs to the extremely sensitive type.
第Ⅰ类属于极耐酸型油菜品种,包括杨油6、沣油823共2份种质,D值范围为0.670~0.705,占供试品种的1.77%;第Ⅱ类属于耐酸型油菜品种,包括赣油杂9号、华油杂50、中油杂39、浙杂903、湘杂油631等16份种质,D值范围为0.462~0.568,占供试品种的14.16%;第Ⅲ类属于中间型油菜品种,包括丰油737、川早油12、庆油8号、华油杂82、常油杂9号等41份种质,D值范围为0.309~0.449,占供试品种的36.28%;第Ⅳ类属于敏感型油菜品种,包括金油杂9号、沣油306、润普丰、华油杂655R、金油杂12号等50份种质,D值范围为0.193~0.300,占供试品种的44.25%;第Ⅴ类属于极敏感型油菜品种,包括浙双8号、12-P24、金油杂6号、鄂垦油629共4份种质,D值范围为0.115~0.172,占供试品种的3.54%。统计5个类群各单项指标的耐酸系数和耐酸综合评价值(D值)(
指标 Index | 类群 Group | |||||
---|---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | ||
耐酸系数 Acid resistance coefficient | RRL | 1.009a | 1.053a | 0.955ab | 0.839b | 0.628c |
RPH | 0.989a | 0.498b | 0.464bc | 0.438bc | 0.280c | |
RRFW | 1.520a | 0.834b | 0.556c | 0.303d | 0.099d | |
RAFW | 0.507a | 0.435a | 0.301b | 0.202bc | 0.081c | |
RTFW | 0.528a | 0.452a | 0.316b | 0.209b | 0.083c | |
RRDW | 1.143a | 0.902b | 0.474c | 0.233d | 0.102e | |
RADW | 0.537a | 0.451a | 0.303b | 0.217b | 0.098c | |
RTDW | 0.590a | 0.510b | 0.331c | 0.211d | 0.099e | |
RRSR | 3.688a | 2.533ab | 1.913b | 1.255b | 1.163b | |
SPAD | 0.879a | 0.858a | 0.847a | 0.817a | 0.786a | |
D值 D value | 0.688a | 0.506b | 0.365c | 0.257d | 0.147e |
注: 同行中不同小写字母表示差异达0.05显著水平。Note: Different lowercase letters in same line indicate significant difference at 0.05 level.
不同油菜品种10项指标耐酸系数与D值的灰色关联度、权重和排序如
指标 Index | 关联度 Correlation degree | 权重 Weight | 排序 Rank |
---|---|---|---|
TDW | 0.971 | 0.106 | 1 |
RL | 0.969 | 0.105 | 2 |
SPAD | 0.965 | 0.104 | 3 |
PH | 0.956 | 0.104 | 4 |
ADW | 0.954 | 0.103 | 5 |
TFW | 0.950 | 0.103 | 6 |
AFW | 0.944 | 0.102 | 7 |
RDW | 0.871 | 0.094 | 8 |
RFW | 0.857 | 0.093 | 9 |
RSR | 0.785 | 0.086 | 10 |
土壤酸化已经成为影响作物生长、产量和品质的重要障碍因子之一。研究表明,土壤酸化会导致土壤中Al、Mn等元素毒害加重,以及P、K、Ca、Mg、Mo、B等养分元素缺
苗期是油菜养分积累的关键时期,影响着后期的生长发
筛选较为简易、直观、有效的油菜耐酸鉴定指标,对于耐酸油菜品种的鉴定和选育工作具有重要意义。前人对于油菜耐酸抗铝的研究结果表明许多表型和生理指标与油菜耐酸抗铝相
参考文献References
KRUG E C,FRINK C R.Acid rain on acid soil:a new perspective[J].Science,1983,221(4610):520-525. [百度学术]
徐仁扣,李九玉,周世伟,等.我国农田土壤酸化调控的科学问题与技术措施[J].中国科学院院刊,2018,33(2):160-167.XU R K,LI J Y,ZHOU S W,et al.Scientific issues and controlling strategies of soil acidification of croplands in China[J].Bulletin of Chinese academy of sciences,2018,33(2):160-167 (in Chinese with English abstract). [百度学术]
孟红旗,刘景,徐明岗,等.长期施肥下我国典型农田耕层土壤的pH演变[J].土壤学报,2013,50(6):1109-1116.MENG H Q,LIU J,XU M G,et al.Evolution of pH in topsoils of typical Chinese croplands under long-term fertilization[J].Journal of soil sciences,2013,50(6):1109-1116 (in Chinese with English abstract). [百度学术]
MATSUMOTO H.Cell biology of aluminum toxicity and tolerance in higher plants[J].International review of cytology,2000,200:1-46. [百度学术]
VON UEXKÜLL H R,MUTERT E.Global extent,development and economic impact of acid soils[J].Plant and soil,1995,171(1):1-15. [百度学术]
赵天龙,解光宁,张晓霞,等.酸性土壤上植物应对铝胁迫的过程与机制[J].应用生态学报,2013,24(10):3003-3011.ZHAO T L,XIE G N,ZHANG X X,et al.Process and mechanism of plants coping with aluminum stress in acidic soil[J].Chinese journal of applied ecology,2013,24(10):3003-3011 (in Chinese with English abstract). [百度学术]
徐仁扣.土壤酸化及其调控研究进展[J].土壤,2015,47(2):238-244.XU R K.Research progress of soil acidification and its regulation[J].Soils,2015,47(2):238-244 (in Chinese with English abstract). [百度学术]
吴道铭,傅友强,于智卫,等.我国南方红壤酸化和铝毒现状及防治[J].土壤,2013,45(4):577-584.WU D M,FU Y Q,YU Z W,et al.Present situation and prevention of acidification and aluminum poisoning in red soil in southern China[J].Soils,2013,45(4):577-584 (in Chinese with English abstract). [百度学术]
CARVER B,OWNBY J.Acid soil tolerance in wheat[J].Advances in agronomy,1995,54:117-173. [百度学术]
应小芳,刘鹏,徐根娣,等.大豆耐铝毒基因型筛选及筛选指标的研究[J].中国油料作物学报,2005,27(1):46-51.YING X F,LIU P,XU G D,et al.Screening of soybean genotypes with tolerance to aluminum toxicity and study of the screening indices[J].Chinese journal of oil crop sciences,2005,27(1):46-51 (in Chinese with English abstract). [百度学术]
HU Q,HUA W,YIN Y,et al.Rapeseed research and production in China[J].The crop journal,2017,5(2):127-135. [百度学术]
闫志浩,胡志华,王士超,等.石灰用量对水稻油菜轮作区土壤酸度、土壤养分及作物生长的影响[J].中国农业科学,2019,52(23):4285-4295.YAN Z H,HU Z H,WANG S C,et al.Effects of lime content on soil acidity,soil nutrients and crop growth in rice-rapeseed rotation system[J].Agricultural sciences in China,2019,52(23):4285-4295 (in Chinese with English abstract). [百度学术]
周会汶,黄朝平,汪子怡,等.大豆苗期耐铝毒特性综合评价及种质筛选[J].大豆科学,2022,41(6):654-662.ZHOU H W,HUANG C P,WANG Z Y,et al.Comprehensive evaluation and germplasm screening of aluminum toxicity tolerance of soybean at seedling stage[J].Soybean science,2022,41(6):654-662 (in Chinese with English abstract). [百度学术]
于天一,林建材,孙学武,等.花生幼苗耐酸鉴定指标筛选及综合评价[J].中国油料作物学报,2017,39(4):488-495.YU T Y,LIN J C,SUN X W,et al.Screen of acid resistance evaluation indicators and comprehensive evaluation in peanut seedlings of different genotypes[J].Chinese journal of oil crop sciences,2017,39(4):488-495 (in Chinese with English abstract). [百度学术]
曾勇军,周庆红,吕伟生,等.土壤酸化对双季早、晚稻产量的影响[J].作物学报,2014,40(5):899-907.ZENG Y J,ZHOU Q H,LÜ W S,et al.Effects of soil acidification on the yield of double season rice[J].Journal of crop science,2014,40(5):899-907 (in Chinese with English abstract). [百度学术]
DAI S F,YAN Z H,LIU D C,et al.Comparative analysis of six Triticum turgidum L. subspecies for acid and aluminum tolerance[J].Agricultural sciences in China,2010,9(5):642-650. [百度学术]
JOHNSON J,CARVER B,BALIGAR V.Productivity in great plains acid soils of wheat genotypes selected for aluminium tolerance[J].Plant and soil,1997,188(1):101-106. [百度学术]
章爱群,贺立源,李德华,等.酸胁迫对不同基因型玉米生长和养分吸收的影响[J].植物营养与肥料学报,2007,13(4):548-553,568.ZHANG A Q,HE L Y,LI D H,et al.Effect of acid-stress on growth and nutrient absorption of different maize genotypes[J].Plant nutrition and fertilizer science,2007,13(4):548-553,568 (in Chinese with English abstract). [百度学术]
郜欢欢,叶桑,王倩,等.甘蓝型油菜种子萌发期耐铝毒特性综合评价及其种质筛选[J].作物学报,2019,45(9):1416-1430.GAO H H,YE S,WANG Q,et al.Screening and comprehensive evaluation of aluminum-toxicity tolerance during seed germination in Brassca napus[J].Journal of crop science,2019,45(9):1416-1430 (in Chinese with English abstract). [百度学术]
熊洁,丁戈,陈伦林,等.不同基因型油菜耐铝性及其根系形态对铝胁迫的响应[J].中国油料作物学报,2021,43(4):673-682.XIONG J,DING G,CHEN L L,et al.Aluminum tolerance and root morphology response from different rapeseed cultivars under aluminum stress[J].Chinese journal of oil crop sciences,2021,43(4):673-682 (in Chinese with English abstract). [百度学术]
梁潇,侯向阳,王艳荣,等.羊草种质资源耐盐碱性综合评价[J].中国草地学报,2019,41(3):1-9.LIANG X,HOU X Y,WANG Y R,et al.Comprehensive evaluation of salt and alkali tolerance of leymus chinensis germplasm [J].Chinese journal of grassland,2019,41(3):1-9 (in Chinese with English abstract). [百度学术]
张静,高文博,晏林,等.燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选[J].作物学报,2023,49(6):1551-1561.ZHANG J,GAO W B,YAN L,et al.Identification and evaluation of salt-alkali tolerance and screening of salt-alkali tolerant germplasm of oat(Avena sativa L.)[J].Journal of crop science,2023,49(6):1551-1561 (in Chinese with English abstract). [百度学术]
陈二影,王润丰,秦岭,等.谷子芽期耐盐碱综合鉴定及评价[J].作物学报,2020,46(10):1591-1604.CHEN E Y,WANG R F,QIN L,et al.Comprehensive identification and evaluation of foxtail millet for saline-alkaline tolerance during germination[J].Journal of crop science,2020,46(10):1591-1604 (in Chinese with English abstract). [百度学术]
沈倩,张思平,刘瑞华,等.棉花出苗期耐冷综合评价体系的构建及耐冷指标筛选[J].中国农业科学,2022,55(22):4342-4355.SHEN Q,ZHANG S P,LIU R H,et al.Construction of a comprehensive evaluation system and screening of cold tolerance indicators for cold tolerance of cotton at seedling emergence stage[J].Agricultural sciences in China,2022,55(22):4342-4355 (in Chinese with English abstract). [百度学术]
李丰先,周宇飞,王艺陶,等.高粱品种萌发期耐碱性筛选与综合鉴定[J].中国农业科学,2013,46(9):1762-1771.LI F X,ZHOU Y F,WANG Y T,et al.Screening and identification of Sorghum cultivars for alkali tolerance during germination[J].Agricultural sciences in China,2013,46(9):1762-1771 (in Chinese with English abstract). [百度学术]
于天一,孙秀山,石程仁,等.土壤酸化危害及防治技术研究进展[J].生态学杂志,2014,33(11):3137-3143.YU T Y,SUN X S,SHI C R,et al.Advances in soil acidification hazards and control techniques[J].Chinese journal of ecology,2014,33(11):3137-3143 (in Chinese with English abstract). [百度学术]
韩配配,秦璐,李银水,等.不同营养元素缺乏对甘蓝型油菜苗期生长和根系形态的影响[J].中国油料作物学报,2016,38(1):88-97.HAN P P,QIN L,LI Y S,et al.Effects of different nutrient deficiencies on growth and root morphological changes of rapeseed seedlings(Brassica napus L.)[J].Chinese journal of oil crop sciences,2016,38(1):88-97 (in Chinese with English abstract). [百度学术]
刘波,魏全全,鲁剑巍,等.苗期渍水和氮肥用量对直播冬油菜产量及氮肥利用率的影响[J].植物营养与肥料学报,2017,23(1):144-153.LIU B,WEI Q Q,LU J W,et al.Effects of waterlogging at the seedling stage and nitrogen application on seed yields and nitrogen use efficiency of direct-sown winter rapeseed(Brassica napus L.)[J].Journal of plant nutrition and fertilizer,2017,23(1):144-153 (in Chinese with English abstract). [百度学术]
HEDE A R,SKOVMAND B,RIBAUT J M,et al.Evaluation of aluminium tolerance in a spring rye collection by hydroponic screening[J].Plant breeding,2002,121(3):241-248. [百度学术]
NAVAKODE S,WEIDNER A,LOHWASSER U,et al.Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat[J].Euphytica,2009,166(2):283-290. [百度学术]
FOY C D.Tolerance of barley cultivars to an acid,aluminum-toxic subsoil related to mineral element concentrations in their shoots[J].Journal of plant nutrition,1996,19(10):1361-1380. [百度学术]
ALVIM M N,RAMOS F T,OLIVEIRA D C,et al.Aluminium localization and toxicity symptoms related to root growth inhibition in rice (Oryza sativa L.) seedlings[J].Journal of biosciences,2012,37(1):1079-1088. [百度学术]
MA J F,NAGAO S,SATO K,et al.Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley[J].Journal of experimental botany,2004,55(401):1335-1341. [百度学术]
张恒,陈艳琦,任杰莹,等.西南麦区小麦苗期氮高效品种筛选及指标体系构建[J].四川农业大学学报,2022,40(1):10-18,27.ZHANG H,CHEN Y Q,REN J Y,et al.Screening of wheat cultivars with high nitrogen efficiency at seedling stage and construction of index system in southwest wheat region[J].Journal of Sichuan Agricultural University,2022,40(1):10-18,27 (in Chinese with English abstract). [百度学术]
刘光辉,陈全家,吴鹏昊,等.棉花花铃期抗旱性综合评价及指标筛选[J].植物遗传资源学报,2016,17(1):53-62,69.LIU G H,CHEN Q J,WU P H,et al.Screening and comprehensive evaluation of drought resistance indices of cotton at blossing and boll-forming stages[J].Journal of plant genetic resources,2016,17(1):53-62,69 (in Chinese with English abstract). [百度学术]
连盈,卢娟,胡成梅,等.低氮胁迫对谷子苗期性状的影响和耐低氮品种的筛选[J].中国生态农业学报,2020,28(4):523-534.LIAN Y,LU J,HU C M,et al.Effects of low nitrogen stress on foxtail millet seedling characteristics and screening of low nitrogen tolerant varieties[J].Chinese journal of eco-agriculture,2020,28(4):523-534 (in Chinese with English abstract). [百度学术]
付鸾鸿,于崧,于立河,等.不同基因型燕麦萌发期耐盐碱性分析及其鉴定指标的筛选[J].作物杂志,2018(6):27-35.FU L H,YU S,YU L H,et al.Analysis of saline-alkaline tolerance and screening of identification indexes of different oat genotypes at the germination stage[J].Crops,2018(6):27-35(in Chinese with English abstract). [百度学术]
虞晓芬,傅玳.多指标综合评价方法综述[J].统计与决策,2004(11):119-121.YU X F,FU D.Summary of multi-index comprehensive evaluation methods[J].Statistics and decision making,2004(11):119-121 (in Chinese with English abstract). [百度学术]
KOCHIAN L V,HOEKENGA O A,PIÑEROS M A.How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency[J].Annual review of plant biology,2004,55:459-493. [百度学术]
王志颖,刘鹏,李锦山,等.铝胁迫下外源有机酸对油菜根系形态及叶绿素荧光特性的影响[J].江苏农业学报,2011,27(4):756-762.WANG Z Y,LIU P,LI J S,et al.Effects of exogenous organic acids on root morphology and chlorophyll fluorescence characteristics of rapeseed under aluminum stress[J].Jiangsu journal of agricultural sciences,2011,27(4):756-762 (in Chinese with English abstract). [百度学术]
韦冬萍,刘鹏,徐根娣,等.Al胁迫下油菜生物量Al积累及保护酶系统的响应[J].农业环境科学学报,2008,27(6):2351-2356.WEI D P,LIU P,XU G D,et al.Aluminum accumulation in rapeseed biomass and response of protective enzyme system to aluminum stress [J].Journal of agro-environment science,2008,27(6):2351-2356 (in Chinese with English abstract). [百度学术]
QIAN P,SUN R,ALI B,et al.Effects of hydrogen sulfide on growth,antioxidative capacity,and ultrastructural changes in oilseed rape seedlings under aluminum toxicity[J].Journal of plant growth regulation,2014,33(3):526-538. [百度学术]
ALI B,QIAN P,SUN R,et al.Hydrogen sulfide alleviates the aluminum-induced changes in Brassica napus as revealed by physiochemical and ultrastructural study of plant[J].Environmental science and pollution research,2015,22(4):3068-3081. [百度学术]