摘要
为明确被子植物的离子组及其与植物种类的关系,以及不同科被子植物叶片离子组组成的差异与联系,本研究对《狮山兰芷》中收录的华中农业大学校园种植的被子植物进行系统分类,从中筛选出102种被子植物,测定叶片中氮(N)、磷(P)、钾(K)、钙(Ca)、镁(Mg)、硫(S)、铁(Fe)、锰(Mn)、铜(Cu)、锌(Zn)、硼(B)、钼(Mo)和镍(Ni)等13种矿质元素的浓度,建立这些植物离子组指纹图谱并分析这些植物的离子组成分及其与植物种类的关系。结果显示,叶片中N、K和Ca 3种元素含量最高,P、Mg和S其次,微量元素含量最低。其中,豆目植物叶片N含量较高,石竹目植物叶片中P和K含量较高,7种微量元素含量在这102种被子植物叶片中也表现出较显著的差异。相关性分析显示,每种元素都至少与其他4种矿质营养元素存在显著相关性,其中Ca分别与Mg和B,N、P和K三者之间都存在极显著的正相关,Zn与Ca、Mg,P和Mn之间存在极显著的负相关。主成分分析显示,同一科植物的叶片离子组相似,不同科植物叶片离子组不同。聚类分析结果显示,Ca、N、K、S、Mg、P这6种矿质元素在不同科植物离子组的变异中具有较大的贡献率。以上结果表明,被子植物的系统发育与叶片离子组相互关联,同一科的植物叶片离子组表现出高度的相似性,我们或许能通过植物叶片离子组对植物进行种类鉴定。
植物体内所有矿质营养元素组成的总和被称为植物离子
离子组学是指所有围绕和服务于离子组的研究的总称,是利用现代高通量元素分析手段,结合生物信息学和功能基因组学等技术,分析植物体内各种离子的含量、分布、转运及代谢规律的一门科
植物离子组受基因组组成和外界环境共同调控。植物生长的环境直接或间接地对其离子组产生深远的影
相较于外界环境,基因组在离子组学中起着更为主要的作用。植物在感知外界胁迫后,调节特定转录因子,然后激活多个转运体,来转运和分配从其周围获得的营
华中农业大学姚家玲教授主编的《狮山兰芷
《狮山兰芷》对华中农业大学校园内的常见植物进行了初步分类,本研究根据这些植物分布地点和生长习性挑选常见102种被子植物,在生长旺盛期采集植株下部绿色展开叶片5~6片。将叶片装入牛皮纸袋中,于烘箱中105 ℃杀青30 min,65 ℃烘干至恒质量。最后用磨样机磨碎为粉末,后续进行矿质元素的测定。
称取0.070 0 g 植物干样粉末,倒入50 mL消化管中,加1滴超纯水润湿样品,使用移液管吸取5 mL浓H2SO4(分析纯)缓缓加入到消化管中。盖上保鲜膜,于通风橱中放置8 h后,在消化炉中120 ℃消化,20 min 后滴加8滴30% H2O2,约20 min消化液中无气泡后,再滴加8滴30% H2O2,重复此操作直到消化液澄清透明后取出,放置冷却,超纯水定容到50 mL。使用中速定量滤纸过滤消化液于10 mL离心管中。使用磷酸铵和磷酸二氢钾标准溶液分别配制氮(N)和磷(P)标准曲线。使用流动分析仪先测定标准曲线后再测定样品消化液中氮(N)和磷(P)浓
称取0.100 0 g 植物干样粉末,倒入50 mL消化管中,加1滴超纯水润湿样品,使用移液管吸取5 mL 58% HNO3(优级纯)缓缓加入到消化管中。盖上保鲜膜,于通风橱中放置8 h后,在消化炉中120 ℃消化,约16~24 h,消化液澄清并透明后取出,放置冷却,超纯水定容到50 mL。使用中速定量滤纸过滤消化液于10 mL离心管中。利用钾(K)、钙(Ca)、镁(Mg)、硫(S)、铁(Fe)、锰(Mn)、铜(Cu)、锌(Zn)、硼(B)、钼(Mo)和镍(Ni)等标准溶液分别配制这些元素的标准曲线。使用电感耦合等离子体发射光谱仪(ICP-OES)先测定这些元素的标准曲线,后测定样品消化液中这些元素的浓
根据《狮山兰芷》提供的植物分布信息,在华中农业大学校园内共采集了102种被子植物成熟期叶片。对采集的被子植物依据APG Ⅲ系统进行分类,102种被子植物共分成25个目、44个科(

图1 华中农业大学校园内102种被子植物遗传发育树状图
Fig.1 Phylogenetic tree of 102 agniosperm species at the campus of Huazhong Agricultural University
本研究采集的102种被子植物主要分布在狮山绿道(A)、狮山广场(B)、南湖边(C)、樱花大道(D)和苗圃基地(E)等5个区域。5个区域的土壤均为黄棕壤,总体上土壤样品全量必需矿质养分差异不大(
矿质养分Mineral nutrient | 采样地点 Sampling site | ||||
---|---|---|---|---|---|
A | B | C | D | E | |
N | 2 813±90ab | 2 915±96b | 2 637±76a | 2 706±57a | 2 831±48ab |
P | 1 273±53a | 1 251±27a | 1 197±38a | 1 178±63a | 1 283±49a |
K | 1 623±87a | 1 609±46a | 1 648±37a | 1 635±73a | 1 676±56a |
Ca | 3 123±39a | 2 975±67a | 2 917±39a | 3 037±62a | 2 953±91a |
Mg | 2 109±36a | 2 130±67a | 2 077±26a | 2 151±39a | 2 163±76a |
S | 318±13a | 339±29a | 326±27a | 311±61a | 325±38a |
Fe | 2 723±86ab | 2 805±96b | 2 516±56a | 2 706±57a | 2 631±53ab |
Mn | 583±27a | 591±38a | 604±71a | 567±39a | 598±43a |
Cu | 22.6±9a | 23.6±4a | 32.6±5b | 27.6±8b | 29.6±3b |
Zn | 74.2±13a | 84.2±17a | 79.2±23a | 83.2±16a | 88.2±9a |
B | 47.8±16a | 43.8±17a | 49.8±9a | 42.8±8a | 41.8±7a |
Mo | 2.1±1a | 4.1±1.2b | 3.2±1.3ab | 4.2±1.5b | 3.4±2ab |
Ni | 26.9±8a | 24.9±13a | 27.9±10a | 30.1±6a | 23.2±15a |
注: 同列数据后不同小写字母表示采样地点间存在显著差异(P<0.05)。Note:Different lower case letters after data in the same column indicate significant differences between sampling sites(P<0.05).
将102种被子植物叶片13种矿质元素含量制成热图(

图2 华中农业大学校园内被子植物叶片离子组的热图
Fig.2 Heatmaps of ionomics in the leaves of angiosperms at the campus of Huazhong Agricultural University

图3 华中农业大学校园内被子植物叶片微量元素含量的热图
Fig.3 Heatmap of microelements contentation in the angiosperm leaves of Huazhong Agricultural University
物(
对102种被子植物叶片13种矿质元素含量进行相关性分析。结果显示,每种元素都至少与其他4种矿质营养元素存在显著相关性,其中Ca和Mg之间、Ca和B之间以及N、P和K三者之间都存在极显著的正相关,Zn与Ca、Mg和P以及Mg和Mn之间存在极显著的负相关(

图4 华中农业大学校园内被子植物叶片矿质营养元素离子的相关性图
Fig. 4 Correlations among the mineral nutrients in the leaves of agniosperm species at the campus of Huazhong Agricultural University
图中红色线条代表正相关,蓝色线条表示负相关。颜色越深表示2个元素的相关性越显著。 The red lines in the figure represent a positive correlation and the blue lines represent a negative correlation between each two mineral nutrients. The darker the color,the more significant it is.
对102种被子植物按科进行叶片离子组主成分分析(PCA)。在90%的置信区间,不同科的植物出现明显分离,且同一科的大部分植物未出现明显分离(

图5 华中农业大学校园内被子植物叶片离子组的主成分分析(PCA)
Fig. 5 Principal component analysis(PCA) of leaf ionome of families of angiosperms at the campus of Huazhong Agricultural University
图中的大小写字母代表不同的科,数字代表科内植物品种的数量。A:木兰科;B:樟科;C:石蒜科;D:鸢尾科;E:禾本科;F:小檗科;G:金缕梅科;H:蝶形花科;I:豆科;J:蔷薇科;K:鼠李科;L:榆科;M:桑科;N:悬铃木科;O:壳斗科;P:胡桃科;Q:卫矛科;R:杨柳科;S:大戟科;T:石榴科;U:槭树科;V:无患子科;W:芸香科;X:锦葵科;Y:杜英科;Z:十字花科;a:蓼科;b:石竹科;c:商陆科;d:山茱萸科;e:柿科;f:山茶科;g:杜鹃花科;h:茜草科;i:夹竹桃科;j:茄科;k:木犀科;l:爵床科;m:马鞭草科;n:冬青科;o:菊科;p:忍冬科;q:海桐花科;r:五加科。同一颜色椭圆形中不同植物叶片离子组分相似。Upper and lower case letters represent different families and numbers represent the number of species within the families .A: Magnoliaceae; B: Lauraceae; C: Lycoris radiata division; D: Irides; E: Gramineae; F: Berberidaceae; G: Hamamelidaceae; H: Papilionaceae; I:Leguminous; J: Rosaceae; K: Rhamnaceae; L: Ulmaceae; M: Moraceae; N: Platanaceae; O: Fagaceae; P: Juglandaceae; Q: Celastraceae; R: Salicaceae; S: Euphorbiaceae; T: Punicaceae; U: Aceraceae; V: Sapindaceae; W: Rutaceae; X: Malvaceae; Y: Elaeocarpaceae; Z: Cruciferae; a: Polygonaceae; b: Caryophyllaceae; c: Phytolaccaceae; d: Cornaceae; e: Ebenaceae; f: Theaceae; g: Ericaceae; h: Rubiaceae; i: Apocynaceae; j: Solanaceae; k: Oleaceae; l: Acanthaceae; m:Verbenaceae; n: Aquifoliaceae;o: Compositae; p: Caprifoliaceae; q: Pittosporaceae; r: Araliaceae. The ion components in the leaves of the plants in the same color ellipse are similar.
对本研究所有科植物叶片矿质离子含量进行聚类分析(

图6 华中农业大学校园内被子植物叶片离子组的聚类热图
Fig.6 Cluster heatmaps of ionomics in leaves of angiosperms at the campus of Huazhong Agricultural University
本研究对华中农业大学校园内102种被子植物叶片离子组中各元素含量进行相关性分析,结果显示这些植物叶片离子组中每种元素与其他多种元素都存在显著相关性(
对102种被子植物按科进行叶片离子组主成分分析,结果显示不同科植物出现了显著分离,同一科植物则相对集中(
本研究采集了校园内植物5个取样地点的土壤,总体上土壤样品全量必需矿质养分差异不大。由于本研究不是对每株植物生长点的土壤样品都进行分析,因此不能定量分析土壤环境因素对本研究植物离子组的贡献。
被子植物的系统发育与叶片离子组相互关联,同一科的植物叶片离子组表现出高度的相似性,我们将来或许能通过植物叶片的离子组对其重新进行分类,让叶片离子组成为植物系统发育之外的第二“身份”特征。
参考文献 References
SALT D E,BAXTER I,LAHNER B.Ionomics and the study of the plant ionome[J].Annual review of plant biology,2008,59:709-733. [百度学术]
BAXTER I.Ionomics:the functional genomics of elements[J].Briefings in functional genomics,2010,9(2):149-156. [百度学术]
ENGELS C,KIRKBY E,WHITE P J. Marschner’s mineral nutrition of higher plants [M]. 3rd ed. London: Academic Press,2012. [百度学术]
张俊伶.植物营养学[M].北京:中国农业大学出版社,2021.ZHANG J L.Plant nutrition[M].Beijing:China Agricultural University Press,2021(in Chinese). [百度学术]
BAXTER I.Should we treat the ionome as a combination of individual elements,or should we be deriving novel combined traits?[J].Journal of experimental botany,2015,66(8):2127-2131. [百度学术]
WILLEY N.Ion-brew:clarifying the influences on plant ionomes[J].New phytologist,2012,196(1):1-3. [百度学术]
曹继容,钟广炎,王其兵.植物离子组学及其研究方法与应用进展[J].植物学报,2014,49(4):504-513.CAO J R,ZHONG G Y,WANG Q B.Progress in methodology and application of plant ionomics [J].Chinese bulletin of botany,2014,49(4):504-513(in Chinese with English abstract). [百度学术]
丁广大,刘佳,石磊,等.植物离子学:植物营养研究的新方向[J].植物营养与肥料学报,2010,16(2):479-484.DING G D,LIU J,SHI L,et al. Plant inomics: a new field in plant nutrition[J]. Plant nutrition and fertilizer science,2010,16(2):479-484(in Chinese with English abstract). [百度学术]
THOMPSON R,BURSTIN J,GALLARDO K.Post-genomics studies of developmental processes in legume seeds[J].Plant physiology,2009,151(3):1023-1029. [百度学术]
VENEKLAAS E J,LAMBERS H,BRAGG J,et al.Opportunities for improving phosphorus-use efficiency in crop plants[J].New phytologist,2012,195(2):306-320. [百度学术]
KIM K R,OWENS G,NAIDU R.Effect of root-induced chemical changes on dynamics and plant uptake of heavy metals in rhizosphere soils[J].Pedosphere, 2010, 20(4):494-504. [百度学术]
HAYES P,TURNER B L,LAMBERS H,et al.Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence[J].Journal of ecology,2014,102(2):396-410. [百度学术]
LAMBERS H,FINNEGAN P M,JOST R,et al.Phosphorus nutrition in Proteaceae and beyond[J/OL].Nature plants,2015,1:15109[2023-10-12].https://doi.org/10.1038/nplants.2015.109 [百度学术]
OLIVEIRA R S,GALVÃO H C,DE CAMPOS M C R,et al.Mineral nutrition of Campos rupestres plant species on contrasting nutrient-impoverished soil types[J].New phytologist,2015,205(3):1183-1194. [百度学术]
VERBOOM G A,STOCK W D,CRAMER M D.Specialization to extremely low-nutrient soils limits the nutritional adaptability of plant lineages[J].The American naturalist,2017,189(6):684-699. [百度学术]
QUADIR Q F,WATANABE T,CHEN Z,et al.Ionomic response of Lotus japonicus to different root-zone temperatures[J].Soil science and plant nutrition,2011,57(2):221-232. [百度学术]
WHITE P J.Improving potassium acquisition and utilisation by crop plants[J].Journal of plant nutrition and soil science,2013,176(3):305-316. [百度学术]
LI G,NUNES L,WANG Y J,et al.Profiling the ionome of rice and its use in discriminating geographical origins at the regional scale,China[J].Journal of environmental sciences,2013,25(1):144-154. [百度学术]
WHITE P J,BROADLEY M R,EL-SEREHY H A,et al.A hypothesis to explain linear relationships between shoot magnesium and calcium concentrations among angiosperm species based on cell wall chemistry[J/OL].Annals of botany,2018,2:2[2023-10-12].https://doi.org/10.1093/aob/mcy062. [百度学术]
BROADLEY M R,BOWEN H C,COTTERILL H L,et al.Phylogenetic variation in the shoot mineral concentration of angiosperms[J].Journal of experimental botany,2004,55(396):321-336. [百度学术]
WHITE P J,BROADLEY M R,THOMPSON J A,et al.Testing the distinctness of shoot ionomes of angiosperm families using the Rothamsted Park Grass Continuous Hay Experiment[J].New phytologist,2012,196(1):101-109. [百度学术]
姚家玲.狮山兰芷[M].科学出版社,2014.YAO J L.Shishan Lanzhi [M]. Beijing:Science Press, 2014(in Chinese). [百度学术]
汪雅各.土壤和植物营养元素的连续流动自动分析测定[J].上海农业科技,1984(6):31-32.WANG Y G.Automatic analysis and determination of soil and plant nutrient elements in continuous flow [J].Shanghai agricultural science and technology,1984(6):31-32 (in Chinese). [百度学术]
赵文志,张填昊,张元,等.基于电感耦合等离子体发射光谱法测定植物样品中多元素的前处理方法研究[J].地质与资源,2023,32(4):505-511,516.ZHAO W Z,ZHANG T H,ZHANG Y,et al.A pretreatment process for determination of multiple elements in plant samples based on ICP-OES[J].Geology and resources,2023,32(4):505-511,516 (in Chinese with English abstract). [百度学术]
BROADLEY M R,WILLEY N J,WILKINS J C,et al.Phylogenetic variation in heavy metal accumulation in angiosperms[J].New phytologist,2001,152(1):9-27. [百度学术]
WHITE P J,BOWEN H C,FARLEY E,et al.Phylogenetic effects on shoot magnesium concentration[J/OL].Crop and pasture science,2015,66(12):1241[2023-10-12].https://doi.org/10.1071/CP14228. [百度学术]
WHITE P J.Selenium accumulation by plants[J].Annals of botany,2016,117(2):217-235. [百度学术]
THOMPSON K,PARKINSON J A,BAND S R,et al.A comparative study of leaf nutrient concentrations in a regional herbaceous flora[J].New phytologist,1997,136(4):679-689. [百度学术]
HODSON M J,WHITE P J,MEAD A,et al.Phylogenetic variation in the silicon composition of plants[J].Annals of botany,2005,96(6):1027-1046. [百度学术]
WATANABE T,BROADLEY M R,JANSEN S,et al.Evolutionary control of leaf element composition in plants[J].New phytologist,2007,174(3):516-523. [百度学术]
BROADLEY M R,WHITE P J.Some elements are more equal than others:soil-to-plant transfer of radiocaesium and radiostrontium,revisited[J].Plant and soil,2012,355(1/2):23-27. [百度学术]
WHITE P J,BOWEN H C,BROADLEY M R,et al.Evolutionary origins of abnormally large shoot sodium accumulation in nonsaline environments within the Caryophyllales[J].New phytologist,2017,214(1):284-293. [百度学术]
WHITE P J. Calcium in plants[J].Annals of botany, 2003,92(4):487-511. [百度学术]
SMITH R L,WALLACE A.Cation-exchange capacity of roots and its relation to calcium and potassium content of plants[J].Soil science,1956,81(2):97-110. [百度学术]
ASHER C J,OZANNE P G.The cation exchange capacity of plant roots, and its relationship to the uptake of insoluble nutrients[J].Australian journal of agricultural research,1961,12(5):755-766. [百度学术]